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Abstract: The main objective of the introduced study is to design an adaptive Inertial Navigation
System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can
provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and
satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise
covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties
by analyzing the difference sequences of system measurements. The proposed RMNCE approach is
then applied to design both a modified weighted satellite selection algorithm and a type of adaptive
unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system.
In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate
outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and
field experiments were conducted to evaluate the performance of the proposed architecture and were
compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant
improvement in the measurement noise covariance estimation and the proposed architecture can
improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed
architecture can effectively limit positioning errors under conditions of poor GNSS measurement
quality and outperforms all the compared schemes.

Keywords: tightly coupled navigation; measurement noise covariance estimation; adaptive Kalman
filter (AKF); unscented Kalman filter (UKF); satellite selection

1. Introduction

Tightly-coupled inertial navigation system/global navigation satellite system (INS/GNSS)
integration systems are an attractive positioning option in many navigation service applications [1,2].
Although considerable studies have been conducted to improve the performance or reduce the
computational burden, the algorithms of the optimal adaptive filtering and satellite selection are
still not theoretically and practically perfect and warrant further investigations.

A tightly-coupled system uses the GNSS pseudo-range and pseudo-range rate measurements
as reference to evaluate and correct the INS error [3]. In practice, in order to cope with the unstable
measurement noise covariance R, caused by the instabilities of the environment and the receiver [4,5],
the adaptive Kalman filter (AKF) which can estimate R online should be utilized to guarantee the
navigation accuracy [6–8]. The innovation and residual are the most commonly used information to
estimate R adaptively, and the corresponding algorithms are known as innovation-based adaptive
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estimation (IAE) [9] and residual-based adaptive estimation (RAE) [10]. Nevertheless, the innovation
and residue are coupled with the state estimation error, which can affect the accuracy of R and filtering
or even cause divergence [11], especially in a biased state estimation situation. Besides, abnormal
measurements arise in areas like urban and canyons [12]. In these areas, GNSS suffers from large
errors due to the multipath, poor geometry and high noise. Dhital [13] proposed a novel adaptive filter
by assuming that the measurement errors follow a heavy-tailed distribution. The user acceleration
derived from GNSS Doppler measurements and the direct output of inertial measurement unit (IMU)
are compared to generate a scalar to adjust R. Yang [14,15] introduced the robust estimation technique
to INS/GNSS tightly-coupled systems to identify and reject aberrant measurements. Unfortunately,
these algorithms are not theoretically quantitative and will be also affected by inaccurate state estimates
such as IAE/RAE.

Satellite selection is an important element to guarantee positioning accuracy in INS/GNSS
tightly-coupled systems. Geometric dilution of precision (GDOP) [16–21], signal to noise ratio
(SNR) [22,23] and carrier to noise ratio (CNR) [24,25] are standard indexes utilized to evaluate the
positioning accuracy from the views of geometry constraints and signal quality. However, the GNSS
measurement precision level is a crucial factor to be considered in satellite selection and has not
been well studied due to a lack of effective approaches. In current GDOP- and SNR/CNR-based
satellite selection algorithms, the satellites which have accurate measurement can be excluded due to
low SNR/CNR or high GDOP and vice versa, the satellite suffering from large measurement error
can possibly be taken into consideration to derive the navigation solution for a high SNR/CNR or
low GDOP. Hence, the satellite selection algorithm faces the drawback that it may involve improper
satellites or reject a suitable satellite and as such lead to negative effects on the solution. The satellite
elevation angle is another factor that affects the satellite selection. The satellite elevation-dependent
weight is adopted for the a priori variance for GNSS observations [26], which is based on the
assumption that a lower elevation angle introduces higher measurement noise due to its increased
possibility of multipath delay. However, the deficiency of lacking a real evaluation of measurement
noise still exists in this approach.

To overcome the aforementioned limitations of these existing approaches, the present work
proposes a novel redundant measurement noise covariance estimation (RMNCE) approach, which
employs redundant information obtained from two independent measurement systems [27] to
estimate their corresponding measurement noise properties. The RMNCE approach is then applied to
develop a RMNCE-based tightly-coupled (RMNCE-TC) architecture, including a new RMNCE-based
satellite selection algorithm and a RMNCE-based adaptive unscented Kalman filter (RMNCE-UKF).
Additionally, the altitude aiding algorithm [27–29] is adopted to augment the external measurements
for aiding the navigation solutions. The main contributions of this research are summarized below:

(1) A novel RMNCE approach is put forward and proved mathematically. The main advantage of
the RMNCE approach is that the noise estimate is only based on measurements and therefore can
be isolated from the state estimation error.

(2) A novel satellite selection approach is proposed by considering the measurement noise variance
of different satellites, which takes both GDOP and the online estimated measurement noise into
account to select an optimal satellite combination. Herein, the observation quality of the GNSS
measurements can be well monitored and the differences in accuracy of different measurements
can be fully considered.

(3) An AKF scheme is designed and applied to UKF [30,31]. The RMNCE-UKF ensures that the
measurement noise estimate is uncorrelated to the state estimate, and correspondingly avoids the
risk of filter divergence and self-oscillation. Moreover, a new R expansion strategy, which can be
regarded as an alternative approach to Receiver Autonomous Integrity Monitoring (RAIM) and
other detection algorithms, is designed to avoid the negative effects of outlying observations.
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The remainder of the paper is organized as follows: Section 2 introduces the proposed RMNCE
theory and provides a mathematical proof; Section 3 illustrates the proposed satellite selection
algorithm; Section 4 gives the adaptive RMNCE-UKF; Section 5 presents an overview of the proposed
RMNCE-TC architecture; Section 6 presents both simulation and practical test results verifying the
overall system performance, and, finally, Section 7 presents the conclusions of the work.

