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Abstract: Localization in Wireless Sensor Networks (WSNs) has been an active topic for more than
two decades. A variety of algorithms were proposed to improve the localization accuracy. However,
they are either limited to two-dimensional (2D) space, or require specific sensor deployment for
proper operations. In this paper, we proposed a three-dimensional (3D) localization scheme for WSNs
based on the well-known parametric Loop division (PLD) algorithm. The proposed scheme localizes
a sensor node in a region bounded by a network of anchor nodes. By iteratively shrinking that region
towards its center point, the proposed scheme provides better localization accuracy as compared to
existing schemes. Furthermore, it is cost-effective and independent of environmental irregularity.
We provide an analytical framework for the proposed scheme and find its lower bound accuracy.
Simulation results shows that the proposed algorithm provides an average localization accuracy of
0.89 m with a standard deviation of 1.2 m.

Keywords: parametric loop division; triangulation; centroid; range-free localization; wireless
sensor networks

1. Introduction

Recent advancements in wireless communication and electronic systems make wireless sensor
networks (WSNs) as a prominent asset of Internet of Things (IoT). A WSN is composed of large number
of sensor nodes that are densely deployed in a field. Each node is equipped with a central processor,
several sensing modules, limited memory, and a transceiver [1]. WSN nodes are capable of processing
information on pre-programmed routines, communicating with other nodes and sending the collected
data to a sink node. The feasibility of fast deployment and low cost solution make WSNs promising
for different applications, such as security surveillance, home automation, human interfacing and
livestock farming.

Localization of sensor nodes is a challenging issue in WSNs. Localization systems are not
only for location identification but also for routing, density control, tracking and a number of other
communication network applications, which integrate in many technologies of IoT. Localization
systems can be classified as outdoor localization and indoor localization system. Global Positioning
System (GPS) is the de facto standard for outdoor localization that provides global coverage and its
precision up to 1–5 m. Although it is straightforward to assume that each sensor node have a GPS
module or an additional ranging module for localization, this method is fairly limited due to the
consideration of manufacturing cost and computational power of affordable sensor node [2]. Due to
its strict requirement of line of sight (LoS), GPS is not suitable for indoor localization. Moreover, the
GPS receivers are costly and consume more power as compared to sensor modules [3]. An indoor
positioning system (IPS), locates objects or people inside a building using radio waves, magnetic
fields, acoustic signals, or other sensory information collected by mobile devices. There are several
commercial systems on the market, but there is no standard for an IPS system. Different techniques can
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be applied, which include distance measurement to nearby anchor nodes (nodes with known positions,
e.g., Wi-Fi access points), magnetic positioning, dead reckoning. They either actively locate mobile
devices and tags or provide ambient location or environmental context for devices to get sensed.

Localization techniques can be broadly classified as target localization and self-localization,
where the former aims to locate the position of a transmitting node and the latter aims is to localize
a node by itself using received signals from neighbor nodes as shown in Figure 1. Target localization
requires distinctive activities to work properly [4]. Many localization algorithms have been proposed
in different areas. Generally speaking, based on the type of information required for localization,
self-localization algorithms can be divided in two categories: (1) range-based and (2) range-free, where
range-based techniques use additional ranging modules or received signal strength indicator (RSSI)
measurement to perform localization, and range-free techniques utilize the connectivity information
between sensor nodes to coarsely localize sensor nodes. Although each method has its own merits
and de-merits, its primary target is to estimate the position of sensor node while considering accuracy,
power efficiency and complexity.
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Figure 1. Classification of localization algorithms.

1.1. Range-Based Localization Techniques

Range-based localization techniques first estimate distance information using different methods,
such as Time of Arrival (ToA) [5], Time Difference of Arrival (TDoA) [6], Angle of Arrival (AoA) [7] and
other methods that are based on RSSI [8–12]. The location of a node is then found by using traditional
triangulation, trilateration or maximum likelihood estimation methods [13,14]. In [15], the authors
presented a one-dimensional scheme that used a ratio of signal strength instead of absolute signal
strength to perform localization. Several approaches only considered that closer nodes obtained higher
RSSI values [16]. However, it is only reliable when coordinates are known from the RSSI database.
Due to the non-line of sight (NLOS) and multipath fading, signal propagation model becomes complex
and often causes large localization error [17–19]. All four methods stated above, except RSSI based
techniques, provided a superior localization accuracy. However, they are not suitable for large-scale
sensor networks due to expensive hardware required for ranging purpose.

1.2. Range-Free Localization Techniques

Range-free techniques adopt sensing features like wireless connectivity, localization event
detection and beacon/anchor node proximity that leads to a low-cost solution, but at the expense of
localization accuracy [20–22]. Fingerprinting based localization [23] is a typical example of range-free
localization, accomplished in two phases—offline phase and online phase. In the offline phase,
a database of the RSSI values from different access points at each reference location for the target
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environment is built. In the online phase, the node position is estimated by a localization algorithm
using the collected RSSI at that particular position and the RSSI database (known as RSSI fingerprints)
from the offline phase. In this category, several techniques, such as the ray tracing model [24], support
vector machine [25], data mining techniques [26], probabilistic [27], and others based on Kalman
filtering [28] have been designed to collect online RSSI samples to be stored in the offline database.
Notice that fingerprinting may provide false results due to indoor multipath effects, such as reflection,
diffraction and scattering.

The range-free approach becomes more useful in WSN localization due to low-cost,
reasonable accuracy and low power consumption [29–31]. Ad hoc Positioning System (APS) [32],
Multidimensional scaling map (MDS-MAP) [33] and Approximate point in triangulation (APIT) [31]
are typical range-free technique for WSN localization. However, range-free localization depends on
the spatial distribution of anchor nodes that may vary with different environmental conditions.

Indoor localization can be applied to enable a variety of location-based services in commercial
or residential environments. Consequently, different technologies can be chosen according to
particular system requirements. Table 1 shows the sensor technologies along with their coverage and
measured accuracy.

Table 1. Indoor positioning technologies.

