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Abstract: Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles,
are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle
crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve
their safety. Most of the RSC systems require the vehicle roll angle as a known input variable
to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual
antenna global positioning system (GPS), but it is expensive. For this reason, it is important to
estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other
hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle
response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this
paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters
is proposed. This algorithm uses a probability density function (PDF)-based truncation method in
combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters
are within bounds that have a physical meaning, using the information obtained from sensors
mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

Keywords: vehicle dynamics; dual Kalman filter; probability density function (PDF) truncation;
state estimation; parameter estimation; vehicle roll angle; sensor fusion

1. Introduction

One of the main causes of accidents in road transport is the loss of vehicle stability.
Particularly, vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles,
are prone to rollover. Rollover accidents cause nearly 33% of all deaths from passenger vehicle
crashes. Nowadays, these kinds of vehicles are incorporating roll stability control (RSC) systems to
improve their lateral stability and handling. Most of the RSC systems require the vehicle roll angle as
a known input variable to predict the lateral load transfer [1,2]. The vehicle roll angle can be directly
measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason,
many researchers have focused on vehicle roll angle estimation [3–7]. One of the main techniques
employed to estimate roll angle is through sensor fusion. In [6], the vehicle roll angle is estimated
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integrating the information from a lateral accelerometer and suspension deflection sensors. Since
one of the main disadvantages of using suspension deflection sensors is cost, they are not currently
installed in vehicles. Besides, results show that the estimation of vehicle roll angle from this technique
is not very accurate compared to other methods [7].

In [8,9], GPS and onboard vehicle sensors are employed to measure the vehicle roll angle.
The drawback of using a GPS device is the difficulty in achieving accurate readings since visibility of
satellites in both urban and forest driving environments [10] can hamper GPS performance.

The Kalman filter is a well known established method used to fuse the information obtained
from different sensors. In [7,10,11], the Kalman filter estimates the vehicle roll angle. However,
these algorithms do not consider that the parameters of the vehicle model can change, since they
might be time-dependent. It is important to highlight that knowledge of the vehicle’s parameters
values is essential to obtain an accurate vehicle response. Whereas some parameters, such as vehicle
mass and wheelbase can be easily obtained, other parameters, such as roll stiffness and roll damping
coefficient, have to be estimated through an identification process. Besides, some of these parameters
can vary over time, hence a model adjustment through time variation of parameters along with state
variables is crucial.

In some works, the dual Kalman filter (DKF) is used to simultaneously obtain an estimation
of states and of parameters [12–15]. The disadvantage of these works is that neither states
nor parameters are constrained. The solution to this problem is very complex and sometimes
non-physical meaning solutions can be obtained. Since the problem to be solved has a large set
of states and parameters, the available sensor measurements are small compared to the amount of
existing states/parameters and the vehicle model is a non-linear model. Hence, it is necessary to
consider constraints for both states and parameters. Some methods have previously been proposed
to deal with constraints in the Kalman filter, such as the projection method [16–18] and the probability
density function (PDF) truncation method [19–22]. In [22], a comparison between the projection
method and the PDF trunction method is performed for the estimation of the road bank angle and
vehicle’s parameters. Results show that the PDF trunction method has a better performance than the
projection method. This paper uses a dual antenna GPS in order to measure the total vehicle roll angle
and, as previously mentioned, this is a costly method.

The novelty of this paper is to design an observer to estimate on-line the vehicle roll angle and
vehicle’s parameters. This observer integrates neural networks (NN) and a PDF dual Kalman filter.
NN provides to the PDF dual Kalman filter a “pseudo-roll angle” which is used as a measurement in
the Kalman filter. The design of this observer:

1. estimates, simultaneously and on-line, the vehicle’s states and parameters.
2. uses a simplified vehicle model,
3. is useful in all kinds of environments (tunnels, urban and forested driving environments),
4. uses signals of sensors installed on-board in current vehicles,
5. takes into consideration both the measurements and model errors.

