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Abstract: Self-localization is one of the most challenging problems for deploying micro autonomous
underwater vehicles (µAUV) in confined underwater environments. This paper extends a
recently-developed self-localization method that is based on the attenuation of electro-magnetic
waves, to the µAUV domain. We demonstrate a compact, low-cost architecture that is able to perform
all signal processing steps present in the original method. The system is passive with one-way signal
transmission and scales to possibly large µAUV fleets. It is based on the spherical localization concept.
We present results from static and dynamic position estimation experiments and discuss the tradeoffs
of the system.

Keywords: localization; micro autonomous underwater vehicles; swarm robotics; software-
defined radio

1. Introduction

Micro autonomous underwater vehicles (µAUVs) are currently a prominent research topic and
are expected to gain more importance in the future, especially for applications in confined liquid-filled
tanks, e.g., in process engineering. However, current self-localization approaches for µAUVs pose
great challenges and do not provide satisfactory and reliable performance yet, which is a key capability
for autonomous operations.

Advances in the area of microelectronics are continuously leading to the miniaturization and
cost decrease of hardware, such as motor controllers and sensor suits. This enables groundbreaking
possibilities for the development of novel µAUVs. Underwater vehicles are usually termed µAUVs
if their characteristic length is less than 50 cm. Recent examples are the Avexis submersible [1] and
the HippoCampus robot [2]; the latter is shown in Figure 1. Micro AUVs are becoming increasingly
interesting for industrial applications where they are operated in confined liquid-filled tanks. Examples
include nuclear storage ponds [1], tanks in process engineering or wastewater treatment. Figure 2
illustrates a potentially large fleet of µAUVs operating in a liquid-filled tank. Tank environments
considered in this work have length scales of approximately 3 m to 25 m. While the mentioned robotic
platforms could in principle allow for autonomous operations as depicted in Figure 2, the current
main challenges lie in the self-localization of the vehicles. No available localization approach provides
satisfactory results for autonomous operations of µAUVs in confined tanks so far. Any kind of useful
autonomous µAUV behavior requires the µAUVs to know their absolute positions. In the last few years,
a very promising underwater localization framework based on the attenuation of electro-magnetic
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(EM) carrier waves in water was introduced in a series of papers [3–7]. In principle, the approach
provides a satisfactory solution for the localization problem in confined tanks; however, it is not of
immediate use for µAUVs. The method utilizes a signal analyzer that is too large and expensive to
be included in a µAUV. This paper presents an embedded low-cost version of the EM localization
principle for global self-localization of µAUVs.

Figure 1. Photo of HippoCampus. A µAUV which is 35 cm long and suitable for multi-robot operations
in liquid-filled tanks [2].

Figure 2. Illustration of an application scenario for a fleet of µAUVs. A confined tank contains a liquid
with an underlying concentration field of interest. The µAUVs perform adaptive measurements to
collect information and to infer the state of the concentration field.

1.1. Challenges in Underwater Localization in Confined Tanks

Outdoor robots usually rely on Global Navigation Satellite Systems (GNSS) for localization, while
robots that are operated indoors, such as aerial vehicles, are localized with external camera systems.
In contrast, submerged robots cannot use GNSS, because the signal is attenuated in water. Camera
systems are also problematic, because image recognition underwater is difficult due to the demand for
good visibility and ambient illumination. Furthermore, in order to obtain a global position based on
vision, image-processing has to be performed off-board, and the pose has to be sent to the robot, as
presented in [8]. Hence, communication bandwidth and computing capabilities limit the amount of
robots that can be localized simultaneously with external camera systems. Off-board localization also
introduces latencies and, thus, degrades closed-loop controller performances. One desirable capability
of µAUV localization systems is therefore the ability to perform on-board self-localization. In [9], a
vision-based SLAM algorithm is used to reconstruct 3D underwater environments. It is, however,



Sensors 2017, 17, 959 3 of 22

still subject to the challenges of underwater camera systems. Furthermore, µAUV fleets with many
members require a localization framework that is not affected by the number of fleet members. This
can be achieved with a passive localization approach, i.e., an ambient reference signal that is observed
without active transmission to beacons.