Technology Typical Accuracy Typical Coverage (m) Measurement Technique

Camera 0.1 mm∼1 dm 1∼10 Angle measurements from images
Infrared 1 cm∼1 dm 1∼5 Active beacons
Sound 2 cm 2∼10 Time of Arrival (ToA)
Wi-Fi 1 m 20∼50 Fingerprinting
RFID 1 dm∼1 m 1∼50 Fingerprinting, proximity detection
UWB 1 cm∼1 m 1∼50 ToA, body reflection

Pseudolites 1 cm∼1 dm 10∼1000 Carrier phase ranging
Magnetic systems 1 mm∼1 cm 1∼20 Fingerprinting and ranging technique

Zigbee 1 m 30∼60 Centroid based techniques

Zigbee is a promising technology for low rate wireless personal area network (WPAN), and it
features low power consumption and low data throughput. Its communication range is 100 m and
30 m for free space and indoor environment, respectively. The distance estimation between two Zigbee
nodes is usually carried out through manipulating RSSI values. Since overall system cost is a main
issue in industrial and home wireless applications, a highly integrated single-chip approach is the
preferred solution of semiconductor manufacturers developing IEEE 802.15.4 compliant transceivers.
The IEEE standard is the significant factor in determining the RF architecture and topology of ZigBee
enabled transceivers. The ZigBee group was organized to define and set the typical solutions for
these layers for star, mesh, and cluster tree topologies. Therefore, there is significant need for some
automated process to help discover, identify, and locate the nodes within an indoor facility after the
installation takes place. This motivates us to propose a localization algorithm that is designed for
Zigbee based WSNs.

The rest of the paper is organized as follows. Section 2 discusses the state of the art work done in
WSN localization. Section 3 presents the proposed localization scheme for WSN localization, followed
by its analytical framework in Section 4. Section 5 discusses the simulation results, computational
complexity and lower bound of the proposed localization algorithm. Section 6 concludes the paper
with possible future work.

2. Related Work

Design of an IPS requires thorough analysis of specific application descriptions and user
requirements in order to justify the research and development in the field. In particular, a localization
algorithm should be (1) accurate–maintains low localization error; (2) robust–maintains its performance
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in different environments; (3) energy efficient–in communication and computation for battery-operated
sensor nodes; (4) reliable–tolerant of node failures. Localization algorithms are measured in terms of
localization accuracy and power consumption.

APS was proposed in [32]. Under APS, multilateration was initially impossible because no sensor
node can receive beacons from at least three anchors. Localization was performed based on a hybrid
method combining distance vector like propagation and GPS triangulations. Immediate neighbors
of those anchors were used to calculate the distance between anchors and their neighbors. Similarly,
location estimation was propagated from the anchors towards the center of the network. APS is
distributed and does not require special infrastructure. Furthermore, it provides global coordinates
with good accuracy.

Multi-dimensional scaling (MDS) based algorithm was proposed in [33]. MDS was from
mathematical psychology, which provides a method to display the structure of distance-link data as
a geometrical picture. The proposed MDS-MAP scheme had three steps: (1) Estimation of distance
between each possible pair of nodes; (2) Derivation of node localization using MDS to fit those
estimated distances; (3) Normalization of the resulting coordinates using known information of anchor
nodes. MDS-MAP could generate a relative map of nodes without any anchor node. With three or
more anchor nodes, the absolute coordinates of nodes can be estimated.

APIT technique proposed in was based on Point-in-Triangle Test (PIT) [31] , under which
a target node chooses three beacon nodes and then tests whether it is inside the triangle or not
by connecting three beacon nodes. APIT algorithm has four steps: (1) Reference exchange; (2) PIT
Test; (3) APIT aggregation; and (4) Centre of gravity Calculation (centroid localization). Simulation
results showed that APIT outperformed other existing techniques and provided better results with
lower communication overhead under irregular radio patterns and random node placement.

Mostly works focus on 2D localization. That is why, in this paper, we proposed a 3D localization
scheme based on parametric Loop division (PLD) to improve localization accuracy, to minimize the
computational load and to mitigate the dependence of anchor node deployment. Loop subdivision
algorithm is widely used for its simple rules, excellent continuity, and its triangular controllable
meshes [34]. Loop subdivision is a surface split approach that is based on 3-order B-spline. With
the help of control vertices each parametric node is calculated on the earth space with in step size.
Triangulation mesh is used for pre localized point. However, it is different from APIT that gets location
information from overlapping triangles.

3. Proposed PLD Localization

The key notations used in the proposed PLD scheme are summarized in Table 2.

Table 2. List of key notations.

Notation Explanation

Mi Mid-points of each PLD network
Ai ith anchor node
Pi ith parametric points produced after each iteration
vi Volume of ith parametric looped network
ki Non overlapped PLD networks
DN→N Distance matrix from a sensor node Ni to all other sensors in a network
DA→N Distance matrix from a anchor node Ai to all other sensors in a network
ϕ Targetted node in each ki network
η Number of generated anchor nodes in ki network
∆ Step size in PLD network
α Parametric function of PLD network
γ Representation of change in center point
ξ Working boundary
x̂, ŷ, ẑ Cartesian coordinates of estimated node position.
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3.1. Basic Principle of PLD Algorithm

The key idea of the PLD algorithm is to find an actual localization volume in 3D space and estimate
the actual position of a node. Ref. [34] provides an example of a subdivision, where 3D images are
generated from triangular subdivision method. In each step, it sub-divides parts of a triangle with
the addition of extraordinary nodes in its control ring matrix. Three nodes in a given network can
form a triangle.

We select the nearest node as a reference point and produce new parametric points with the
help of those extraordinary nodes. This work involves the development of novel solution for ZigBee
based localization and utilizes the knowledge of fixed node positions to calibrate nodes with unknown
positions. This will allow the positioning systems to adapt themselves in a changing environment,
thereby increasing accuracy and reliability.

New parametric points are produced with the help of those reference points. Inner node
distribution of parametric node using Loop division is found in triangulation form as shown
in Figure 2a.
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Figure 2. (a) Triangulation of Parametric nodes distribution from control vertices; (b) Parametric points
calculation in Loop division.

PLD is applicable for localizing a WSN node using both uniform and random distribution of
anchor nodes. PLD produces different iterations and each iteration may have a number of unknown
nodes in a high volume of anchor node distribution in 3D space. Furthermore, each PLD network is
capable of calculating its actual number of nodes for localization. The parameterization of 3D space
through PLD algorithm produces parametric node, where each node has information about sum of
received power from all anchor node of network. By using the parametric node, each iterative step in
PLD is capable of producing a similar triangle with respective anchor nodes.

At each parametric point, sum of RSS from all anchor nodes is checked against a pre-defined
threshold. If it is smaller than the threshold value, the corresponding parametric point will be added
to the storage matrix. Otherwise, if it is larger than the threshold value we neglect those points at this
step. If all side threshold points are found, the loop will be terminated. And mid-point position is
shifted up and down by step size ∆. After recording the upward and downward step size we pick up
storage matrix and calculate the actual localizing volume. The position of a sensor node is estimated
through centroid method, and the localization error can be calculated.

