# Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Principles of Gravity-Aided Navigation and Characteristic Analysis Method of a Marine Gravity Reference Map

#### 2.1. Principles of Gravity-Aided Navigation

#### 2.2. Characteristic Analysis of Marine Gravity Reference Map

## 3. Characteristics of the Marine Gravity Reference Map and the Location Accuracy of Gravity Matching

#### 3.1. Marine Gravity Reference Map

#### 3.2. Characteristic Value of the Marine Gravity Reference Map

_{1}–A

_{4}in one grid interval. Similarly, ${\mathrm{\Gamma}}_{2}$, ${\mathrm{\Gamma}}_{3}$, ${\mathrm{\Gamma}}_{4}$, ${\mathrm{\Gamma}}_{5}$, and ${\mathrm{\Gamma}}_{6}$ were obtained. Specific results are listed in Table 1.

#### 3.3. Location Accuracy of Gravity Matching Based on Simulation Analysis

^{2}, and observation noise is 10.0 mGal

^{2}.

## 4. Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Moryl, J.; Rice, H.; Shinners, S. The Universal Gravity Module for Enhanced Submarine Navigation. In Proceedings of the IEEE Position Location and Navigation Symposium 1998, Palm Springs, CA, USA, 20–23 April 1998; pp. 324–331. [Google Scholar]
- Rice, H.; Kelmenson, S.; Mendelsohn, L. Geophysical Navigation Technologies and Applications. In Proceedings of the IEEE/ION Position Location and Navigation Symposium 2004, Monterey, CA, USA, 26–29 April 2004; pp. 618–624. [Google Scholar]
- Xu, Z.; Yan, L.; Ning, S.; Zou, H. Situation and development of marine gravity aided navigation system. Prog. Geophys.
**2007**, 22, 104–111. [Google Scholar] - Zheng, T.; Cai, L.; Wang, Z.; Bian, S. Selection of matching area in terrain match aided navigation. J. Chin. Inert. Technol.
**2009**, 17, 191–196. [Google Scholar] - Deng, Z.; Ge, Y.; Guan, W.; Han, K. Underwater map-matching aided inertial navigation system based on multi-geophysical information. Front. Electr. Electron. Eng. China
**2010**, 5, 496–500. [Google Scholar] [CrossRef] - Ren, H.; Kazanzides, P. Investigation of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments. IEEE/ASME Trans. Mechatron.
**2012**, 17, 210–217. [Google Scholar] [CrossRef] - Ma, X.; Fang, J.; Ning, X. An overview of the autonomous navigation for a gravity-assist interplanetary spacecraft. Prog. Aerosp. Sci.
**2013**, 63, 56–66. [Google Scholar] [CrossRef] - Zheng, H.; Wang, H.; Wu, L.; Cai, H.; Wang, Y. Simulation research on gravity-geomagnetism combined aided underwater navigation. J. Navig.
**2013**, 66, 83–98. [Google Scholar] [CrossRef] - Wang, F.; Wen, X.; Sheng, D. Observability Analysis and Simulation of Passive Gravity Navigation System. J. Comput.
**2013**, 8, 248–255. [Google Scholar] [CrossRef] - Lee, J.; Kwon, J.H.; Yu, M. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation. Sensors
**2015**, 15, 16833–16847. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.; Bian, S. A local geopotential model for implementation of underwater passive navigation. Prog. Nat. Sci.
**2008**, 18, 1139–1145. [Google Scholar] [CrossRef] - Wu, L.; Ma, J.; Zhou, Y.; Tian, J. Modelling full-tensor gravity gradient maps for gravity matching navigation. J. Syst. Simul.
**2009**, 21, 7037–7041. [Google Scholar] - Tong, Y.; Bian, S.; Jiang, D.; Xiang, C. Gravity matching aided navigation based on local continuous field. J. Chin. Inert. Technol.
**2011**, 6, 011. [Google Scholar] - Liu, F.; Yao, J.; Jing, X.; Cheng, S. Applicability Study of Gravity Matching Algorithm for INS of Different Positioning Accuracy. Navig. Position. Timing
**2015**, 2, 25–33. [Google Scholar] - Ma, Y.; OuYang, Y.; Huang, M.; Deng, K.; Qu, Z. Selection method for gravity-field matchable area based on information entropy of characteristic parameters. J. Chin. Inert. Technol.
**2016**, 24, 763–769. [Google Scholar] - Li, K.; Xiong, L.; Cheng, L.; Ma, J. The Research of Matching Area Selection Criterion for Gravity Gradient Aided Navigation.Chinese. In Conference on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2014; pp. 21–30. [Google Scholar]
- Wu, T.; Ou, Y.; Lu, X.; Huang, M.; Ma, F. Analysis on effecting mode of several essential factors to gravity aided navigation. J. Chin. Inert. Technol.
**2011**, 19, 559–564. [Google Scholar] - Masiero, A.; Vettore, A. Improved Feature Matching for Mobile Devices with IMU. Sensors
**2016**, 16, 1243. [Google Scholar] [CrossRef] [PubMed] - Wang, B.; Zhu, Y.; Deng, Z.; Fu, M. The Gravity Matching Area Selection Criteria for Underwater Gravity-Aided Navigation Application Based on the Comprehensive Characteristic Parameter. IEEE/ASME Trans. Mechatron.
**2016**, 21, 2935–2943. [Google Scholar] [CrossRef] - Yoo, Y.M.; Lee, W.H.; Lee, S.M.; Park, C.G.; Kwon, J.H. Improvement of TERCOM aided inertial navigation system by velocity correction. In Proceedings of the IEEE/ION Position Location and Navigation Symposium 2012, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 1082–1087. [Google Scholar]
- Wang, Y.; Wen, C.; Zuo, Z.; Yang, J.; Guo, Z. Adaptive chaotic ant colony opotimization-RD based gravity matching aided navigation. Acta Phys. Sin.