1.2. Related Work

Passive self-localization systems rely on a signal that is sent by beacons, which are installed prior
to operations and whose positions are known to the mobile robots. The robot position is obtained
in relation to the beacons by either determining the range to the beacons (spherical positioning) or
by determining the difference between the ranges (hyperbolic positioning). Acoustic localization is
one possible approach for confined underwater environments. However, in contrast to open waters
such as oceans or lakes, multi-path propagation, reflections and reverberation of one to two seconds
provide serious challenges for acoustic approaches. Moreover, µAUVs often do not possess the
possibility for clock synchronization, which helps to accurately determine the time of flight of acoustic
signals. An acoustic spherical positioning system with channel switching that does not require clock
synchronization is suggested in [10]. The authors present simulations whereby the degrading effects
are not included because they are in general difficult to simulate. In [11], an acoustic hyperbolic
localization approach for confined environments is presented. Cyclically-transmitted signals render
clock synchronization unnecessary. Experimental results show sub-decimeter localization accuracy, but
vulnerability to reflections and reverberation. An acoustic modem for µAUVs that allows packet-based
ranging and active localization is presented in [12,13]. The hardware is suitable for medium-sized
(15 m to 100 m length scales) underwater environments.

Recently, a series of papers [3–7] by groups from the Pohang University of Science and Technology
(POSTECH) and the Seoul National University of Science and Technology (SEOULTECH) introduced
a novel approach for determining ranges underwater by using spherical localization based on the
attenuation of EM carrier waves. Furthermore, the authors show the feasibility of the system for
accurate localization in confined underwater environments. In [3] the authors derive the relationship
between range and EM wave attenuation from the Maxwell equations and the Friis transmission
formula. This relationship is used in [4] to demonstrate self-localization in the horizontal plane
based on the attenuation of EM carrier waves. Further analysis of the system in freshwater and
seawater is provided in [4]. Thorough analyses for the issues occurring, when the system is deployed
in three-dimensional space, are provided in [6,7]. The results are used to show the feasibility of
self-localization in three-dimensional space. The benefits of the EM approach are that multi-path
propagation, reflections and reverberation are much weaker for EM waves than for acoustic waves
in water because of the high attenuation rate in liquids. The localization accuracies that are reported
in [3–7] are within millimeter range at a 1000-Hz update rate. A key step in the signal processing chain
is the computation of a power density spectrum of an ultra-high frequency (UHF) signal. All results
reported in [3–7] use a full-fledged spectrum analyzer for computing the power density spectrum.
Such a spectrum analyzer is not deployable in µAUVs, because it is too large, too heavy and too
costly. An embedded system that allows the installation on-board µAUVs will necessarily have a
degraded performance in terms of localization accuracy and update rate. However, even accuracies of
a centimeter magnitude at an update rate of 10 Hz would still fulfill most localization specifications for
confined underwater environments, if the approach can be embedded within µAUVs. It would be a
significant improvement over the state of the art, which would render µAUV operations in confined
underwater environments possible.
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1.3. Contributions and Outline

We extend the EM localization approach introduced in [3–7] to the µAUV domain by developing
a small and low-cost embedded system architecture. The system is compact enough to be fit into the
HippoCampus vehicle shown in Figure 1 and has a system price of less than USD 100. We demonstrate
that the most critical step in the signal processing chain, the computation of a UHF power density
spectrum, can be performed on a digital video broadcasting-terrestrial (DVB-T) receiver that is of
similar size as a standard USB dongle. We provide thorough analysis of the system performance.
This contribution intends to be a basis for implementing a low-cost underwater self-localization system
based on off-the-shelf low-cost components.

The remainder of the paper is organized as follows. In Section 2, we recap the theoretical
background of EM-based localization. Furthermore, we outline the signal processing algorithms
for localization. Section 3 presents the hardware design, while Section 4 introduces the firmware.
Experimental results for self-localization in a confined tank are presented in Section 5. The concluding
remarks and an outlook to future work are presented in Section 6.

2. Theoretical Background for Spherical Localization Based on Attenuation of EM Waves

In this section, we present the theoretical background of the spherical localization systems. We first
describe the spherical localization problem in general. Spherical localization requires range estimation
between a receiver and beacons. The physical effects that enable underwater range estimation between
the receiver and beacons are briefly summarized. The Cramér–Rao lower bounds are computed for the
estimation problem to assess the accuracy of the localization system. An extended Kalman filter (EKF)
and a particle filter (PF) are introduced, and either can fuse the ranges to obtain the receiver position.