2. Adaptive R Estimation

2.1. Related Work about R Estimation

The most commonly used AKF (i.e., IAE and RAE), make use of the new information in the
innovation sequence or residual sequence to adaptively tune the measurement noise covariance matrix
R [11,31]. For a nonlinear system, the two algorithms are implemented as:

R̂k,IAE = 1
N

k
∑

j=j0
εjε

T
j − P−zz,k

R̂k,RAE = 1
N

k
∑

j=j0
rjrT

j + P+
zz,k

(1)

where P−zz,k is the covariance of the predicting measurement error [31], P+
zz,k is the covariance of the

filtering measurement error [32] and N represents the length of a sliding window. The innovation εk
and residue rk are given by: {

εk = Zk − h
(
X̂k,k−1

)
rk = Zk − h

(
X̂k,k

) (2)

where X̂k,k−1 denotes the state prediction, X̂k,k denotes the state estimate and h(·) is the measurement
function.

As shown in Equation (2), εk and rk can be affected by biased state estimates that cannot be totally
avoided in an INS/GNSS integrated navigation system. Therefore, if the system state vector is not
well estimated, a negative effect will be introduced on the filter performance and as such reduce the
rationality of adaptive filtering or even cause diverge. The proposed RMNCE algorithm just utilizes
redundant measurements to estimate R, which is immune to state estimation error and then improves
filtering performance.

2.2. RMNCE Theory

If there are two redundant measurements for the same signal with uncorrelated zero-mean white
noises, the variances of the noises can be estimated just based on the measurement differences.

Theorem. Assuming that Z1(k) and Z2(k) are independent redundant measurements of a signal Z(k) from two
systems, the measurements can be modeled as [27]:

Zi(k) = Z(k) + Si(k) + Vi(k), i = 1, 2 (3)

where, for the measurement system i, Si(k) is the unknown measurement system error and Vi(k) is zero-mean
white noise at time epoch k. The first-order-self-difference (FOSD) ∆Zi and the second-order-mutual-difference
(SOMD) ∆Z12 are defined as: 

∆Z1(k) = Z1(k)− Z1(k− 1)
∆Z2(k) = Z2(k) − Z2(k − 1)
∆Z12(k) = ∆Z1(k) − ∆Z2(k)

(4)

If Si(k) is stable over a short period, namely:

Si(k) − Si(k − 1) ≈ 0 (5)
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the variances of V1(k) and V2(k) are given by: σ2
1 (k) =

E[∆Z12(k)∆ZT
12(k)] + E[∆Z1(k)∆ZT

1 (k)] − E[∆Z2(k)∆ZT
2 (k)]

4

σ2
2 (k) =

E[∆Z12(k)∆ZT
12(k)] − E[∆Z1(k)∆ZT

1 (k)] + E[∆Z2(k)∆ZT
2 (k)]

4

(6)

Proof. The FOSD terms of the two uncorrelated measurement systems are given by:

∆Zi(k) = Zi(k)− Zi(k −1) = [Z(k) − Si(k) − Vi(k)] − [Z(k − 1) − Si(k − 1) − Vi(k − 1)]
= [Z(k) − Z(k − 1)] + [Si(k− 1)− Si(k)] + [Vi(k− 1)−Vi(k)] i = 1, 2

≈ [Z(k) − Z(k − 1)] + [Vi(k− 1)−Vi(k)]
(7)

and the autocorrelation of ∆Z1(k) can be calculated:

E
[
∆Z1(k)∆ZT

1 (k)
]

= [Z(k) − Z(k − 1)][Z(k) − Z(k − 1)]T + E
[
V1(k − 1)VT

1 (k − 1)
]
+ E

[
V1(k)VT

1 (k)
]

= [Z(k)− Z(k− 1)][Z(k)− Z(k− 1)]T + σ2
1 (k− 1) + σ2

1 (k)
(8)

Because the statistical characteristics are stable over a relatively short period, Equation (8) can be
written as:

E
[
∆Z1(k)∆ZT

1 (k)
]
= [Z(k) − Z(k − 1)][Z(k) − Z(k− 1)]T + 2σ2

1 (k) (9)

Similarly, the autocorrelation of ∆Z2(k) is given by:

E
[
∆Z2(k)∆ZT

2 (k)
]
= [Z(k) − Z(k − 1)][Z(k) − Z(k − 1)]T + 2σ2

2 (k) (10)

Considering Equations (9) and (10), we can obtain that:

σ2
1 (k) − σ2

2 (k) =
E
[
∆Z1(k)∆ZT

1 (k)
]
− E

[
∆Z2(k)∆ZT

2 (k)
]

2
(11)

On the other hand, the SOMD term ∆Z12 is given by:

∆Z12(k) = ∆Z1(k) − ∆Z2(k)
= {[Z(k) − Z(k − 1)] + [V1(k− 1) − V1(k)]} − {[Z(k)− Z(k− 1)] + [V2(k− 1) − V2(k)]}
= V1(k − 1) − V1(k) − V2(k − 1) + V2(k)

(12)

and its autocorrelation is:

E
[
∆Z12(k)∆ZT

12(k)
]

= E
{
[V1(k− 1) − V1(k) − V2(k− 1) + V2(k)][V1(k− 1) − V1(k) − V2(k− 1) + V2(k)]

T
}

= 2σ2
1 (k) + 2σ2

2 (k)

(13)

Finally, by solving Equations (13) and (11), both σ2
1 (k) and σ2

2 (k) can be obtained as: σ2
1 (k) =

E[∆Z12(k)∆ZT
12(k)] + E[∆Z1(k)∆ZT

1 (k)] − E[∆Z2(k)∆ZT
2 (k)]

4

σ2
2 (k) =

E[∆Z12(k)∆ZT
12(k)] − E[∆Z1(k)∆ZT

1 (k)] + E[∆Z2(k)∆ZT
2 (k)]

4

(14)

�

From the above derivation, the advantages of RMNCE algorithm can be summarized as below:

(1) The estimate of variance is only based on measurements and therefore can be isolated from the
state estimation error.
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(2) The estimate of variance is immune to measurement system errors and can be determined without
any knowledge of the real measurement by applying FOSD and SOMD.