**2014**, 63, 1–6. [Google Scholar] - Gao, W.; Zhao, B.; Zhou, G.; Wang, Q.; Yu, C. Improved artificial bee colony algorithm based gravity matching navigation method. Sensors
**2014**, 14, 12968–12989. [Google Scholar] [CrossRef] [PubMed] - Wang, B.; Yu, L.; Deng, Z.; Fu, M. A particle filter-based matching algorithm with gravity sample vector for underwater gravity aided navigation. IEEE/ASME Trans. Mechatron.
**2016**, 21, 1399–1408. [Google Scholar] [CrossRef] - Han, Y.; Wang, B.; Deng, Z.; Fu, M. An Improved TERCOM-Based Algorithm for Gravity-Aided Navigation. IEEE Sens. J.
**2016**, 16, 2537–2544. [Google Scholar] [CrossRef] - Wang, H.; Wang, Y.; Fang, J.; Chai, H.; Zheng, H. Simulation research on a minimum root-mean-square error rotation-fitting algorithm for gravity matching navigation. Sci. China Earth Sci.
**2012**, 55, 90–97. [Google Scholar] [CrossRef] - Kinsey, J.C.; Eustice, R.M.; Whitcomb, L.L. A survey of underwater vehicle navigation: Recent advances and new challenges. In Proceedings of the IFAC Conference of Manoeuvering and Control of Marine Craft, Lisbon, Portugal, 20–22 September 2006; Volume 88, pp. 1–12. [Google Scholar]
- Matsumoto, G.; Zhang, S. Gravity Measurement by Use of Deep Sea Submersibles. Mar. Geol. Lett.
**2002**, 18, 28–30. [Google Scholar] - Air-Sea Gravity System II. Available online: http://www.microglacoste.com/airseafeatures.php (accessed on 1 June 2017).
- Ander, M.E.; Summers, T.; Gruchalla, M.E. LaCoste & Romberg gravity meter: System analysis and instrumental errors. Geophysics
**1999**, 64, 1708–1719. [Google Scholar] - Cai, T.; Liu, M.; Huang, B. The gravity/inertial integrated navigation based on center differential Kalman filtering. Foreign Electron. Meas. Technol.
**2013**, 1, 011. [Google Scholar] - Wu, L.; Wang, H.; Hsu, H.; Chai, H.; Wang, Y. Research on the Relative Positions-Constrained Pattern Matching Method for Underwater Gravity-Aided Inertial Navigation. J. Navig.
**2015**, 68, 937–950. [Google Scholar] [CrossRef] - Zhou, X.; Li, S.; Yang, J.; Zhang, L. Selective criteria of characteristic area on geomagnetic map. J. Chin. Inert. Technol.
**2008**, 16, 694–698. [Google Scholar] - Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science
**2014**, 346, 65–67. [Google Scholar] [CrossRef] [PubMed] - Kong, M.; Tian, X.; Liu, J.; Kong, S. Accuracy analysis of marine gravity data shared internationally. Sci. Surv. Mapp.
**2016**, 41, 14–18. [Google Scholar] - Zhang, C.; Yuan, B.; Zhang, G. Quality Evaluation of Land Gravity Data in the Latest Global Gravity Database V23. Adv. Earth Sci.
**2017**, 32, 75–82. [Google Scholar] - Kovrizhnykh, P.; Shagirov, B.; Yurist, S. Marine gravity survey at the Caspian with GT-2M, Chekan AM and L&R gravimeters: Comparison of accuracy. In Gravimetric Technologies; Moscow State University: Moscow, Russia, 2011. [Google Scholar]
- Krasnov, A.; Nesenyuk, L.P.; Peshekhonov, V.G. Integrated marine gravimetric system. Development and operation results. Gyroscopy Navig.
**2011**, 2, 75–81. [Google Scholar] [CrossRef] - Hollowell, J. Heli/SITAN: A terrain referenced navigation algorithm for helicopters. In Proceedings of the IEEE Symposium on Position Location and Navigation, A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20–20 March 1990; pp. 616–625. [Google Scholar]
- Wu, L.; Ma, J.; Tian, J. A self-adaptive unscented Kalman filtering for underwater gravity aided navigation. In Proceedings of the 2010 IEEE/ION Position Location and Navigation Symposium (PLANS), Indian Wells, CA, USA, 4–6 May 2010; pp. 142–145. [Google Scholar]
- Liu, F.; Li, Y.; Zhang, Y.; Hou, H. Application of Kalman Filter algorithm in gravity-aided navigation system. In Proceedings of the IEEE 2011 International Conference on Mechatronics and Automation (ICMA), Beijing, China, 7–10 August 2011; pp. 2322–2326. [Google Scholar]
- Yuan, G.; Zhang, H.; Yuan, K.; Zhu, L. Improved SITAN algorithm in the application of aided inertial navigation. In Proceedings of the IEEE 2012 International Conference on Measurement, Information and Control (MIC), Harbin, China, 18–20 May 2012; Volume 2, pp. 922–926. [Google Scholar]
- Wang, H.; Wu, L.; Chai, H.; Hsu, H.; Wang, Y. Technology of gravity aided inertial navigation system and its trial in South China Sea. IET Radar Sonar Navig.
**2016**, 10, 862–869. [Google Scholar] [CrossRef]