2.1. Spherical Localization

Consider N beacons at known positions that emit EM waves of constant magnitude, with the i-th
beacon located at position ri. The receiver has the unknown position p.

The spherical self-localization problem can be decomposed into two parts: (1) range estimation
from receiver node to transceiver beacons; (2) fusion of estimated ranges to obtain the position of the
receiver. Spherical localization can be passive and is, hence, scalable within an increasing number of
mobile receivers.

In spherical localization, the receiver node determines ranges from the receiver to beacons by
measuring either the time of flight or the received strength of the signal that is emitted by the beacons.
In the presented approach, the received signal strength (RSS) is measured. The range between the
receiver and the i-th beacon can be expressed by:

Ri = ‖p− ri‖, (1)

which is the equation for a sphere. Hence, the ranges define spheres that are centered at the beacon
locations. The intersection of all spheres is the receiver position. Consequently, the position of the
receiver can be derived from geometrical relationships if the beacon locations are known as illustrated
in Figure 3. Due to uncertainty in the measurement model and noise, the spheres do not intersect in
general, and the intersection point needs to be estimated, e.g., with an EKF. In order for a receiver unit
to self-localize in n dimensions, range estimations to at least n + 1 beacons are required.
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Figure 3. Spherical localization for determining the receiver position p as the intersection of circles in
2D or spheres in 3D of radius Ri. The known positions of the beacons are denoted by r1, r2 and r3.

2.2. Underwater Range Sensor Model

We use a model called the underwater range sensor model (URSM) to estimate the range between
receiver and beacons. The URSM describes the path loss attenuation as a function of distance. We use
the model that was first introduced in [3]. The beacons transmit an EM signal with constant known
power, and the RSS is measured at the receiver position. Based on the RSS, the URSM provides a
range estimation between receiver and beacons. In air, the attenuation rate of EM waves is small over
distance. This leads to large fluctuations in the RSS due to reverberation and interference. In contrast,
EM waves in water attenuate rapidly with distance. Since disturbing effects such as reverberation or
interference are less pronounced underwater, the principle of attenuating EM waves can be reliably
used to estimate the distance from an EM transmitter to a receiver underwater. In order to map RSS
values to range estimates, several techniques have been proposed in the literature. In air, the sensor
model relies on the Friis transmission formula, which is commonly used to calculate ranges for a
measured received signal strength. However, this model needs to be modified to consider medium
parameters, such as temperature and conductivity. Park et al. [3,6] developed an EM wave attenuation
model for underwater environments. The model is a modified version of the Friis transmission formula,
which takes the attenuation constant α of the plane wave equation into account. The difference between
the EM wave power SR on the receiver side and the EM wave power ST on the transmitter side is the
RSS. The RSS as a function of the range Ri between the receiver unit and the i-th beacon reads:

RSSi = SR,i − ST,i = −20 log10 Ri − 20 Ri αi log10 e + Γi [dBm] , (2)

where Γi is an offset factor representing antenna and environmental influences. The parameters αi
and Γi can be calculated explicitly if variables such as polarization loss factor, transmitting and
receiving antenna gains and the attenuation factor are known. In [3], these parameters are derived for
an underwater test tank environment, and the resulting model is validated with experimental data.
In our contribution, the model parameters are computed from spatially-distributed RSS measurements
by fitting (2) with non-linear least-squares. The range Ri as a function of SR,i can be obtained from (2):

Ri =
1

α log10 e ln 10
W
{

α log10 e ln 10 exp
[− ln 10

20
(SR,i − ST,i)−

Γ ln 10
20

]}
, (3)
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where W(x) is the Lambert-W function, which is the inverse function of:

f (x) = x exp(x) , (4)

f−1(x) = f (y) = W(y) . (5)

The procedure of determining the range Ri as a function of signal strength differences is depicted
in Figure 4 for one dimension. The beacon emits an EM signal with the known power ST,i, while the
receiver measures the signal and determines the channel power SR,i. The URSM allows computing the
range between the beacon and receiver with (3).

Beacon

-

Receiver

URSM

ST,i SR,i

Ri

Figure 4. The underwater range sensor model (URSM) is applied to determine the range Ri between
the receiver unit and the i-th beacon. It maps the difference between received EM wave power SR,i and
transmitted EM wave power ST,i to the range Ri.