As shown in Figure 2b, let ∆M1 A1 A2 be our chosen triangle. After the first iteration with the basis
function, a similar triangle is formed as ∆M1P1P2. Continuous parametrization in a Loop produces
similar triangulation structures. The shifting from one network to another is done under the basis
function parameters, which shrinks the volume of triangulation structure. The parametric points P1

and P2 are produced through parametric equation and re-calculate the mid-point M1 as previously
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defined in [35]. This small variation in center point further helps in correcting random anchor node
distribution. For a proper distribution system, (A + 1)th anchor node is followed by Ath anchor nodes
in a PLD network.

3.2. Problem Formulation and Assumptions

Consider a non overlapped network K = k1, k2, ...kn with volume V = v1, v2, ...vn. Assume that
a WSN with N sensor nodes and A anchor nodes are randomly deployed in a sensing field. Each
sensor node maintains a set of parameters as:

N = {Ni(xi, yi, zi), Ai(xi, yi, zi), DN→N , DN→A}, i = 1, 2, 3, ..., n (1)

where xi, yi, zi are the coordinates of the ith node. Similarly, each anchor node maintains a set of
parameters as:

A = {Ni(xi, yi, zi), Ai(xi, yi, zi), DA→N , DA→A}, i = 1, 2, 3, ..., n (2)

As there are N sensor nodes and A anchor nodes, the node position in a 3D space can be denoted as

ni = (xi, yi, zi)
T f or i = 1, 2, ...N + A (3)

Assume each PLD network has ϕ number of nodes with unknown positions and η anchor nodes,
which results in k×ϕ and k×η nodes in the network. The value of ρ is a constant, and it should
be greater than 4 for proper parametric Loop formation. The Eculidian physical distance between

two sensor nodes ni and nj is dij =
√
(ni − nj)2. Furthermore, in each PLD network, the proximity

information between sensor nodes is Pij ∈ βk = {1, 2, ...ϕ + η}, anchor nodes nη , geographic physical
distance dij estimates the position of nϕ where ϕ ∈ {η + 1, η + 2, ...η + ϕ}.

Anchor nodes are deployed with known positions. Consider a 3D WSN with n small PLD
networks, if there is no repetition in anchor node positions, there will be (N/K) number of possible
PLD networks. In addition, it satisfies:

(
N
K
) ≤ Np ≤ N (4)

where Np represents the each PLD network. For convenience, the following terms are defined to
facilitate the discussion of the proposed PLD algorithm.
Anchor Node: A node whose position is known with the help of any positioning device, such as GPS.
Reference Node: A node that selects other nodes to form a triangle is known as reference node.
Ring Control Matrix: The anchor node position vector that acts as a boundary of a network is known
as ring control matrix.
Step Size: The distance between parametric nodes of each loop is step size.
Working Boundary: The difference of each anchor/parametric coordinates maximum and minimum
value is our PLD working boundary.

3.3. Algorithm Design

3.3.1. Network Size, Midpoint and Parametric Points

Let a set of anchor nodes with position vector (x, y, z) be A = {A1, A2, A3, ...Am}, where m ≥ 4.
Each reference anchor node select another two nodes to form a parametric triangle. For proper
operation, the PLD network size should be greater than 3. Computation of the midpoint of a link
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between two anchor nodes with the maximum distance is the first step in parametric node selection.
Let ~A1 be a reference node, the total distance between the Kth selected nodes is:

| ~D1k |=
m

∑
k=2
| ~DAk | (5)

By computing parametric factor, the control will be transferred to inner parametric points as
shown in Figure 2b. Each anchor node will act as a control vertex in the first iteration, then the control
is transferred to the next parametric point that forms a ring matrix by applying the following equations.

~Pik =
3
8
( ~M1 + ~Ak) +

1
8
(~Ak−1 + ~Ak+1) (6)

3.3.2. Selection of Pre-Localized Nodes, Step Size and Storage Matrix

The next step is to check RSSIs from anchor nodes at each parametric point. In this paper, the RSS
calculation follows

RSSI = PT − PL + FD (7)

where PT , PL and FD denotes the transmission power from an anchor node, the path loss and the
fading, respectively. The upward increment and downward increment of the center point is obtained
by addition and subtraction of step size over the working boundary. If the sum of RSS values are
smaller than the threshold value, it is chosen as a pre-localized node and the iteration stops at this
point. Spherical distance is calculated using the PLD coordinates Ck:

Ck =


x1,k y1,k z1,k
x2,k y2,k z2,k

...
...

...
xi,k yi,k zi,k

 (8)

3.3.3. Estimation of Node Position

Maximum and minimum values of each coordinate axis are found from (x, y, z) from the storage
matrix. Then, product of the difference between the maximum and the minimum values on each
coordinate axis is regarded as the localization volume, which is computed by

V = (xmax − xmin) (ymax − ymin) (zmax − zmin) (9)

To find localization points, we calculate the volume of pre-localized node boundary in Cartesian
coordinate form and divide it by each unitary volume.

Vu =
V
N

(10)

where Vu represents the unit volume. To find the position of an unknown node, centroid based
methods are used on the volume of the pre-localized node by taking vector difference between the
minimum and the maximum value of pre-localized coordinate boundary on each of localized nodes.

(x̂, ŷ, ẑ)li = ∏[Vu, Ck(aj)] + (x, y, z)min (11)

where li is a pre-localized node. Algorithm 1 describes the proceedure of Loop division.
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Algorithm 1 Description of PLD Algorithm

1: take a network size ϕ

2: for i = 1 : K do
3: calculate mid-point of the kth network
4: take step size ∆
5: divide the minimum axis difference into equal ϕ parts
6: for idi f f er = 1 : minaxis do
7: for icase = 1 : minaxis/ϕ do
8: if idi f f er ≥ minaxis/2 then
9: accept positive step size

10: minpoint = midpoint + ∆
11: calculate the pre-localized points using Algorithm 2
12: else
13: accept negative step size
14: midpoint = midpoint returning to old midpoint
15: minpoint = midpoint− ∆
16: calculate the pre-localized points using Algorithm 2
17: end if
18: end for
19: end for
20: end for
21: find out each axis maximum and minimum points from the storage matrix
22: calculate the volume of localization
23: calculate the ϕ with the help of unit sensing volume.
24: divide the storage pre-localized points to η

25: for iloc = 1 : η do
26: find a minimum and maximum coordinates from cluster of pre-localized points
27: calculate difference between minimum and maximum points
28: calculate the sensor position by adding difference and minimum co-ordinate of cluster
29: end for

These pre-localized nodes are calculated through Algorithm 2.