This paper is organized as follows. In Section 2, the vehicle model used in discrete time-space
model is described. The advantage of this model is that it is a simplified vehicle model. In Section 3
the proposed estimator for vehicle parameters and states is described. This estimator uses NN to
calculate the “pseudo-roll angle” which is introduced as an input into the constrained DKF. The DKF
simultaneously estimates the parameters and the states. The PDF truncation algorithm is used in
order to limit the vehicle parameter values to their physical limits. Experimental results are shown in
Section 4 and a discussion of them. Finally, the summary and conclusions are given in Section 5.

2. Vehicle Model

A 1-DOF vehicle model is used in the Kalman filter. This model is widely adopted to describe the
vehicle roll motion (Figure 1). In the model, a fixed coordinate system (x, y, z) is employed in order
to describe the vehicle roll motion. It is assumed that the vehicle sprung mass rotates around the
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roll center of the vehicle. The vehicles roll dynamic motion is governed by the following differential
equation [7]:

Ixxϕ̈ + CRϕ̇ + KRϕ = msayhcr + mshcrg sin(ϕ) (1)

where ϕ is the vehicle roll angle, Ixx is the sprung mass moment of inertia with respect to the roll
axis, ms is the sprung mass, hcr is the sprung mass height about the roll axis, CR represents the total
torsional damping, KR is the stiffness coefficient, ay represents the lateral acceleration at the vehicle
center of gravity (COG) and g is the acceleration due to gravity.

Figure 1. 1-DOF vehicle model. COG: center of gravity.

If the roll angle is assumed to be small, the equation that relates the vehicle lateral acceleration,
ay, and the lateral acceleration measured by the accelerometer, aym is:

ay ≈ aym − gϕ (2)

Additionally, if the pitching and the bounding motions of the sprung mass are assumed to be
neglected and the road bank angle is considered to be small, then, the vehicle roll rate, ϕ, is equal to
the roll rate given by the rate sensor, ϕm:

ϕ̇ ≈ ϕ̇m (3)

In this work, a non-descriptive model is assumed, äy = 0 [23,24]. Then, the vehicle model is
represented in the time domain by means of a discrete time state-space model:

xs,k = Adxs,k−1 + wk
yk = Hsxs,k + vk

(4)

where xs,k= [ay, ȧy, ϕ, ϕ̇] represents the state vector, Ad is the state evolution matrix:

Ad =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

Tsms
hcr
Ixx

0 Ts
msghcr−KR

Ixx
1 − Ts

CR
Ixx


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Ts is the sample time, and Hs is the observation matrix:

Hs =

 1 0 g 0
0 0 1 0
0 0 0 1


y = [aym, ϕ, ϕ̇]T is the measurement vector, wk and vk are the state disturbance and the observation
noise vectors, respectively, that are assumed to be Gaussian, uncorrelated and zero mean:

wk ∼ N(0, Q)

vk ∼ N(0, R)
(5)

where Q is the covariance matrix of the process noise and R is the covariance matrix of the
measurement noise.

3. Vehicle’s Parameters and Roll Angle Estimation

The architecture of the proposed estimator is given in Figure 2. The estimator is based on a neural
network (NN) combined with a PDF truncation DKF in order to on-line estimate the vehicle roll angle
and the vehicle’s parameters. The vehicle’s parameters to be estimated are the moment of inertia of
the sprung mass with respect to the roll axis, Ixx, the total torsional damping and stiffness coefficients
of the roll motion of the vehicle, KR and CR, respectively, and the height of the sprung mass about the
roll axis, hcr . Both vehicle’s parameters and roll angle are estimated through the fusion of information
provided by different sensors, such as the longitudinal and lateral accelerations, axm and aym, the roll
rate ϕ̇m and the yaw rate ψ̇m.

Figure 2. Estimator architecture. NN: neural network; PDF: probability density function.

The observer architecture is formed by two blocks: the NN block and the PDF DKF block.
The NN block estimates a “pseudo-roll angle” from signals which are easily measured by an inertial
measurement unit (IMU).