2.3. Signal Identification Using Channel Allocation

Localization within a horizontal plane requires at least three beacons. An important aspect in
RSS-based spherical localization is that the receiver has to assign the RSSs to the respective emitting
beacons. In principle, a receiver can identify the signal source by time scheduling [14]. However, this
requires clock synchronization, which is usually a challenging task for underwater applications [11].

An alternative approach for beacon identification is channel assignment, which is deployed
in [4–6]. Hereby, each beacon sends an EM signal at a unique frequency. The resulting superposed
signal is then measured by the receiver. By applying a fast Fourier transformation (FFT) on the receiver
side, each RSS can be allocated to the respective beacon. This technique increases the update rate
significantly, because beacons can transmit their signals simultaneously and do not need to wait
for a scheduled time. Moreover, in each cycle, the FFT provides access to all RSS values. This is
shown in Figure 5 for two beacons with different emitting frequencies. The prior knowledge about the
beacons’ frequencies allows allocating the determined RSS values to the beacons and, thus, based on
the corresponding URSM, to calculate the range between the each beacon and the receiver.
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Figure 4. The underwater range sensor model (URSM) is applied to determine the range Ri between
receiver unit and the ith beacon. It maps the difference between received EM wave power SR,i and
transmitted EM wave power ST,i to the range Ri.
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Figure 5. Identification of two beacons transmitting at 432.6 MHz and 433.0 MHz, respectively. The
receiver unit identifies the beacons and corresponding RSS values by determining the frequencies and
peak values.
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Figure 5. Identification of two beacons transmitting at 432.6 MHz and 433.0 MHz, respectively.
The receiver unit identifies the beacons and corresponding RSS values by determining the frequencies
and peak values.

2.4. Cramér–Rao Lower Bound

The mobile receiver unit computes its ranges to the beacons by using the measurements of the
RSS values on different channels. The ranges are then fused to estimate the receiver’s position, i.e.,
with a Bayesian filter, such as EKF or PF.

As a measure for the achievable accuracy of the localization system the Cramér–Rao lower bound
(CRLB) can be computed to express a lower bound on the variance of the estimated receiver position.
The CRLB is the inverse Fisher information matrix and can be computed as:

CRLB = F−1. (6)

Define a mean vector of received signal strengths:

µ = [RSS1 RSS2 · · ·RSSN ]
>. (7)

We assume the noisy signal strength measurements to be zero-mean Gaussian with covariance
matrix C = diag(σRSS,i(Ri)) and combined in the vector:

τ ∼ N (µ, C). (8)

The Fisher information matrix F ∈ Rn,m has the elements:

Fm,n =
∂µ>

∂pm
C−1 ∂µ

∂pn
+ tr

(
C−1 ∂C

∂pn
C−1 ∂C

∂pm

)
. (9)

The two-dimensional localization case yields pm = x and pn = y.
The CRLBs for a localization scenario with four emitting beacons are illustrated qualitatively in

Figure 6. Thereby, the covariance σRSS,i(Ri) is modeled as a linearly-increasing function of the range
to the i-th beacon. The CRLBs indicate that the lowest position estimation covariance lies within the
convex hull spanned by the beacons.
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2.5. Extended Kalman Filtering

In the following, an EKF algorithm is derived to estimate the position state vector p based on the
RSS measurements. This approach allows for tightly-coupled sensor fusion, with, e.g., an IMU or a
pressure sensor. We include the observation vector τ from (8) directly into the EKF algorithm. During
the filter update step, each measured RSS value is processed independently. The loss of one or more
RSS values still results in a position update along the remaining single spheres’ manifolds. This allows
for optimal exploitation of the available information, and it improves the robustness of the system,
because glitches in the EM measurement system can be treated by the EKF in a systematic way. The
position state update is performed in every time step. In the following, superscripts (−) and (+) denote
a value gained in the filter prediction or the filter update step, respectively.

We set the receiver’s state dynamics to be a random walk. Thus, the receiver’s state at time
step k reads:

p(k) = p(k− 1) + w(k). (10)

The process noise vector w is assumed to be zero-mean Gaussian white noise with covariance
matrix Q. The non-linear measurement function µ(p) (7) defines a vector of RSS mean values as
functions of the receiver position. The components RSSi introduced by the URSM in (2) are updated by
RSS measurements (8). The EKF requires the Jacobian Jµ(k) of µ(p), which consists of the derivatives
h>i (k) of (2):

h>i (k) = ∇p RSSi(p(k)) =
[
− 20

ln 10 · ‖p(k)− ri‖2 · [p(k)− ri]
> − 20 αi log10 e

[p(k)− ri]>
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p=p̂(−)(k)
,

Jµ(k) =
[
h>1 (k) · · · h>N(k)

]>
.