Algorithm 2 Calculation of pre-localized nodes

1: for i = 1 : η + 1 do
2: for j = 1 : η do
3: calculate parametric points
4: calculate distance between parametric points and each anchor nodes
5: calculate the sum of RSS from each anchor nodes
6: if sum(RSS) ≤ RSS(threshold) then
7: take a first parametric point corresponding to each anchor nodes
8: break
9: else

10: nodes with least sum of RSSI considered as pre-localized. Stored them in a matrix
11: end if
12: end for
13: end for

Finally, we can calculate the localization error. Note that PLD uses triangulation meshes to
compute parametric points, thus it is different from APIT that obtains location information from
overlapping triangles.
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As compared to existing localization algorithms, PLD has the following advantages: (1) PLD can
achieve 100% network coverage by parametric Loop division under volume of pre-localized point.
Settlement of step size helps PLD to work in a given boundary. On the contrary, we noticed that the
performance of APIT degrades as communication range increases, and its network coverage does not
reach 100%. Similarly, DV-Hop algorithm has the same issue. Moreover, the use of triangle meshs
in PLD instead of overlapped triangle in APIT can overcome the communication cost and coverage
problem. (2) Nodes distributions in PLD network are independent from connectivity, angle and other
information that were pre-requisites for other localization techniques.

However, PLD is not perfect. The accuracy for PLD is dependent on the number of anchor nodes.
Moreover, if anchor nodes are not deployed homogenously, some nodes may be located far from the
mid-point. It happens if at least one of the anchor nodes is far from others in the outer boundary.
Then, the step size of PLD falls far from that anchor node. Consequently, standard deviation of
localization error increases, which indicates that the data points are spreaded out over a wider range
of RSS values.

4. Analysis and Discussions

This section presents the robustness of PLD for applications with different anchor deployments.
The location of parametric node lies on the selected polyhedron within working boundary of networks.

4.1. Calculation of Initial Center Points and Working Boundary

Let A = {~A1, ~A2, ~A3, ..., ~Am} be a set of anchor nodes in our localizing PLD network with reference
anchor node ~Ai. The Euclidean distance matrix between the reference anchor node ~Ai to an anchor
node ~Aj is given by

| Dij |=
√
(Xi − Xj)2 + (Yi −Yj)2 + (Zi − Zj)2 (12)

For the reference anchor node ~Ai, the selection of another anchor node for midpoint calculation
in a PLD network is determine by

~Ak = arg
~Aj∈A

max
∣∣Dij

∣∣ (13)

The mid-point of a PLD network is calculated as:

~Mi =
1
2

{
~Ai + ~Ak

}
(14)

If anchor nodes are randomly deployed, the center points will result in more deviation
as compared to regularly deployed case.

Lemma 1. For regular distribution of anchor nodes, the midpoint of a PLD network is its centroid.

In regular distribution, PLD makes a regular shape in a 3D working boundary. The regular shape
3D object has diagonal of equal length where an intersection of all diagonals lies in the same place
known as centroid points or center of mass point. The working boundary is calculated by:

ξ =| fmax(xk, yk, zk)− fmin(xk, yk, zk) | (15)

4.2. Center Points and Parametric Points Calculation

Let Mi be the middle point of our working region. For Kth anchor node PLD network, it stores
initial control vertices in k × 3 matrix. Generation of new points from existing points is based on
a well-known theory in computer graphics [36], that gives the advantage of taking close location as
extraordinary nodes and producing new parametric points with the help of those extraordinary nodes.
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The dimension of extraordinary nodes matrix is (K + 1)× 3 in a PLD network. The extraordinary node
matrix in the first step is calculated as:

B =

xMi xA1 xA2 ... xAk

yMi yA1 yA2 ... yAk

zMi zA1 zA2 ... zAk

 (16)

The parametric points are generated using Equation (6). In addition, it has less effect from
consecutive upper and lower anchor nodes. Due to static anchor nodes, ~Pik mainly depends on
center point of working boundary. Center point is dependent on both parametric factor and step size.
Each new center point or midpoint has the effect described in Lemma 2.

Lemma 2. If anchor nodes are regularly distributed, parametric factor becomes constant. Center point from the
first step The first step center point and further step center point lies at the same point.

Equation (6) can generate parametric points within the working boundary. By taking advantage
of choosing one point in each step of PLD, the adverse effect of irregular anchor node distribution is
managed whose detailed derivation is shown in Appendix A. The anchor node distribution in a ring
structure is shown in Figure 3.
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Figure 3. Triangulation and midpoint calculations in a parametric Loop division (PLD) network.

Lemma 3. The center points of a PLD network will shift due to changed parametric factor.

The parametric factor’s value depends on the angle that is made by center points between two
anchor nodes. K anchor node makes k number of the same and different angles, which is dependent
on the nodes distribution. In the regular distribution of anchor node, all angle are acute angle except
k = 3 and k = 4. If random anchor node distribution occurs, then some angles become obtuse.
In the whole of the process, we take corresponding angle value. The sum of all angles is equal to
360◦. If anchor nodes is equal to or more than four, then parametric factor varies from 0.765 to 0.516,
and angle ranges from 90 to 0◦. The first element is obtained by assuming constant distribution and
the second one is derived from the average value of different parametric factor. Shifting of the center
point is detail derived in Appendix B.

4.3. Movement of Mid-Points in PLD Network

The proper distribution of anchor nodes produces midpoints in the exact center of PLD network.
However, there is no need of exact location of center points in PLD because midpoint always varies
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within the working boundary. The step size ∆ on each axis coordinate gives uniform and random
movement of medium points. These variations are calculated by the following equations.

M1 = {(Mx ± ∆), (My ± ∆), (Mz ± ∆)} (17)

Nmov =
ξ

∆
(18)

where Nmov represents the change in sensor nodes position.

Lemma 4. The considerable shift of middle point does not affect the parametric factor αk.

The shifting of middle points upward and downward is considerable in our working boundary.
By shifting midpoints in an upward direction as shown in Figure 4, then each angle of the PLD network
changed. The deviation of parametric factor calculated by:

σαk =
3

16
(cos θmax − cos θmin) +

1
8
(cos2 θmax − cos2 θmin) (19)
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P3
P4
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M1

A1

A2 x-axis
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>2π / k

2π / k

Figure 4. Effect on parameterization with various parametric factors.