(3) The noise variances of redundant measurements can be estimated simultaneously.

In practice, because the statistical characteristics are stable over a relatively short period, a sliding
window [27] can be employed to derive the autocorrelations in Equation (14). The sliding window
width can be empirically set to 30~60.

3. RMNCE-Based Satellite Selection

Optimal satellite selection is an important way to realize acceptable accuracy with minimum
computation [33]. The tightly coupled algorithm approach has been proven to be an effective method
of positioning based on limited satellites, especially in harsh situations [34,35]. For an embedded
tightly coupled system, proper satellite selection, based on indexes to evaluate measurement accuracy
directly, plays an important role to guarantee filtering precision with necessary calculations.

3.1. Deficiency of GDOP Based Methods

After the compensation of satellite clock offset, ionospheric delay and tropospheric delay, the
pseudo-range observation model [36] is reduced to:

ρGNSS =

√
(xs − x)2 + (ys − y)2 + (zs − z)2 + δtu + ∆ρ (15)

where [xs, ys, zs]
T is the position of the satellite, [x, y, z]T is the position of receiver, δtu is the receiver

clock offset delay, and ∆ρ denotes the measurement noise. Meanwhile, replacing [x, y, z]T with the INS
result [xINS, yINS, zINS]

T , a prediction of the GNSS observation, which can be taken as a redundant
measurement, can be derived and denoted as ρINS. Because the INS and the GNSS are two independent
systems, the measurement noise of ρGNSS and ρINS are uncorrelated. By using the RMNCE approach
the variance of ∆ρ can be estimated as σ̂2

ρ . Similarly, the measurement noise variance σ̂2.
ρ

of the
pseudo-range rate can be estimated simultaneously.

According to the measurement of pseudo-range Equation (15), the GNSS positioning accuracy
can be analyzed as below:

∆x =
(

HTH
)−1

HT∆ρ, H =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z 1

∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z 1

...
...

... 1
∂ρn
∂x

∂ρn
∂y

∂ρn
∂z 1

 (16)

where ∆x is the error vector of the receiver and H is the Jacobin matrix with respect to the expanded

vector [x, y, z, δtu]
T . GDOP =

√
trace

{
(HTH)

−1
}

is the traditional index to select the optimal satellite

combination. For embedded systems, because the directions of the satellites in the sky change slowly,
H can be periodically updated to decrease the computational burden.

In order to consider other factors besides geometry, weighted GDOP defined as below based on
prior knowledge has been implemented and proved more effective than standard GDOP:

GDOPW =

√
trace

{
(HTWH)

−1
}

(17)

Although weighted GDOP and SNR/CNR have been utilized to select optimal satellites in
previous research, the uncertainty of weight and the inconsistency between the SNR/CNR and the
measurement accuracy will degrade the effectiveness. The exclusion method using elevation and
SNR/CNR has the risk of selecting the satellites with bad quality or missing the satellites with good
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quality. Hence, if the accuracy of pseudo-range can be evaluated precisely in real time, the selection
reasonability and the subsequent positioning accuracy can be improved.

3.2. RMNCE Based Method

As described in Section 3.1, the RMNCE is employed to estimate the measurement noise variances
of the pseudo-range and pseudo-range rate. Assuming that the number of satellites at epoch k is SN ,
the estimate of Rk can be expressed in the following form:

R̂RMNCE
k = diag

{
σ̂2

ρ,1, σ̂2
ρ,2, · · · , σ̂2

ρ,SN
, σ̂2.

ρ,1, σ̂2.
ρ,2, · · · , σ̂2.

ρ,SN

}
(18)

where σ̂2
ρ,l and σ̂2.

ρ,l respectively denote the estimated variance of the pseudo-range and pseudo-range
rate measurement noise of the l-th satellite.

Since pseudo range can be measured from INS and GNSS simultaneously, the GNSS measurement
noises are able to be evaluated by RMNCE without the interference of state estimation error coming
from IAE or RAE. At each epoch σ̂2

ρ (k) is updated, then the selection operations can be expressed
as follows:

Ξ1 =
{

Sl

∣∣∣ ∣∣∣ρl
GNSS(k) − ρl

INS(k)
∣∣∣ ≤ ∆ρthrd and σ̂2

Sl
(k) ≤ σ̂2

thd, Sl ∈ S(k)
}

(19)

W =

{
wl

∣∣∣∣∣ 1
σ̂2

Sl

, Sl ∈ Ξ1

}
(20)

Ξ2 =
{

S′l |GDOPW = min, S′l ∈ Ξ1
}

(21)

where S(k) is the set of observable satellites at epoch k, ∆ρthrd is the threshold of pseudo range
difference between INS and GPS, σ̂2

thd is the threshold of variance, Ξ1 is the candidate set discarding
the abnormal observations, and Ξ2 is the selection set.

In Equation (19), the pseudo range difference between INS and GNSS is taken as an index to reject
abnormal pseudo-range errors mainly caused by the multipath effect [37]. However, this index is biased
because it is affected by the INS positioning error, which may cause the wrong detection. To cope with
this problem, as shown in Equation (19), satellite measurement noise variances estimated by RMNCE
are considered with the pseudo range difference together to detect the abnormal measurements.
Moreover, as illustrated in Equations (20) and (21), the weighting matrix W which is calculated
by the estimated noise variances

{
σ̂2

Sl

}
is used to derive the weighted GDOP; thus, both satellite

geometry and measurement noise characteristic have been taken into consideration in the satellite
selection procedure.

Besides, five satellites, when available, are selected to improve the positing accuracy in this
research. In order to speed up processing, all the observable satellites are sorted in descending order
according to elevation angle, and the first two as mentioned in [33] are selected. Then the remained
satellites can be determined according to GDOPW . The main procedure of the proposed satellite
selection algorithm is shown in Figure 1.