**Table 1.**Characteristic parameters of gravity anomaly in various regions of the China Western Pacific area.

$\mathbf{\u2460}$ | $\mathbf{\u2461}$ | $\mathbf{\u2464}$ | $\mathbf{\u2465}$ | $\mathbf{\u2466}$ | $\mathbf{\u2468}$ | $\mathbf{\u2469}$ | $\mathbf{\u246a}$ | $\mathbf{\u246b}$ | $\mathbf{\u246c}$ | $\mathbf{\u246d}$ | $\mathbf{\u246e}$ | $\mathbf{\u246f}$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

$\sigma $ | 20.8 | 23.0 | 60.3 | 55.5 | 37.7 | 78.0 | 38.8 | 35.3 | 27.7 | 31.5 | 54.8 | 60.6 | 79.7 |

${\mathrm{\Gamma}}_{1}$ | 1.78 | 2.03 | 3.46 | 3.24 | 2.47 | 3.61 | 1.49 | 2.04 | 2.10 | 2.05 | 2.31 | 2.47 | 2.88 |

${\mathrm{\Gamma}}_{2}$ | 3.52 | 4.05 | 6.95 | 6.49 | 4.93 | 7.24 | 2.98 | 4.08 | 4.19 | 4.10 | 4.62 | 4.96 | 5.77 |

${\mathrm{\Gamma}}_{3}$ | 5.10 | 5.98 | 10.31 | 9.65 | 7.28 | 10.82 | 4.43 | 6.08 | 6.20 | 6.06 | 6.89 | 7.40 | 8.62 |

${\mathrm{\Gamma}}_{4}$ | 6.48 | 7.74 | 13.49 | 12.63 | 9.45 | 14.26 | 5.80 | 7.98 | 8.05 | 7.89 | 9.05 | 9.77 | 11.36 |

${\mathrm{\Gamma}}_{5}$ | 7.68 | 9.31 | 16.44 | 15.41 | 11.38 | 17.51 | 7.07 | 9.75 | 9.70 | 9.58 | 11.07 | 12.01 | 13.94 |

${\mathrm{\Gamma}}_{6}$ | 8.71 | 10.68 | 19.17 | 17.96 | 13.08 | 20.57 | 8.23 | 11.37 | 11.16 | 11.11 | 12.94 | 14.13 | 16.36 |

**Table 2.**Location accuracy of gravity matching for two sailing routes in different characteristic regions (unit: n mile).

Sailing Route | Starting Point | Mean | STD | RMS |
---|---|---|---|---|

A | 12 | 2.59 | 4.69 | 5.36 |

B | 6 | 1.23 | 0.86 | 1.51 |

**Table 3.**Location accuracy of gravity matching in various regions of China Western Pacific area (unit: n mile).

$\mathbf{\u2460}$ | $\mathbf{\u2461}$ | $\mathbf{\u2464}$ | $\mathbf{\u2465}$ | $\mathbf{\u2466}$ | $\mathbf{\u2468}$ | $\mathbf{\u2469}$ | $\mathbf{\u246a}$ | $\mathbf{\u246b}$ | $\mathbf{\u246c}$ | $\mathbf{\u246d}$ | $\mathbf{\u246e}$ | $\mathbf{\u246f}$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Accuracy | >3.0 | <2.5 | <1.5 | <1.5 | <2.0 | <1.5 | >3.0 | <2.5 | <2.5 | <2.5 | <2.5 | <2.0 | <2.0 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, H.; Wu, L.; Chai, H.; Xiao, Y.; Hsu, H.; Wang, Y.
Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation. *Sensors* **2017**, *17*, 1851.
https://doi.org/10.3390/s17081851

**AMA Style**

Wang H, Wu L, Chai H, Xiao Y, Hsu H, Wang Y.
Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation. *Sensors*. 2017; 17(8):1851.
https://doi.org/10.3390/s17081851

**Chicago/Turabian Style**

Wang, Hubiao, Lin Wu, Hua Chai, Yaofei Xiao, Houtse Hsu, and Yong Wang.
2017. "Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation" *Sensors* 17, no. 8: 1851.
https://doi.org/10.3390/s17081851