In an experimental study, it is observed that the change in midpoint does not affect the
performance. Suppose, with the six anchor nodes and there is a change of 5◦ upwards and
5◦ downwards in midpoint angle, it produces negligible change in the parametric factor. As finding
the exact location of midpoint is not necessary for the PLD network, the effect of the change in Cosine
angle is also not important. Therefore, assuming that a PLD network in WSN is independent of
considerable angle variation on a parametric factor.

4.4. Computation of Pre-Localized Nodes

The PLD model finds out a number of parametric nodes in each step by parameterization near to
extraordinary nodes. The sum of RSSI is checked at each parametric point and the distance between
each parametric point and anchor node position is utilized for RSSI power calculation. From equation
of RSSI the path loss is:

PL(d)[dB] = PLF(do) + 10n lg(
d
d0

) (20)

By the central limit theorem, RSSI can be represented by Gaussian random complex variable and
the Rayleigh PDF is given by:

fX(x) =
x

σ2 .e−
x2

2σ2 (21)
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The RSSI values and distance have the following empirical relationship as verified in [37]

RSSI(dB) = −23.28× lg[d(m)]− 2.4225 (22)

The sum of RSSI at each node is:

∑ RSSI =
K

∑
k=1

D́RSSI (23)

D́RSSI =| ~Pik − ~Aik |

Finally, the RSSI valuse are being stored in a matrix by following relation:

f (PRSSI) =

{
Preloccord (PRSSI) ≤ threshold
∗ otherwise

}
(24)

4.5. Storage Reduction Factor and Actual Node Calculation

The regular distribution of anchor nodes lies in triangulation vertex with step size ∆. But anchor
nodes practically have a random distribution in 3D space, therefore introduce a new parameter which
divides concerned working boundary in number levels, which gives K + 1 pre-localized node from
each level. The reduction in storage capacity and complexity of PLD network localization plays a vital
role. The ranging of ∆ is also reduced to some level, which helps to reduce localization error.

Let τ be a storage matrix contains pre-localized nodes in a working boundary. with the help of
step size, mid-point is moved all over the three dimensions of the networks and find out number of
the pre-localized node. The dimension of storage matrix is 3× [τ × (K + 1)].

PreLoccord =

xpτ0 xpτ1 ... xpτk
ypτ0 ypτ1 ... xyτk
zpτ0 zpτ1 ... zpτk

 (25)

To find the actual maximum and minimum localization volume, coordinate points are calculated
from stored pre-localized nodes on each axis.

Vlocalization = xζ × yζ × zζ (26)

The pre-localized volume is our localized boundary which is obtained by:

Vpre Loc =
∫ xmax

xmin

∫ ymax

ymin

∫ zmax

zmin

f (x, y, z)dxdydz. (27)

Then the whole working boundary is divided on the N-clusters and each cluster has its maximum
and minimum co-ordinate value from the storage matrix. Each cluster difference co-ordinate value is
calculated as:

(xn(ζ), yn(ζ), zn(ζ)) =

[
xn |

max
min

, yn |
max
min

, zn |
max
min

]
; where n = 1, 2, .....N. (28)

This will clearly gives us the form to calculate the position vector of ith localized nodes.

(xLPi , yLPi , zLPi ) = (
xnζ

2
,

ynζ

2
,

znζ

2
) + (xnmin , ynmin , znmin) (29)
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4.6. Relationship between Anchor, Parametric and Pre-Localized Nodes

Assuming that ∆ is a constant value then the distance between two pre-locaized node will be ∆.
To prove this let distance between two consective nodes is:

PN = {PN−1} ± ∆ (30)

The above equation provides subdivision of earth surface where the difference between two points
is ∆. The maximum increment and decrement on parametric points result in the same coordinate
points on M1. Then Equation (30) can be written as:

PN = M1 (31)

M1 = P1i ±
N−1

∑
j=1

∆ (32)

If a working boundary is not regular then changing on control vertices in each iteration produce
a different middle point. The change in center point is:

γ = Ḿj+1 − Ḿj (33)

= αk Ḿj +
(1− αk)

k

K

∑
k=1

Pjk − αk Ḿj−1 +
(1− αk)

k

K

∑
k=1

P(j−1)k

= αk(Ḿj − Ḿj−1) +
(1− αk)

K
(

K

∑
k=1

Pjk −
K

∑
k=1

P(j−1)k)

= αk(Ḿj − Ḿj−1) +
(1− αk)

k
(k× ∆)

= αk(Ḿj − Ḿj−1) + (1− αk)(∆) (34)

If difference between two different central points is ∆ then Equation (33) can be written as:

γ = ∆ (35)

Equation (29) shows that the points from Loop divisions are independent of the angle of deviation.
Hence it’s described the the relationship between two parametric points. Those parametric points
whose RSS value is less than the threshold are known as the pre-localized point. But our proposed
system stores only first pre-localized point of each anchor node as shown in Figure 5.

Step size

Localized node

Localized volume

 region

1i

2i

Lower RSS 

threshold node

M1

P

P

Figure 5. Localized volume region along with localized node.
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Equation (29) calculate the position of targeted nodes. The total number of actual points in 3D
space under some specified unit volume is determined that satisfied the mathematical model we get:

(x̂, ŷ, ẑ) = [(K + 1)PL]× τ × N
k

(36)

Sum(LE) =
N

∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (37)

where LE represent localization error and xi is localized point and x̂i is estimated point. The workflow
diagram Figure 6 shows how PLD is implemented in WSNs.

START


Calculate Mid Point of the PLD


upward increment in

step size
?


downward

decrease in
 mid point


on each axis
 ?


Calculate each axis


Yes


Yes


No


No


maximum and minimum

value from storage


Assign anchor node as

control vertices


Calculate the parametric

node using loop division


from control vertices


Calculate sum of RSSI on

each parametric point


RSSI
 <
threshold
?


Assign parametric node as

control vertices


Store the
 point as proposed

localized node


Yes


No


STOP


Figure 6. Flow diagram of PLD algorithm.
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5. Simulation Results

This section, provides a comprehensive evaluation of the PLD algorithm through simulation
experiments on Matlab. Anchor nodes are randomly deployed within 100 m × 100 m × 100 m 3D area.