Remark 1. In Equation (15), the receiver clock offset delay is unimportant when only implementing the RMNCE
method, because this term cancels in the SOMD. However, the satellite exclusion step described by Equation (19)
requires that ρGNSS and ρINS should be comparable. Hence, the compensated ρGNSS not the direct measurement
is used in Equation (19).



Sensors 2017, 17, 2032 7 of 24

Sensors 2017, 17, 2032 7 of 23 

 

Besides, five satellites, when available, are selected to improve the positing accuracy in this 
research. In order to speed up processing, all the observable satellites are sorted in descending 
order according to elevation angle, and the first two as mentioned in [33] are selected. Then the 
remained satellites can be determined according to GDOPW . The main procedure of the proposed 
satellite selection algorithm is shown in Figure 1. 

Remark 1. In Equation (15), the receiver clock offset delay is unimportant when only implementing the 
RMNCE method, because this term cancels in the SOMD. However, the satellite exclusion step described by 
Equation (19) requires that GNSS  and INS  should be comparable. Hence, the compensated GNSS  not the 
direct measurement is used in Equation (19). 

Calculate the elevation angles

Find the highest two satellites

Find the other three satellites based on  GDOPW

Get the final selection set  2

Obtain all the visible satellites

Output

Get the candidate set      by Equation (19)1

 
Figure 1. The flow chart of the proposed satellite selection. 

4. RMNCE-Based Adaptive UKF 

In this work, nonlinear system state model and nonlinear measurement model are employed to 
achieve better performance, and the RMNCE approach is applied to design an adaptive UKF. 
Furthermore, a R expanding strategy is proposed to inhibit the negative effects of the sudden 
enlargement of the measurement noise and abnormal observations, that always happens with 
multipath effect and cannot be tackled by the statistic RMNCE method. 

4.1. INS/GNSS System Description 

The state vector in the proposed tightly-coupled system is given by: 

, , , , , , , , , , , , , , , ,
T

E N U E N U x y z x y z u uV V V L h t t                 X =    (22) 

where  , , T
E N U    is the misalignment vector between the true and estimated local navigation 

frame in East-North-Up (ENU) coordinate,  , , T
E N UV V V    is the velocity error,  , , TL h    is 

the position error, , ,
T

x y z      is the gyroscope bias, , ,
T

x y z      is the accelerometer bias, ut  

and ut  are respectively the GNSS receiver clock offset and clock drift. The nonlinear differential 
equations of INS states are well known and can be found in [38–40]. The biases of IMU sensors are 
considered constant, and ut   is modeled as a first-order Gauss-Markov process. 

The measurement equation of pseudo-range is shown in Equation (15). The pseudo-range rate 
observation model is formulated as: 

Figure 1. The flow chart of the proposed satellite selection.

4. RMNCE-Based Adaptive UKF

In this work, nonlinear system state model and nonlinear measurement model are employed
to achieve better performance, and the RMNCE approach is applied to design an adaptive UKF.
Furthermore, a R expanding strategy is proposed to inhibit the negative effects of the sudden
enlargement of the measurement noise and abnormal observations, that always happens with
multipath effect and cannot be tackled by the statistic RMNCE method.

4.1. INS/GNSS System Description

The state vector in the proposed tightly-coupled system is given by:

X =
[
φE, φN , φU , δVE, δVN , δVU , δL, δλ, δh, εx, εy, εz,∇x,∇y,∇z, δtu, δ

.
tu

]T
(22)

where [φE, φN , φU ]
T is the misalignment vector between the true and estimated local navigation

frame in East-North-Up (ENU) coordinate, [δVE, δVN , δVU ]
T is the velocity error, [δL, δλ, δh]T is the

position error,
[
εx, εy, εz

]T is the gyroscope bias,
[
∇x,∇y,∇z

]T is the accelerometer bias, δtu and δ
.
tu

are respectively the GNSS receiver clock offset and clock drift. The nonlinear differential equations
of INS states are well known and can be found in [38–40]. The biases of IMU sensors are considered
constant, and δ

.
tu is modeled as a first-order Gauss-Markov process.

The measurement equation of pseudo-range is shown in Equation (15). The pseudo-range rate
observation model is formulated as:

.
ρGNSS = ex(vs,x − vx) + ey

(
vs,y − vy

)
+ ez(vs,z − vz) + δ

.
tu + ∆

.
ρ (23)

where
[
vs,x, vs,y, vs,z

]T is the satellite velocity,
[
vx, vy, vz

]T is the receiver’s velocity,
[
ex, ey, ez

]T is the
unit vector between the receiver and the satellite, δ

.
tu denotes the receiver clock drift and ∆

.
ρ is the

measurement noise of pseudo-range rate.
Besides, altitude information is employed to augment the observation system. The ellipsoid

equation is employed to serve as an auxiliary measurement equation [27]:

x2

(Re + h)2 +
y2

(Re + h)2 +
z2

(Rp + h)2 = 1 (24)
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where h is the altitude information, Re and Rp are the lengths of the Earth’s semi-major and semi-minor
axes respectively.

4.2. Expanded R Design

R̂RMNCE
k is a statistic within a sliding window and therefore cannot keep up with the change

of R in real time, which will lead to improper estimate especially in case of multipath, disturbance
and other sudden measurement noise changing circumstances. To cope with this indeterminate R, a
performance based R expanding algorithm is designed as below.

Assuming that the expanded Rk can be defined by:

Rk = βR̂RMNCE
k (25)

where β is the expanding scale and can be expressed as diag
{

β1 · · · β2SN

}
. Then the estimated state

vector X̂k in the UKF can be expressed as:{
X̂k = X̂−k + Kkεk

Kk = Pxz,k
(
Pẑ− ,k + βR̂RMNCE

k
)−1 (26)

where X̂−k is the state prediction, Pxz,k is the covariance between X̂−k and the measurement prediction,
and Pẑ− ,k is the covariance of the measurement prediction error. To control the influence of the
undetermined measurement noise, we assume that Kkεk should lie within a reasonable range:

Pxz,k

(
Pẑ− ,k + βR̂RMNCE

k

)−1
εk ≤ C (27)

where C denotes the maximum state transition error and processing noise in one step. For an
INS/GNSS integrated navigation system, C is mainly decided by the performance of IMU.