Note that the cost of IMU has decreased in recent years. A detailed description about the training
of the NN and results obtained can be found in our previous work [7]. One of the advantage of using
the NN module is that the “pseudo-roll angle” is directly estimated from IMU measurements, so that
no integration is carried out to get this data. This “pseudo-roll angle” is fed to the new proposed
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DKF module as an input. The proposed method achieves good roll angle estimations by taking into
consideration the vehicle non-linearities and parameter variations for every time step. The proposed
method differs from [7], since a separate state-space system definition is employed to estimate the
states and to predict the vehicle parameters, some of them being time-dependent. This feature greatly
increases the time-domain state estimator.

3.1. DKF Module

The purpose of the PDF DKF module is to estimate the vehicle’s parameters and the states of a
linear vehicle model defined in Equation (4) by means of two Kalman filters. The Kalman filter is a
mathematical tool that is used for stochastic estimation from data that include a substantial amount
of noise and unobserved states in the system which must be estimated. Moreover, the Kalman filter
allows reducing accumulated errors using sensor measurements.

In this work, we consider a separate state-space formulation for states and parameters [25].
The main advantage of using a separate state-space formulation is that it is possible to switch off the
parameter estimator, once a sufficiently good set of estimates for the parameters have been found [26].
This increases the performance of the state estimator, since it reduces the parameter uncertainties as
well as disturbances arising from the varying model parameters.

The DKF algorithm has the following recursive procedure:

1. Parameter prediction:
x̃p,k|k−1 = x̃p,k−1|k−1 (6)

Pp,k|k−1 = Pp,k−1|k−1 + Qp (7)

2. State prediction:
x̃s,k|k−1 = Ad

(
x̃p,k|k−1

)
x̃s,k−1|k−1 (8)

Ps,k|k−1 = Ad

(
x̃p,k|k−1

)
Ps,k−1|k−1Ad

(
x̃p,k|k−1

)T
+ Qs (9)

3. State correction:
Ks,k = Ps,k|k−1HT

s [HsPs,k|k−1HT
s + Rs]

−1 (10)

x̃s,k|k = x̃s,k|k−1 + Ks,k[yk − Hsx̃s,k|k−1] (11)

Ps,k|k = [I − Ks,kHs]Ps,k|k−1 (12)

4. Parameter correction:
Kp,k = Pp,k|k−1JT [JPp,k|k−1JT + Rp]

−1 (13)

x̃p,k|k = x̃p,k|k−1 + Kp,k[yk − Hsx̃s,k|k−1] (14)

Pp,k|k = [I − Kp,kJ]Pp,k|k−1 (15)

where x̃p,k = [hcr, Ixx, KR, CR] is the parameter vector, x̃s,k = [ay, ȧy, ϕ, ϕ̇] is the state vector, Ps and Pp

are the error covariances matrices for states and parameters, respectively. Ks and Kp are the Kalman
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gain matrices for states and parameters, respectively. J is the Jacobian matrix of parameter estimator
given by:

J =


∂aym
∂hcr

∂aym
∂Ixx

∂aym
∂KR

∂aym
∂CR

∂ϕ
∂hcr

∂ϕ
∂Ixx

∂ϕ
∂KR

∂ϕ
∂CR

∂ϕ̇
∂hcr

∂ϕ̇
∂Ixx

∂ϕ̇
∂KR

∂ϕ̇
∂CR


=

 0 0 0 0
0 0 0 0(

Tsms
Ixx

ay +
Tsmsg

Ixx
ϕ
) (

− Tsmshcr
I2
xx

ay − Ts(msghcr−KR)

I2
xx

ϕ + TsCR
I2
xx

ϕ̇
) (

− Ts
Ixx

ϕ
) (

− Ts
Ixx

ϕ̇
)


(16)

Since the states and parameters estimators depend on the same output vector, yk, the covariance
matrices of the measurement noise are the same:

Rs = Rp =

 σ2
aym 0 0
0 σ2

ϕNN
0

0 0 σ2
ϕ̇

 (17)

where σaym = 0.01 m/s2, σϕNN = 0.01◦ and σϕ̇m
= 0.01◦/s are the noise covariances associated with

the measurement sensors.
Qs is the process noise covariance matrix of the state estimator:

Qs = R0I (18)

Good results are obtained when R0 takes a large value [22,26]. In this work, R0 = 100, 000, 000.
Finally, Qp is the process noise covariance matrix of the parameter estimator:

Qp =


σ2

hcr
0 0 0

0 σ2
Ixx

0 0
0 0 σ2

KR
0

0 0 0 σ2
CR

 (19)

σhcr , σIxx , σKR and σCR are taken as a 1% of the initial values of hcr, Ixx, KR and CR, respectively [22,26].

3.2. PDF Truncation Approach

Even though the proposed dual state space definition for states and variables increase the overall
performance, there is also a high number of estimated variables that pose an additional difficulty, thus
resulting in a complex problem to solve. For this reason, sometimes, the obtained values might be
outside the physical limit boundaries. To avoid this situation, the DKF has to impose constraints
in states/parameters. In order to reduce the computational cost, in this work, only the parameter
constraints have been considered. These constraints are taken into account using a PDF truncation
approach [16,18,20] which is incorporated to the DKF defined in Section 3.1.

The objective is to estimate x̃p,k which is defined as a Gaussian random vector with mean xp,k
and covariance Pp,k|k. At time k, for each parameter p, the constraints are expressed as:

ai ≤ DT
i x̃p,k|k ≤ bi i = 1, . . . , p (20)

where ai and bi represent the lower and upper bound for each vehicle’s parameter, respectively. Di is
an p-element column vector comprised entirely of zeros, except that its i element is 1.

The PDF truncation algorithm is summarized as follows:
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1. Initialization, i = 0
x̃p,i(k) = x̃p,k|k
Pp,i(k) = Pp,k|k

(21)

x̃p,k|k and Pp,k|k are obtained from the DKF module (see Section 3.1).
2. For i = 1 to i = p, the mean and variance of the parameter state are calculated by means of the

following equations:
x̃p,i+1(k) = T · W1/2 · ST

i · z̃i,k + x̃p,i(k) (22)

Pp,i+1(k) = T · W1/2 · ST
i · cov(z̃i,k) · Si · W1/2 · TT (23)

Ti and Wi are calculated from the Jordan canonical decomposition of Pp,i(k) (see Appendix A),
that fulfills the condition stated by the equation:

Ti · Wi · TT
i = Pp,i(k) (24)

Si is an orthogonal matrix obtained by using Gram–Schmidt orthogonalization that satisfies (see
Appendix B):

SiW
1/2
i TT

i Di(k) =
[ (

DT
i (k)Pi,k(k)Di(k)

)1/2 0 ... 0
]T

(25)

The vector zi,k has mean 0 and an identity covariance matrix. Hence, its elements are statistically
independent of one another. Only the first element of zi,k is constrained, therefore, the PDF
truncation is reduced to a one-dimensional truncation:

zi,k =
[

µi 0 ... 0
]T

(26)

cov(zi,k) = diag
(

σ2
i , 1, ..., 1

)
(27)

where µi is the truncated mean value given by the following expression:

µi = αi

[
exp(−c2

i,k
/2)− exp(−d2

i,k
/2)

]
(28)

and σ2
i is the truncated covariance given by the following equation:

σ2
i
= αi

[
exp(−c2

i,k
/2) (ci,k − 2µi)− exp(−d2

i,k
/2) (di,k − 2µi)

]
+ µ2

i
+ 1 (29)

where

αi =

√
2

√
π
[
er f

(
di,k√

2

)
− er f

(
ci,k√

2

)] (30)

The truncated PDF is normalized to achieve a unity area, and the fist element of zi,k is
constrained:

ci,k ≤
[

1 0 ... 0
]

zi,k ≤ di,k (31)

so that,

ci,k =
ai −

(
DT

i (k)x̃p,i(k)
)(

DT
i (k)Pp,i(k)Di(k)