The number of anchor nodes in each simulation is set to 6 and, at each step, the location of anchor
node is changed randomly. The simulation was run for 1000 iterations which make the deployment
area to cover 6000 anchor nodes. Furthermore, taking a constant 80,000 m3 volume space for simulation
on each axis. The total distance is then d = 3

√
80000 = ∼95 m. From the lower bound the localization

error is calculated from the following equation:

l =
0.955

√
V

8π2m(K + 1)
(38)

The number of localization points on PLD is directly proportional to the volume of Pre-localized
nodes. As each node has localization error distance so we are interested in calculating mean error
distance with constant sensing unit volume. Mean localization error (MLE) is calculated by the fraction
of the number of nodes and sum of error distance. Table 3 shows the random deployment of anchor
nodes that produces four localized point as the target node. Experiment shows the sum of localization
error is 3.57 m and Mean localization error is 0.89 m.

Table 3. Localization error of four nodes in each PLD network.

x̂ ŷ ẑ x y z Error in (m)

14.47 7.66 14.11 15.90 8.20 15.27 1.91
15.54 9.93 14.90 15.54 9.93 14.90 1.53
15.73 10.65 15.25 15.79 10.63 15.27 0.05
16.93 11.85 16.45 16.94 11.85 16.15 0.08

For the same scenario, by selecting 10 different anchor nodes, we obtained different iterative
values as shown in Table 4. From Table 4 the average error having 5 anchor nodes is 1.55 m, 1.58 m,
1.45 m, 1.26 m and with six anchor nodes is 1.43 m, 1.36 m, 1.12 m, 0.9 m. The simulation results of
PLD shows, as the number of anchor nodes increases for a given environment, the localization error
decreases. Furthermore, the obtained localization error is less when we choose the distributed anchor
node positions properly.

Table 4. Mean error of 10 different trials of PLD network with r = 3 m.

N = 1 N = 2 N = 3 N = 4

A = 5 A = 6 A = 5 A = 6 A = 5 A = 6 A = 5 A = 6

1.06 0.84 2.01 1.5 1.42 1.48 1.77 0.77
1.2 1.08 1.99 1.36 1.77 1.08 1.22 0.76
1.44 1.62 1.93 1.38 1.68 1.10 0.91 0.89
1.45 1.60 1.57 1.47 1.64 1.12 1.52 0.95
1.84 1.78 1.30 1.57 1.72 1.23 1.44 0.82
2.16 1.75 1.69 1.56 1.12 1.24 1.41 1.01
1.99 1.66 0.96 1.57 1.54 1.20 0.76 0.99
2.08 1.57 1.25 1.61 1.12 0.95 0.78 0.97
1.47 1.26 1.73 0.77 0.99 0.96 1.42 0.96
0.88 1.18 1.43 0.80 1.59 0.92 1.43 0.96

In PLD, the localization error is affected by step size ∆. The value of ∆ should not be higher
in small networks. For a gived experimental area with five anchor nodes, PLD has a higher value
of step size ∆ as compared to PLD network with six anchor nodes. For the authenticity of PLD
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algorithm an average, minimum and maximum error is also recorded against A = 5 and A = 6 as
shown in Table 5.

Table 5. Avg, Max, and Min localization error at each PLD network with A = 5 and A = 6.

Number of
Localization Points

eavg emax emin

A = 5 A = 6 A = 5 A = 6 A = 5 A = 6

N = 1 1.55 1.43 2016 1.78 1.28 0.84
N = 2 1.58 1.364 2.01 1.61 1.05 0.77
N = 3 1.45 1.128 1.77 1.48 0.78 0.92
N = 4 1.265 0.908 1.77 1.01 1.01 0.76

The accuracy with the higher number of anchor node can reduce the localization error.
The simulation result is shown in Figure 7.
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Figure 7. Mean error analysis with different volumes of PLD.

5.1. Effect of Rayleigh Fading

We have taken Rayleigh fading into account in studying the performance of PLD. Variation
of signal amplitude over time and frequency gives unique characteristic of RSS cause by fading.
To model that, the power samples have to be multiplied by a factor r2

f [38], where r f is a random
variable accounting for the fading amplitude, which is modelled with a Rayleigh pdf as mentioned
in Equation (21). To reflect the two main properties of radio irregularity, namely non-isotropic and
countinuous variations, the path loss value is adjusted in Equation (29), based on the relationship
d = d0 + N(µ, σ) where, µ is mean and σ represents standard deviation.

As shown in Figure 8, Rayleigh fading is added to the RSSI to measure the multipath fading effect
on localization. We have:

RSSI = RSSI + 20 lg(r f ) (39)

where r f is a multipath factor represents Rayleigh fading.
Figure 9 shows the anchor nodes, actual sensor nodes and estimated sensor deployment for

10 iterations of simulation. As can be seen in Figure 9, random deployment of anchor nodes results
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in the spread of anchor nodes across the deployment region. The distance between estimated sensor
nodes and the actual sensor nodes are predominantly small.

Figure 8. Effect of Multipath Fading on Localization Error.

Figure 9. Location of anchor nodes, actual sensor nodes and estimated sensor nodes in 3D environment.

Figure 10 shows the average localization error after 1000 iterations. As can be seen in Figure 10,
the average localization is well within the limit. The average localization error, after 1000 iterations
with A = 6 in each iterative step, is found to be between 0.9 m and 3.5 m. The main reason for this
reduction in the localization error is that PLD algorithm utilizes all the ranges between a sensor node
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and anchor node. Since the number of anchor nodes locations used by a single sensor node is more
than three, therefore, a better location estimate for sensor node position is obtained.

Figure 10. Average localization error after 1000 iterations.

5.2. Localization Error under Varying Anchor Node Density

By increasing the anchor node volume the error in PLD gradually decreases. Figure 11 shows
the average localization using a different percentage of anchor nodes volume. With increasing anchor
nodes density, the localization error is reduced. However, there is a certain limit beyond which the
localization error ceases to reduce. This phenomenon has been shown in Figure 12, which indicate
the maximum localization error with varying percentage of anchor node density. As can be seen
in Figure 12, the maximum limit for anchor node density, resulting in reduce localization error,
is within 29% to 30%.

Figure 13 shows the percentage standard deviation of localization error. It can be seen that at
29% to 30% we obtained a higher % standard deviation. The main reason for this high deviation is
that the maximum localization error at the respective % anchor nodes density interval is reduced from
the average localization error. Therefore one can assume an upper bound on the volume of anchor
node for localization. The % standard deviation is calculated by:

%SD =

√
E(Di − µ)2 × 100

∑ Di
(40)

where
Di =

√
(PLPi − PePi )

2 (41)
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Figure 11. Localization error under different percentage of anchor node density.