In order to avoid the computational complexity, sequential processing [41] is employed to estimate
the boundary value of β. In the l-th step of the sequential UKF at the k-th epoch, the corresponding
expanding scale βl can be calculated as:

βl =

[
P(l)

xz,k
TP(l)

xz,k

P(l)
xz,k

TC
ε
(l)
k − P(l)

ẑ− ,k

]
1

R̂RMNCE,(l)
k

P(l)
xz,k =

2n
∑

i=0
w(c)
(i)

(
χ
(l)
k,(i) − X̂−(l)k

){
h(l)
[
χ
(l)
k,(i)

]
−

2n
∑

i=0
ω
(m)
(i) h(l)

[
χ
(l)
k,(i)

]}T

P(l)
ẑ− ,k =

2n
∑

i=0
ω
(c)
(i)

{
h(l)
[
χ
(l)
k,(i)

]
−

2n
∑

i=0
ω
(m)
(i) h(l)

[
χ
(l)
k,(i)

]}{
h(l)
[
χ
(l)
k,(i)

]
−

2n
∑

i=0
ω
(m)
i h(l)

[
χ
(l)
k,(i)

]}T

(28)

where ε
(l)
k is the innovation of the l-th observation,

{
ω
(m)
(i)

}
and

{
ω
(c)
(i)

}
are UT weights [30],

{
χ
(l)
k,(i)

}
denotes the sigma points, X̂−(l)k denotes the prediction in the l-th step, h(l)[·] is the l-th observation

equation, P(l)
xz,k is a vector and P(l)

ẑ− ,k is a scalar quantity.
According to the performance vector C and innovation, the expanding scale of every measurement

can be determined but still not optimal due to the insufficient samples. For this improved tightly
coupled application, the maximum expanding scale is selected as the unique scale for those abnormal
measurements to suppressing undetected measurement noise effectively: βl = βl+SN = max

{
βi|i = 1, 2, · · · , S2SN },

∣∣∣ρl
GNSS(k) − ρl

INS(k)
∣∣∣ ≥ ∆ρthrd

βl = βl+SN = 1,
∣∣∣ρl

GNSS(k) − ρl
INS(k)

∣∣∣ ≤ ∆ρthrd
(29)

where βl and βl+SN are the expanding scales corresponding to the pseudo-range and pseudo-range
rate of the l-th satellite. The same ∆ρthrd in Equation (19) is utilized to judge whether expanding or not
when abnormal measurements must be selected in challenging situations.
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Regarding the particularity of inertia based integrated navigation system, this strategy is proved
effective to cope with multipath and other GNSS challenging situations. In practice, the transition,
input and output matrixes are usually stable or tiny different in a given period, the expanding scale
can be determined based on the experiment data.

Remark 2. The threshold value C should be time varying due to the INS cumulative error, and increases with
δt, which is the difference between the current epoch and the epoch at which the previous feedback correction was
implemented. In this paper, C is set to be linearly increasing with respect to δt.

4.3. Application in UKF

The aforementioned adaptive strategy is employed to the UKF to solve the nonlinear estimation
problem. Omitting the well-known details of the UKF, the main procedure of calculating the Kalman
gain in the proposed RMNCE-UKF is shown from Equation (30) to Equation (33):

Kk = Pxz,kP−1
zz,k (30)

Pxz,k =
2N+1

∑
j=1

w(c)
j

(
χ∗k,j − X̂−k

)(
ς∗−k,j − Ẑ−k

)T
(31)

Pzz,k = Pẑ− ,k + βR̂RMNCE
k (32)

Pẑ− ,k+1 =
2N+1

∑
j=1

w(c)
j

(
ς∗−k,j − Ẑ−k

)(
ς∗k,j − Ẑ−k

)T
(33)

where
{

χ∗k−1,j

}
and

{
ς∗−k+1,j

}
are the unscented transformations of the sigma points regarding to

the state equation and measurement equation respectively, X̂−k is the state prediction and Ẑ−k is the
measurement prediction. The detailed time updating and measurement updating can be found in [31].
Figure 2 presents the flow chart of the RMNCE-UKF.
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5. RMNCE-TC Architecture Overview

Figure 3 depicts the proposed architecture and illustrates how the proposed RMNCE approach
forms the core component linking the INS, the adaptive UKF, and the satellite selection processes.
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As shown in Figure 3, the modified tightly-coupled system consists of 6 parts. Part 1 and Part 2
are traditional INS and GNSS procedures. In Part 3, the RMNCE is carried out based on the pseudo
ranges and pseudo range rates inputted by INS and GNSS according to Equations (4)~(6), which
is the key adaptive part of this architecture. Satellite selection is accomplished in Part 4 based on
Equations (19)–(21) and the result is also transferred to Part 6 to expand the R when necessary. Part 5
provides additional height observation to enhance state observabilities. The adaptive UKF is carried
out in Part 6 based on RMNCE and expanded R.

6. Experiments and Discussion

Both semi-physical simulation and field experiments were conducted to evaluate the performance
of the RMNCE-TC architecture.

6.1. Description of the Algorithms Employed for Comparison

Many researches [42,43] show that the UKF has a higher accuracy than the EKF, so we directly
employ existing adaptive UKF schemes to conduct the comparison experiments. All the compared
schemes with the same altitude aiding strategy [27] are briefly described below:

(1) Standard tightly-coupled integration (STC)

A standard UKF integration filter is used to fuse INS results and GNSS measurements, and R is
set to a fixed value. Four satellites are selected by picking their GDOP ranked least.