)1/2 (32)

di,k =
bi −

(
DT

i (k)x̃p,i(k)
)(

DT
i (k)Pp,i(k)Di(k)

)1/2 (33)



Sensors 2017, 17, 987 8 of 17

3. Finally, the final constrained parameter estimate and covariance at time k is given by:

x̃p,k|k = x̃p,p(k) (34)

Pp,k|k = Pp,p(k) (35)

4. Experimental Results and Discussion

A Mercedes Sprinter is used for this research, as depicted in Figure 3. For the experimental
results, different sensors were installed in the vehicle, such as an MSW 250 Nm steering angle sensor
from Kistler (2), a Vbox 3i dual antenna from Racelogic (3) which utilizes two GPS/GLONASS
antennas (4) and an inertial measurement unit (IMU). The IMU was installed close to the vehicle COG.
The two antennas were installed on the Mercedes’s roof, placed at an angle of 90 degrees relative to
the vehicle true heading, allowing the system to measure the roll angle. This roll angle value has been
considered as ground truth and has been used to validate the proposed estimator.

Figure 3. Test vehicle equipped with different sensors.

To prove the performance of the proposed algorithm, a comparison between the estimation of
“pseudo-roll angle” given by [6] and given in this work is carried out. For this reason, four linear
potentiometers, (5) and (6) in Figure 3 (Type SA-LP075 from 2D-Data to record data from the front
suspension), as well as two sensors (Type LVDT MTN from Monitran for the rear suspension), were
additionally mounted on the vehicle. In [6], the measurements obtained from these sensors were used
to estimated the vehicle roll angle:

ϕDEF =
(∆11 − ∆12 + ∆21 − ∆22)

2e
−

mvaymh
kt

(36)

where kt is the roll tire stiffness whose value is 607, 500 Nm/rad, h is the height of vehicle COG whose
value is 0.98 m, e is the vehicle track whose value is 1.634 m, mv is the vehicle mass whose value is
2150 kg, ∆ij is the suspension deflection and aym is lateral acceleration given by the sensor.

For the vehicle used in experiments, the valid parameter values lie between:

[0.1, 500, 104, 104]T ≤ [hcr, Ixx, KR, CR]
T ≤ [0.4, 1000, 105, 105]T

In the following subsections, different experimental cases are conducted in order to show the
performance of the algorithm proposed.
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4.1. Case 1: Combination of Slalom and J-Turn Maneouvres

The first experiment carried out is a combination of Slalom and J-turn maneouvres on a dry
pavement. The vehicle speed profile is shown in Figure 4. In order to prove the need to use
the information of the “pseudo-roll angle” provided by the NN, a comparison between the results
obtained from the proposed algorithm using or not the “pseudo-roll angle” as an input in the DKF is
shown in Figure 5, ymeas = [aym, ϕNN , ϕ̇] and ymeas = [aym, ϕ̇], respectively. In this figure, the vehicle
roll angle directly measured by the dual-antenna is also depicted (ground truth), ymeas = [aym, ϕexp, ϕ̇].
Analyzing the results, we can observe that if the lateral acceleration and the roll rate are the only
measurements fed to the DKF, ymeas = [aym, ϕ̇], the estimated vehicle roll angle is very noisy.
Additionally, a quantitative analysis has been performed. The equation to calculate the norm error as
a function of time is [27]:

Et =
εt

σt
(37)

where,

ε2
t =

T∫
0

(
ϕexp − ϕest

)2 dt

σ2
t =

T∫
0

(
ϕexp − µexp

)2 dt
(38)

ϕexp represents the real vehicle roll angle obtained from the dual antenna, ϕest represents the vehicle
roll angle obtained from estimator and µexp is the mean value of the vehicle roll angle obtained from
the dual antenna during the period T. The norm errors for observers without and with “pseudo-roll
angle” are 1.33 and 1.02, respectively, and the maximum errors for both observers are 0.138 rad and
0.096 rad, respectively. Therefore, results show that when the “pseudo-roll angle” obtained from the
NN is an input to the DKF, ymeas = [aym, ϕNN , ϕ̇], the norm and maximum errors are reduced.