Figure 12. Localization error vs varying percentage of anchor node density.
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Figure 13. Percentage maximum standard deviation with varying anchor node volume.

5.3. Comparison with Existing Methods

The simulation was run for 100 times to obtain an average localization error. PLD shows superior
performance rather than APIT [31], AD-Hoc [32], and MDS-Map [33] schemes as shown in Figure 14.
PLD produce number of localization point depends upon radial distance. RSSI of −40 dBm is settled
as a threshold value for producing localization points.
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Figure 14. Comparison of lower bounds PLD network error to existing systems.
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Furthermore, the PLD has been simulated with different anchor node percentage and compared
with the DV-Hop method. In each of the iteration, by increasing the number of anchor nodes percentage
to achieve accuracy. Figures 15–17 illustrate this in the form of box plot.

Figure 15. Comparison of the average position error of PLD with DV-Hop at 20% anchor nodes.

Figure 16. Comparison of the average position error of PLD with DV-Hop at 25% anchor nodes.
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Figure 17. Comparison of the average position error of PLD with DV-Hop at 30% anchor nodes.

5.4. Accuracy Analysis of PLD Algorithm

The expected localization error in PLD utilizes equal probability at each node over a deployment
region. Because all localization nodes follow same uniform distribution of anchor nodes in 3D space.
The cumulative distribution function (CDF) of the error distance can be defined as e(r) = P(D < r)
where probability density function PDF is calculated under unit volume. If the sensor nodes are
uniformly distributed over a region R, then PDF function of volume V is

f (x, y, z) =
1

VR
(42)

$ =
2× Error distance on each axis

DistanceN−→N
=

{
1−U

2
,

1 + U
2

}
(43)

where $ is unit transmission ratio. The unit sensing radius of actually localized node plays a vital role
in the accuracy of PLD network. r = 2 m and r = 3 m are chosen for accuracy analysis. The transmission
range is calculated under radius of sensing between two localized nodes. The transmission range of
r = 2 and r = 3 is 4 m and 6 m respectively. The accuracy of PLD network is similar to [39], however,
PLD networks operate on the volume basis. The minimum worst case accuracy of PLD network is
0.653 and 0.681 for PLD network size 5 and size 6 respectively at transmission range of d = 0.76346.
It gives comparatively higher tolerance level than 0.2887 in [39] and 0.28286 in [40], which is shown
in Figure 18.

To further measure the accuracy, let us consider a huge network region R is divided in to several
non overlapped networks R = {R1, R2, ...Rk} with volume V i.e., V = {v1, v2, ...vk}. Any single sensor
node ρ of PLD network has localization error le = (x, y, z) lies in the real position at sub region Ri.

ρ(Vi) =
vi
V

and
k

∑
i=1

ρ(Vi) = 1 (44)
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Figure 18. Impact of transmission range and localization accuracy of PLD with different network size.

If le(Ri) be the expected localization error of ρ(x, y, z) lying in a uniform distribution, then the
sum of error E[le] is being calculated by:

E[le] =
k

∑
i=1

ρ(Vi)le(Ri) (45)

where le(Ri) is derived from Equation (30).

le(Ri) =
1
vi

∫ ∫ ∫
Ri

3
√

Xi(ζ) ×Yi(ζ) × Zi(ζ)dxdydz (46)

Substitute Equation (46) into Equation (45):

E[le] =
k

∑
i=1

vile(Ri) (47)

where ζ is a difference between the coordinates. Now working volume is transferred to the rectangular
3D space of PLD region. This shows the accuracy and justification of the PLD algorithm. The PDF
is varied according to variation in volume. Volume step size function of varied volume is taken as
constant that estimate coverage volume each time. The localization accuracy with the unit transmission
is shown in Figure 19.

To calculate the probability of PLD, we perform 1000 random experiments where each experiment
have 10 trial events in 10 m spherical distance. We are interested in finding out localization probability
at two unit sensing radius r = 2 m and r = 3 m, respectively. The minimum radius taken from [40]
which has probability = 1. Our experiment has localization probability 0.5 and 0.333 respectively
with 10,000 different probability values for each PLD network. The cumulative sum of localization
probability shown in Figure 20. The error probability lies beyond the range of working boundary.
The lower sensing radius gives less error probability in PLD network. The trade-off between unit
sensing radius and radio coverage is found in PLD network.
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Figure 19. Accuracy of PLD network with different volume of PLD network.
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Figure 20. Cumulative error probability in PLD network with r = 2 m and r = 3 m.

5.5. Effect of Anchor Node Position Error

In the literature, much attention has been paid to localization accuracy and computational effort,
while the importance of intelligent anchor node placement is often recognized, but not discussed
in detail. In [41,42], anchor nodes were randomly deployed. In [41], authors mentioned that the
co-linear set of anchors “represents a rather unlucky selection” without supporting evidence. For PLD,
good anchor node placement is important to form a working boundary. As we know, the localization
error is the difference in distance between the actual node and the estimated node position. In the
context of global localization, which reflects how accurately the calculated global coordinates are
matched with the actual coordinates. To achieve that, anchor nodes should be deployed in a way so
that it can form a correct localization boundary. Hereafter, we investigate how the anchor node position
can affect the localization accuracy. This work only describes the effect of anchor node position effect
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on overall PLD operations. Other metrics for anchor node influences like anchor node localization
error, network area coverage, and anchor node triangle (deployment height and position) are left
for future study. We could also explore how to avoid the worst anchor node placement and use of
correct topology. Now, we can check the localization error by changing the location of anchor nodes in
centimeter on each side and gradually increase the distance. As shown in Figure 21, we can see that
the localization error gradually increases as the shift of anchor node position increases.
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Figure 21. Influence of reference anchor node position vs localization error.

5.6. Time Complexity and Lower Bound Derivations

The computational complexity of the network is relative to the time consumption of the network.
Let PLD network system has minimum N

k to maximum N PLD networks in a huge distribution
of network.

The complexity is reduced up to 75%. However, if we have N = 7 the complexity is completely
removed. Complexity is being compared with MDS-MAP as shown in Figure 22. Each PLD network
estimates the number of simultaneous localization points ξ. The number of known anchor nodes in our
experiment space are (N

K × ξ) ≤ NPLDnetwork × ξ ≤ N × ξ that satisfy our formulated model. Consider
a WSN having 400 sensor nodes with 50 anchor nodes. The number of unknown sensor nodes to be
localized is 350. If our system calculates five simultaneous anchor nodes, then N = 5. So the number
of known nodes is (50 + 10× 5) = 100 ≤ (50 + 50× PLDnetwork × 5) ≤ (50 + 50× 5) = 300. The
requirement of number of anchor nodes along with different volume of PLD is shown in Figure 23.