(2) Adaptive tightly-coupled integration (ATC)

Residual-based adaptive estimation (RAE) is implemented to improve the performance of the
UKF. For the RAE-UKF scheme [31], R is adaptively updated as follows:
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

R̂k = Ĉvk + P+
zz,k

Ĉvk =
1
N

k
∑

j=j0
rjrT

j

rj = Zj −
2n
∑

i=0
ω
(m)
(i) h

[
χj,(i)

]
P+

zz,k =
2n
∑

i=0
ω
(c)
(i)

{
h
[
χk,(i)

]
−

2n
∑

i=0
ω
(m)
(i) h

[
χk,(i)

]}{
h
[
χk,(i)

]
−

2n
∑

i=0
ω
(m)
(i) h

[
χk,(i)

]}T

(34)

where rj denotes the residual error, N is the window length for calculating the covariance of rj, and
χj,(i) is the i-th n-dementional sigma point at step j. Besides, a 5-satellite selection based on GDOP are
employed in ATC.

(3) Modified ATC (MATC)

Modified ATC (MATC) which uses the proposed satellite selection algorithm is also implemented
to help to analyze the individual contributions of the satellite selection algorithm and RMNCE-UKF.

(4) CNR and satellite elevation based tightly-coupled integration (CNE-TC)

In a recently published article [25], satellites with elevations lower than 10◦ or CNR lower than
30 dB-Hz are excluded, and the variance on the pseudo-range estimates is weighted as:

σ̂2
ρ =

a + b · 10
− C

N0
10

sin(Elev)
(35)

where C
N0

is the CNR value, Elev is the satellite elevation, a and b are empirical parameters, that are
recommended to set a = 1 and b = 2812.

6.2. Semi-Physical Simulation Experiments

The CNR is difficult to be simulated without any personal bias, so STC, ATC and MATC are
selected as the compared schemes to mainly verify the feasibility and effectiveness of the RMNCE-TC.
The semi-physical experiment platform is shown in Figure 4. A trajectory generator is employed
to produce the flight trajectory and corresponding true IMU data. Errors, such as bias, ARW, and
VRW, are added to the true IMU data to simulate measured IMU data. Meanwhile, the barometer
measurements are also simulated according to the true position data. All the sensor error settings
can be found in Table 1. Furthermore, the Spirent GNSS simulator software suite SimGEN™ (Spirent
Company, Sunnyvale, CA, USA) is employed to simulate GNSS data with 10 Hz output.
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Table 1. Sensor error settings employed in the simulation experiments.

Parameters Performance

Gyroscope bias 10 ◦/h
Angle random walk 0.3 ◦/

√
h

Accelerometer bias 1 mg
Velocity random walk 1 mg/

√
Hz

Variance of barometer 25 m2

To evaluate the estimation accuracy of the RMNCE-TC algorithm, a time varying measurement
noise deviation scheme was implemented. The standard deviation of the pseudo-range measurement
noise was 1 m, except for: the period during the 730-th second to the 750-th second, where large errors
were added to the satellites #10, #13, and #24 to simulate the multi-path effect; and the period during
the 1900-th second to the 2500-th second, where all standard deviations were enlarged, particularly
those of satellites #10, #13, and #24 were increased to 5m. The number of visible satellites and the
detailed settings are listed in Table 2.

Table 2. The GNSS measurement error settings.

Time(s) Satellite Number σρ(m) σ .
ρ(m/s) Special Settings

730–750 7 1 0.01 add additional large errors 1 to the #10, #13 and
#24 satellite pesudo-range easurements

1900–2500 7 2 0.01 increase σρ of #10, #13 and # 24 to 5m
2900–2960 1 1 0.01 only #24 is visible

other 8 1 0.01 —
1 The additional large errors of the pseudo-range measurements of satellites #10, #13, and #24 are set as time varying,
which can be expressed as error = a·t + b, where a = 1, b = 100, 90, and 80, respectively.

6.2.1. Measurement Noise Variance Estimation

To verify the reliability of RMNCE, we compared the RMNCE results with those obtained by
RAE. Figure 5 shows the results of satellite #24 which was always visible throughout the simulation.
The comparison indicates that RMNCE is more robust and accurate than RAE, particularly when the
true value of the measurement noise variance changes suddenly.Sensors 2017, 17, 2032 13 of 23 
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Besides, the error volatility of RMNCE is lower than RAE. We calculated the variances of the
estimation errors during [1700 s, 1900 s], [1901 s, 2500 s] and [2501 s, 2700 s] intervals. The results of
RMNCE are 0.0212, 0.2711, and 0.1651, and the corresponding results of RAE are 0.0304, 0.5828 and
0.3025. It is clear that RMNCE provides a more stable measurement noise variance estimation.
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6.2.2. Navigation Accuracy

Table 3 presents the root mean square errors (RMSE) of different navigation parameters of the
entire simulation. The latitude and longitude errors are converted to northward and eastward position
errors in meters. The RMCNE-TC owns an overall better performance than those of STC, ATC
and MATC.

Table 3. RMSE obtained by the different schemes.

STC ATC MATC RMNCE-TC

Latitude (m) 3.0236 0.6926 0.5960 0.3706
Longitude (m) 3.8596 1.5556 1.4370 1.1603

East velocity (m/s) 0.1528 0.0797 0.0767 0.0698
North velocity (m/s) 0.1795 0.0863 0.0864 0.0866

Heading (◦) 0.7027 0.4813 0.4766 0.4656
Pitch (◦) 0.4743 0.2013 0.1714 0.1015
Roll (◦) 0.1070 0.1214 0.1176 0.1088

To further evaluate the navigation accuracy of the different frameworks, we compared the
three-dimensional (3D) positioning error, which is defined as:

d(k) =

√
[xE(k) − xT(k)]

2 + [yE(k) − yT(k)]
2 + [zE(k) − zT(k)]

2 (36)

where [xE(k), yE(k), zE(k)]
T is the ECEF position at the k-th epoch calculated by the different schemes,

and [xT(k), yT(k), zT(k)]
T is the true ECEF position at the k-th epoch. In what follows, the 3D

positioning errors obtained by the different schemes are analyzed over three typical segments,
including [730 s, 750 s], [1900 s, 2500 s] and [2900 s, 2960 s].