Figure 4. Speed profile for Case 1.
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Figure 5. Vehicle roll angle for Case 1: Experimental data with dual antenna (black points), estimated
vehicle roll angle without considering the “pseudo-roll angle” (red points) and estimated vehicle roll
angle considering the “pseudo-roll angle” from NN (blue points).

An additional analysis is performed to prove the necessity for using a truncation DKF.
The truncation is only performed for the parameter vector prediction, since results have shown a
good estimation of the roll angle independently, of considering or not, a truncation in the state
vector. This allows for simplification of the algorithm. In Figure 6, a comparison of the trend of
vehicle’s parameters is shown. Represented in black, are the results obtained with a PDF-based
truncation method when the input measurement is the roll angle obtained from the dual-antenna.
These results are taken as our ground truth in order to validate the results obtained for the proposed
algorithm. The blue plot represents the parameter’s trend when the PDF-based truncation method is
not employed in the DKF. It is observed that the majority of estimated parameter values are outside
the defined bounds, represented with dashed lines. Even hcr and CR take negative values which
do not have physical meaning. Red and green plots represent the tendency of parameters when the
PDF-based truncation method is used and the “pseudo-roll angle” is used an input or not, respectively.
Both methods provide very similar results to the ground truth ones.

Even though the feeding of the “pseudo-roll angle”, obtained from the NN, to the DKF does not
influence vehicle parameter’s estimation, this value is very useful for state estimation.
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(a) hcr . (b) Ixx .

(c) KR. (d) CR.

Figure 6. Parameter estimation for Case 1: (a) hcr; (b) Ixx; (c) KR and (d) CR. Black plot: ymeas =

[aym, ϕexp, ϕ̇] + PDF. Green plot: ymeas = [aym, ϕ̇] + PDF. Blue plot: ymeas = [aym, ϕNN , ϕ̇]. Red plot:
ymeas = [aym, ϕNN , ϕ̇] + PDF .

4.2. Case 2: DLC and J-Turn Manoeuvres

The second test carried out is a double lane change (DLC) maneuver followed by a J-turn
maneuver. The speed profile for this experiment is higher than in Case 1 and is shown in
Figure 7. Figure 8 shows that the convergence of parameter values is independent of the considered
initial values. The maximum time required for the parameters to reach stabilization is about 30 s.
This information is important in order to know when the parameters have reached adequate values.

Figure 7. Speed profile for Case 2.
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In this case, we want to prove the convergence of the proposed algorithm for different initial
parameters values. In Table 1, the considered initial parameter values are given.

Table 1. Initial parameters values for Case 2.

Initial Values
Parameter Case 2.a Case 2.b Case 2.c

hcr (m) 0.1 0.2 0.35
Ixx (kg m2) 700 900 500

KR (Nm/rad) 90,000 20,000 50,000
CR (Nms/rad) 30,000 80,000 55,000

(a) hcr . (b) Ixx .

(c) KR. (d) CR.

Figure 8. Parameter estimation for Case 2 for different initial values: (a) hcr; (b) Ixx; (c) KR and (d) CR.

4.3. Case 3: Slalom and J-Turn Manoeuvres

Finally, the third test is a combination of a slalom and a J-turn manoeuvre. This test
case is employed to compare the proposed algorithm performance when using an estimated
“pseudo-roll angle” derived from the NN with the estimated “pseudo-roll angle” obtained from
suspension deflection measurements, as proposed by [6]. The vehicle speed profile is shown in
Figure 9.
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Figure 9. Speed profile for Case 3.

Figure 10 shows that parameters converge to the same values regardless of whether the
“pseudo-roll angle” was obtained from the NN or from suspension deflection measurements, with
the exception of parameter KR, which is influenced by an inaccurate estimation of the vehicle roll
angle, through the “pseudo-roll angle” derived from suspension deflection measurements.