The predicted position state is:

p̂(−)(k) = p̂(+)(k− 1) + w(k).

and its covariance reads:
P̂(−)(k) = P̂(+)(k− 1) + Q.
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2.5. Extended Kalman Filtering

In the following, an EKF algorithm is derived to estimate the position state vector p based on
the RSS measurements. This approach allows for tightly-coupled sensor fusion, with, e.g., an IMU
or a pressure sensor. We include the observation vector τ from (8) directly into the EKF algorithm.
During the filter update step, each measured RSS value is processed independently. The loss of one
or more RSS values still results in a position update along the remaining single spheres’ manifolds.
This allows for optimal exploitation of the available information, and it improves the robustness of the
system, because glitches in the EM measurement system can be treated by the EKF in a systematic way.
The position state update is performed in every time step. In the following, superscripts (−) and (+)
denote a value gained in the filter prediction or the filter update step, respectively.

We set the receiver’s state dynamics to be a random walk. Thus, the receiver’s state at time
step k reads:

p(k) = p(k− 1) + w(k). (10)

The process noise vector w is assumed to be zero-mean Gaussian white noise with covariance
matrix Q. The non-linear measurement function µ(p) (7) defines a vector of RSS mean values as
functions of the receiver position. The components RSSi introduced by the URSM in (2) are updated by
RSS measurements (8). The EKF requires the Jacobian Jµ(k) of µ(p), which consists of the derivatives
h>i (k) of (2):

h>i (k) = ∇p RSSi(p(k)) =
[
− 20

ln 10 · ‖p(k)− ri‖2 · [p(k)− ri]
> − 20 αi log10 e

[p(k)− ri]>
‖p(k)− ri‖

]

p=p̂(−)(k)
,

Jµ(k) =
[
h>1 (k) · · · h>N(k)

]>
.

The predicted position state is:

p̂(−)(k) = p̂(+)(k− 1) + w(k).

and its covariance reads:
P̂(−)(k) = P̂(+)(k− 1) + Q.
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The innovation and the innovation covariance are computed as:

κ(k) = τ(k)− µ(p̂(−)(k))

and:
S(k) = Jµ(k)P̂(−)(k)J>µ (k) + C(k)

respectively.
The Kalman gain:

K(k) = P̂(−)(k) Jµ(k)S−1(k)

allows one to compute the state update:

p̂(+)(k) = p̂(−)(k) + K(k)κ(k)

and the covariance update:
P̂(+)(k) = (I−K(k) J(k)) P̂(−)(k).

2.6. Particle Filtering

As an alternative to the EKF, a PF can be used to estimate the position from the measured signal
strengths (8). Particle filters (also referred to as sequential Monte Carlo filters) perform better than an
EKF if the problem variance is large and the measurement model highly non-linear [15]. The sampling
importance resampling (SIR) PF [16] is recapped in this subsection.

The distribution of the receiver position is approximated by a particle set consisting of M particles{
p[m](k)

}
indexed by the integer m. In addition, the particles are associated with weights w[m](k),

which indicate the importance of each particle. The weights are positive and are enforced to always
sum up to unity, i.e., ∑M

m=1 w[m] = 1.

At time step k, a temporary particle set
{

p̃[m](k)
}

is created from the particle set of the previous
time step k− 1 according to the random walk model (10):

p̃[m](k) = p[m](k− 1) + w(k). (11)

The unnormalized weight w[m]
u (k) is computed as the probability of the measurement τ(k) for

particle p̃[m](k):
w[m]

u (k) = N (τ(k) | µ(p̃[m](k)), C). (12)

In order to avoid particle degeneration, the temporary particle set is resampled. The weights
wu are normalized to sum to unity, and all particles are drawn with replacement p[m](k) ∼

{
p̃[i](k)

}

with probability ∝ w[i](k), i = 1, . . . , M. The position estimate p̂(k) can be obtained by averaging the
resampled particles set:

p̂(k) =
1
M

M

∑
m=1

p[m](k). (13)

3. Hardware Architecture

This section describes the main hardware components of the embedded underwater localization
system. The beacons and the receiver unit are the main modules. In the following subsections, the
underwater antenna design, the setup of the fixed beacons and the mobile receiver unit are introduced.