(1) 3D Positioning Errors During [730 s, 750 s]

Figure 6 shows the positioning errors of the selected schemes from the 730-th second to the 750-th
second, where the measurements of satellites #10, #13, and #24 were contaminated by large errors.
The comparison result shows that RMNCE-TC is more robust in this scenario than other schemes.
This superiority is mainly owing to the satellite selection procedure and the expanded R design. Table 4
lists the satellite selections, GDOP values, and positioning errors of these schemes at the 750-th epoch.
In contrast to STC and ATC, the contaminated satellites #10, #13, and #24 are detected according to the
threshold ∆ρthrd in MATC and RMNCE-TC. But the requirement for selecting five satellites necessitates
including satellite #10 in the candidate list. Here, the expanding scale β employed in the adaptive UKF
plays a vital role to effectively suppresses the negative impact of large error of satellite #10.
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Table 4. Satellite selection results of the different schemes at the 740-th second.

Selected Satellites ID GDOP 3D Positioning Error

STC 10, 13, 29, 21 2.766 13.580 m
ATC 15, 10, 18, 13, 29 2.408 3.115 m

MATC 15, 10, 18, 21, 29 2.452 2.215 m
RMNCE-TC 15, 10, 18, 21, 29 2.452 0.152 m

(2) 3D Positioning Errors During [1900 s, 2500 s]

Figure 7 shows the positioning errors from the 1900-th second to the 2500-th second, during
which the pseudo-range measurement noise was increased. Particularly the standard deviations of
the pseudo-range measurement noise of satellites #10, #13, and #24, were set to 5 m. The fixed R
employed in STC cannot adapt to the changes, which results in large positioning errors. ATC provides
considerable improvement due to its adaptive strategy based on RAE. MATC provides a second
smallest positioning error due to a better satellite selection. RMNCE-TC provides the smallest
positioning error. Table 5 shows the GDOP of different schemes at the 2050-th second. Although the
GDOP of RMNCE-TC is not the smallest, its 3D positioning error is the minimum.
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Table 5. Satellite selection results of the different schemes at the 2050-th second.

Selected Satellites ID GDOP 3D Positioning Error

STC 10, 13, 21, 29 2.430 1.072 m
ATC 10, 13, 18, 24, 29 2.159 0.728 m

MATC 15, 10, 18, 21, 29 2.168 0.461 m
RMNCE-TC 15, 10, 18, 21, 29 2.168 0.205 m

(3) 3D Positioning Errors During [2900 s, 2960 s]

Figure 8 presents the performances of the tested schemes when only one satellite is visible.
The result shows that ATC and MATC even performs worse than STC, but RMNCE-TC still holds
a better performance. Figure 9 compares the residual sequence and SOMD sequence of satellite
#24. We note that the residual sequence is clearly biased during GNSS outage, which contradicts the
conventional assumption that the residual sequence is zero mean white noise. Consequently, the RAE
based R estimation becomes larger and generates harmful influence on the Kalman filter. In contrast,
the SOMD sequence is more robust owing to its decoupling from the state estimation error. Hence,
RMNCE-based noise estimation is more accurate than RAE.
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6.3. Field Experiments

A tightly-coupled integration system platform was designed and implemented within a vehicle
to test the proposed architecture. The platform was mainly comprised of a Crossbow IMU-440 MEMS
sensor (Milpitas, CA, USA), a differential GNSS receiver and a single chip MS5803 low-cost barometer,
which is shown in Figure 10a. The performance indexes of the IMU-40 are listed in Table 6. Moreover,
a NovAtel IMU-ISA-100C device (Calgary, AB, Canada) is utilized to provide high accuracy reference
navigation solutions.

Table 6. The performance parameters of the IMU sensor.

Gyroscope Performance Accelerometer Performance

Bias stability: 10 ◦/h Bias stability: 1 mg
ARW: 4.5 ◦/

√
h VRW: 0.5 m/s/

√
h

Input range: ± 200◦/s Input range: ±10 g
Scale factor non-linearity: ≤100 ppm Scale factor non-linearity: ≤100 ppm
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To make effective comparisons, GDOP based 4-satellite and 5-satellite selection standard
tightly-coupled positioning schemes, denoted as STC4 and STC5 are carried out; and CNE-TC is
also implemented to show the contributions of RMNCE-TC over the SNR/CNR and elevation based
methods. More detail settings about the compared schemes are listed in Table 7. Different schemes
during the test. The NovAtel reference trajectory is shown in Figure 11.

Table 7. Different schemes during the test.

Label Satellite Selection Filer Technique

STC4 4 satellites, DGOP based Standard UKF
STC5 5 satellites, DGOP based Standard UKF
ATC 5 satellites, DGOP based RAE-UKF

MATC 5 satellites, RMNCE based RAE-UKF
RMNCE-TC 5 satellites, RMNCE based RMNCE-UKF

CNE-TC Variable selected satellite number
based on CNR and elevation

R is weighted by CNR and
satellite elevation
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6.3.1. General Evaluations

The main navigation errors of longitude, latitude, east and north velocities of all the considered
schemes are shown in Figure 12. From Figure 12 we can find that: (1) in most cases, the accuracy
of SCT5 is just marginally better than that of STC4 due to utilizing a redundant visible satellite.
However, this may be counterproductive when the redundant measurements include large errors;
(2) the performance of ATC is better than both STC4 and STC5 in most cases. However, when abnormal
measurements occur, ATC suffers from large positioning errors; (3) MATC has an improvement over
ATC owing to the RMNCE based satellite selection; (4) RMNCE-TC, which benefits from robust
measurement noise estimation and the adaptive satellite selection, provides the best performance of all
the considered schemes; (5) CNE-TC has an improvement over STCs and ATC, even performs better
than RMNCE-TC at some epochs when the observability is good. But it still suffers from the large
measurement errors when the observability quality becomes bad.