For computing lower bound derivations let le(C) be the value of le(Ri). For regular unit shape
shRi defined as eshRi

is derived by

eshRi
=

le(Ri)

le(C)
= 0.9554 (48)

By dividing each deployment region by unit sphere gives a scaler value

eshRi
=

le(Ri)

m× le(C)
= 0.9554 (49)
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where m = vi
c . By putting above value in sum of error equation we get

E[le] =
1
V

k

∑
i=1

vi
C

eshri
le(C) (50)

We can obtain the minimum value of sphere volume as 1
8π2 . The worst case error can be calculated

through l = 0.955
√

V
8π2m(K+1) where V is the numerical value and k = 0.955

√
V

8mlπ2 − 1.
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Figure 22. Complexity comparison between PLD and multi-dimensional scaling (MDS)-MAP.
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Figure 24, shows the mean localization error of PLD algorithm. Figures 25 and 26, describe the
PLD localization error with each network cluster having 5 and 6 anchor nodes respectively. Figure 27
shows the different observations of PLD simulations. For this, we used lower bounding error that
greatly reduced the localization error which is superior to existing system. Figure 27 shows the mean
localization error between DV-Hop, MDS-MAP, and PLD.
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Figure 24. Localization error distance of PLD with A = 5.
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Figure 25. Localization error distance of PLD with A = 6.
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Figure 26. Random experiment of localization error of PLD with six anchor nodes in each cluster.
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Figure 27. Mean localization error of PLD, DV-Hop, Advanced DV-Hop and MDS-MAP.

6. Conclusions

Node localization plays a vital role in improving computational efforts in wireless sensor networks.
Many researchers have proposed different localization techniques for 2D based sensor network.
However, most of them are based on the assumptions of accurate synchronization between sensor
nodes, which can be difficult or sometimes impossible to achieve in certain environment. This paper
proposed a novel 3D localization algorithm based on the well-known parametric Loop division
algorithm, which is free from node synchronization and thus only required to determine the mid-point
to form a working boundary. PLD is able to divide the whole region into several networks, which can
overcome the computational overhead and communication cost.

PLD is capable of finding its own localized node within its working boundary. At first, reference
points are considered to produce mid-points, parametric points and step size, which helps the
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iterative control to be transferred to inner parametric points. This enables PLD to work in different
networks, within the working boundary. At each reference point, sum of RSSI value is computed
for pre-localized nodes, compared to a threshold value, and stored in a storage matrix. Furthermore,
the localization volume is obtained with maximum and minimum coordinates, stored in a storage
matrix. Finally, we can estimate the position of the node by performing centroid localization using the
information in the storage matrix. Through simulation comparisons, our proposed scheme outperforms
existing schemes. PLD achieves an error of 0.89 m which is far better than most of well-known existing
schemes like APIT, DV-Hop, and MDS-MAP. The simulation results showed that the localization
accuracy is improved as the number of anchor nodes increased. Furthermore, the position change of
an anchor node will only gracefully affect the localization accuracy.

However, there are still some room for further studies, such as the impact of anchor localization
error. It is also worthy studying how to adopt mobile anchor nodes to further improve the localization
accuracy. In addition, energy consumption of PLD localization should be investigated and the trade-off
between localization accuracy and energy consumption can be identified. Finally, we shall study how
to integrate PLD localization with other techniques.
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Appendix A

Let the parametric points be
Pik = {P11, P12, ...., P1k} . (A1)

New center points are calculated by using parametric factor. The new center points which is less
dependent with irregular distribution of anchor node, can be calculated as:

Ḿ1 = αk M1 +
(1− αk)

k

K

∑
k=1

Pik (A2)

where αk represent parametric function of PLD network obtained from [40] whose value is constant
if anchor node has regular distribution. Due to symmetry, we can also write this for anchor
node distribution

Ḿ1 = αk M1 +
(1− αk)

k

k

∑
k=1

Aik (A3)

Ḿ1 = αk M1 + (1− αk)
∑K

k=1(Aik)

k
(A4)

Ḿ1 = αk M1 + (1− αk)M1 (A5)

i.e., For regular distribution the centroid of points lies in centre i.e., Ḿ1 = M1

In case of irregular distribution the value of αk lies between 0.5 to 0.75. Hence,

αk =
3
8
+ (

3
8
+

1
4

cos
2π

k
)2 (A6)

To compute radio irregularity we take two different values of αk. One is 0.5 for assuming center
value and 0.75 for anchor nodes. αk has direct effect on cosine angle that is between two anchor nodes
from the center points in triangulation. Suppose the difference in angle is (0∼90)◦, then the value of
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αk ranges from 0.516 to 0.765.

M1 has a parametric factor αm = αk =
2π
k and αp = αk =

α1,α2,....,αp
k . So the next mid-point is

Ḿ1 = αm M1 + (1− αp)M1 (A7)

Ḿ1 = (1 + αm − αp)M1 (A8)

The change in parametric value shifts the assuming center to the exact center.

Appendix B

For perfect mathematical modelling we, assume that anchor nodes are regularly distributed, the
sum of acute angle making with center is equal to 360◦.

If k = 5 A = 5, cos θ has value of 0.3090 and θ = 72◦. And the value of αk = 0.5795.
If k = 6 A = 6, cos θ has value of 0.5 and θ = 60◦. And the value of αk = 0.625.
If irregular anchor node distribution occurs, then we consider irregular distribution of angle

between anchor nodes. The angle effect on parametric factor is significant only when it has significant
difference between angles.

If angle varies by 10◦ at k = 5 then the value of θ lies between θ =(67∼77◦) and the value of
αk =(0.5984∼0.5610). Hence localization error = 0.0374. Similarly, if angle varies by 10◦ at k = 6 then
the value of θ lies between θ =(55∼65◦) and the value of αk =0.6437∼0.6060. Hence localization error
= 0.0377. This shows that anchor node irregularity produce some considerable error but we minimize it.
The minimization occur because we calculate only midpoint of each iteration by using this parametric
function. The difference of shifting is greatly minimized by:

Ḿ1 = (1 + αp − αm)M1 (A9)

with the localization error of 0.0377 in a parametric factor equation, we get;
Ḿ1 = (1− 0.0377)M1 = 0.9623M1.

From the numeric parametric analysis, it is clearly seen that less angle gives higher parametric
value αp and higher angle gives lower parametric constant αm.
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