Nevertheless, the vehicle roll angle is better estimated if the “pseudo-roll angle” is obtained
from the NN and used as a measurement in the DKF, rather than employing the “pseudo-roll angle”
derived from suspension deflection measurements as shown in Figure 11. The norm errors for
observers with “pseudo-roll angle” from suspension deflection and NN are 3.28 and 1.05, respectively,
and the maximum errors for both observers are 0.1 rad and 0.053 rad, respectively.

(a) hcr . (b) Ixx .

(c) KR. (d) CR.

Figure 10. Parameter estimation for Case 3: (a) hcr; (b) Ixx; (c) KR and (d) CR. Black plot: ymeas =

[aym, ϕexp, ϕ̇] + PDF. Blue plot: ymeas = [aym, ϕDEF, ϕ̇] + PDF. Red points: ymeas = [aym, ϕNN , ϕ̇] + PDF.
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Figure 11. Vehicle roll angle for Case 3: Experimental data with dual antenna (black plot), estimated
vehicle roll angle considering the “pseudo-roll angle” from suspension deflection (red points) and
estimated vehicle roll angle considering the “pseudo-roll angle” from NN (blue plot).

5. Conclusions

In this paper, an algorithm for the simultaneous on-line estimation of vehicle roll angle and
vehicle parameters is proposed. This algorithm uses a PDF-based truncation method in combination
with a DKF, to guarantee that both vehicle’s states and parameters are within bounds that have a
physical meaning.

The proposed algorithm complies with the desired design criteria: it estimates, simultaneously
and on-line, the vehicle’s states and parameters; it uses a simplified vehicle model in order to reduce
complexity and computing time; it is useful in all kinds of environments (tunnels, urban and forested
driving environments) due to the use of the “pseudo-roll angle” estimated from sensors installed
on-board in current vehicles instead of GPS dual-antenna, and, finally, it takes into consideration
both the measurements and model errors.

The proposed algorithm guarantees the convergence of vehicle parameter values regardless of
the initial ones. Moreover, the PDF-based truncation method has only been applied in parameters
vector, since experimental results have shown a good estimation of vehicle roll angle without the
necessity of truncating the state vector.

The use of “pseudo-roll angle” obtained from the NN to be incorporated as a measurement in the
DKF, has proved to be adequate. Finally, the advantage of the NN is that it takes into consideration
the non-linearities of the system.
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Abbreviations

The following abbreviations are used in this manuscript:

COG Center of fravity
DLC Double lane change
DKF Dual Kalman filter
GPS Global positioning system
IMU Inertial measurement unit
NN Neural networks
PDF Probability density function

Appendix A. Jordan Canonical Decomposition

Matrices Ti and Wi are obtained from the Jordan canonical decomposition. In this paper, both
matrices are obtained using the matlab command:

[Ti, Wi] = eig(Pp,i(k)) (A1)

Appendix B. Gram–Schmidt Orthogonalization Algorithm

The Gram–Schmidt orthogonalization algorithm is given by the following procedure [16]:

1. For j = 1, suppose that Si is a nxn matrix, where n is the number of estimate parameter, with rows
Si,j (j = 1, · · · , n):

Si = [Si,1, · · · , Si,n]
T (A2)

The first row of Si is computed as:

Si,1 =
DT

i (k) · T · W1/2(
DT

i (k) · Pp,i(k) · Di(k)
)1/2 (A3)

2. For j = 2, · · · , n:

(a) Compute Si,j:

Si,j = ej −
k−1

∑
m=1

(
eT

m · ST
i,m

)
· ST

i,m (A4)

where ej is a vector that is an n-element column vector comprised entirely of zeros, except
that its kth element is a 1.

(b) if Si,j = 0, then replace it with:

Si,j = e1 −
k−1

∑
m=1

(
eT

1 · ST
i,m

)
· ST

i,m (A5)

(c) Normalize Si,j:

Si,j =
Si,j∥∥Si,j

∥∥
2

(A6)
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