The RMSE was also employed to evaluate the global performances of the different schemes.
Table 8 lists the RMSE results in detail. From the comparison, we note that MATC and CNE-TC have a
similar navigation accuracy. RMNCE-TC provides the smallest navigation error.
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Table 8. Global RMSE values of the different schemes.

STC4 STC5 ATC MATC RMNCE-TC CNE-TC

Latitude (m) 1.8205 1.7114 1.3430 1.1557 0.5697 1.5629
Longitude (m) 2.2633 2.1034 1.7706 1.4231 0.8689 1.1514

East velocity (m/s) 0.1124 0.1078 0.0595 0.0301 0.0299 0.0300
North velocity (m/s) 0.1122 0.1337 0.0406 0.0382 0.0370 0.0475

Heading (◦) 0.9092 0.8389 0.6072 0.6101 0.6061 0.6001
Pitch (◦) 0.2838 0.2537 0.1925 0.1905 0.1835 0.1921
Roll (◦) 0.1957 0.1832 0.1852 0.1860 0.1852 0.1858

6.3.2. Navigation Reliability

To evaluate the methods more effectively, 3D positioning error was calculated and statistically
analyzed. The 3D positioning differences between the test schemes and the reference are shown in
Figure 13. The positioning errors of STC4 and STC5 are much larger than those of others. CNE-TC
performs better than STC4, STC5 and ATC. But when the environment becomes challenging, CNE-TC
cannot cope with the large measurement errors effectively. MATC provides a smaller positioning error
due to the RMNCE based satellite selection. RMNCE-TC performs best owing to not only the satellite
selection algorithm but also the adaptive UKF. Figure 14 shows the expanding scales calculated by
Equation (28) and we adopted the maximum as the final value at each epoch.
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Figure 14. The value of the expanding scale βi with respect to the five pseudo-range measurements:
(a) 1150 s to 1250 s; (b) 5070 s to 5120 s.

In practical applications, a position accuracy within 2 m is an important criterion for evaluating
the reliability of a navigation solution [5]. Figure 15 shows the corresponding 3D error histograms.
The percentages within 2 m are 38.79%, 50.48%, 57.35%, 80.36%, 91.23% and 76.88% for STC4, STC5,
ATC, MATC, RMNCE-TC and CNE-TC respectively.
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6.3.3. Segment Analysis

Four segments marked by yellow circles in Figure 16 were selected to elaborate on the comparison
results. Figure 17 presents the trajectories provided by the different schemes. The trajectories obtained
by RMNCE-TC reside the closest to the reference trajectories. But the performance of STC5 is not as
good as might be expected when introducing a redundant satellite, and is at times even inferior to
STC4 (e.g., see the results for S3 presented in Figure 17c). This indicates that merely increasing the
number of satellites without introducing additional error handling methods can lead to unexpected
degradation in the navigation performance. ATC provides an improved positioning accuracy due
to the RAE-UKF. MATC and CNE-TC have an accuracy improvement over ATC but are still inferior
to RMNCE-TC.

The GDOP values obtained by STC4, STC5 (with an equivalent satellite selection as that of ATC),
RMNCE-TC (with an equivalent satellite selection as that of MATC) and CNE-TC are plotted in
Figure 18. The results show: the GDOP values of STC5(ATC) calculated using five satellites are lower
than STC4 and RMNCE-TC (MATC); CNE-TC always provides a minimum GDOP value due to its
loosely excluding condition; the GDOP of RMNCE-TC is relatively large at many epochs. We calculated
the single point positioning (SPP) errors of the selected satellite measurements, which are shown
in Figure 19. Unexpectedly, the SPP error of STC5(ATC) is very large, and RMNCE-based satellite
selection presents the best performance. This further indicates that adding redundant satellites always
decreases the GDOP value, but may not always improve the positioning accuracy. Increasing the
quantity of observations has the risk of unexpectedly introducing large measurement errors into the
system. Therefore, the measurement quality should be fully considered when selecting an appropriate
satellite combination.
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Finally, the 3D positioning errors during segments S1, S2, S3, and S4 are presented in Figure 20.
CNE-TC has the ability to control the large errors based on the weighted pseudo-range variance,
but it is still inferior to RMNCE-TC. RMNCE-TC can adaptively eliminate the satellites with poor
measurement quality, and effectively estimate R to obtain a robust solution.
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7. Conclusions

In this paper, we introduce a novel adaptive low-cost INS/GNSS tightly-coupled integration
architecture that can provide reliable navigation solutions within disturbed GNSS communication
environments. The proposed architecture features an adaptive redundant measurement noise
covariance estimation (RMNCE) approach, which is characterized by only employing the measurement
system information. Different from traditional algorithms, this method avoids the effect of Kalman
filter state vector estimation error. The RMNCE approach is applied to design a fast satellite
selection algorithm and an adaptive UKF in our proposed system, which has increasingly improved
system performance and accuracy. Both semi-physical simulation and field experiments have been
carried out to demonstrate its overall better performance compared to the standard tightly-coupled
schemes, RAE-based adaptive scheme, and CNR and satellite elevation-based adaptive tightly-coupled
integration scheme. The experimental results lead us to conclude that: (1) the RMNCE approach
can achieve a comprehensive better and robust measurement noise estimation results than the
traditional noise estimation algorithms; (2) the RMNCE-based satellite selection algorithm takes
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both measurement noise and GDOP into consideration to derive an optimal satellites combination,
and hence can avoid the risk of unexpectedly introducing large measurement errors into the system;
(3) the RMNCE-based adaptive UKF is advantageous in reducing the positioning errors when the
GNSS measurements are contaminated; (4) the proposed architecture effectively limits positioning
errors when the GNSS measurement quality is poor, and can provide 91.2% positioning reliability (2 m
positioning error), which performs the best among all of the test schemes.
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