3.1. Antenna Design

For localization within the horizontal plane, the signal must be emitted omnidirectionally in
azimuth, in order to fulfill the system requirements for robustness and efficiency in an underwater
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environment. For this purpose, a half-wavelength dipole antenna was designed for underwater
use, avoiding effects of air-water interfaces, as well as significantly reducing its length compared to
terrestrial counterparts. A detailed build instruction is provided at https://youtu.be/muQLcZg0dWk.
In consideration of good maintainability, simple sealing and future applications onboard µAUVs,
the sleeve-dipole design is favored over a dipole T-shape. The underwater antenna is made of
RG316 coax cable and matched to a 50 Ω coaxial transmission line. The medium of propagation
noticeably affects the signal wavelength and hence influences the antenna length. In the freshwater
experimental environment, the best signal transmission is observed with an antenna length of 160 mm.
Note, that the antenna length depends strongly on the conductivity of the surrounding water. The
connection between antenna and feeder is realized through a dielectric tube in which an industrial
PVC cable-sealing fixes the antenna. The antenna build-up is illustrated in Figure 7 with a photo and
a schematic.

Figure 7. Photo (top) and schematic (bottom) of an underwater sleeve-dipole antenna for
EM localization.

Figure 8 shows the Smith chart of the deployed antennas in freshwater with a conductivity of
σ = 0.031 S/m at 18 ◦C.

Figure 8. Smith chart of the underwater antenna.

3.2. Fixed Beacons

The beacons are anchored in the underwater environment and emit the EM signals.
The signal-generating unit of each beacon is a custom-made circuit board with a RadiometrixTM

USX2 multi-channel half duplex UHF transceiver operating in the 433-MHz band. The circuit board is
shown in Figure 9.

https://youtu.be/muQLcZg0dWk
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Figure 9. Circuit board with the RadiometrixTM USX2 module for generating EM carrier waves at
433 MHz.

The beacons consist of the circuitry, which is housed in a sealed cylindrical polymer tube with the
antenna being exposed to water. The UHF transceivers are powered by 12-V LiPo-batteries. In order to
spatially fix the beacon configuration, they are arranged as an array on a frame. This allows placing the
localization systems at almost any desired position in the work space. Figure 10 shows a submerged
array of four beacons and a detailed photo of a single beacon.

Figure 10. Submerged rack with four beacons. Each beacon contains a signal generating unit and
continuously emits an EM signal at a unique frequency.

3.3. Mobile Receiver Unit

The mobile receiver unit consists of an underwater antenna, a modified DVB-T USB dongle with
the capability to compute a power spectrum density and a single board computer (SBC). The major
design criteria for the module are size and cost, as it has to fit into space-constrained µAUVs such as
the HippoCampus in Figure 1.

The mobile receiver unit carries out two main tasks:

1. it calculates real-time RSS values based on the URSM;
2. and it computes its position from the RSS values.

The DVB-T USB dongle is used to digitize a segment of the EM spectrum as in-phase/quadrature
(I/Q) samples. In order to drive the DVB-T USB dongle and to perform the RSS localization tasks, the
SBC requests I/Q samples from the DVB-T USB dongle and computes the power density spectrum.
The RSS values of the transmitter channels can be extracted from the spectrum and used for the range
estimation. The functionality of the localization module is depicted in Figure 11.
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SDR SBC
I/Q data

Localization module

Figure 11. Onboard localization module: a software-defined radio provides I/Q samples to a single
board computer.

3.3.1. Modified DVB-T USB Dongle

Since the beacons transmit signals at different frequencies, a power density spectrum of the
received signal has to be computed to determine the RSS values and to identify the corresponding
beacons. In order to compute the spectrum, a low-cost DVB-T USB dongle capable of software-defined
radio (SDR) is used. This is the main contribution to bring the system to the µAUV domain. In the
original work [3–7], a full-fledged spectrum analyzer is deployed. Instead, the NooElecTM NESDR Mini
DVB-T device (approximately USD 25) is chosen in this work and is depicted in Figure 12. It processes
signal sequences received through an antenna within a range of 24 to 1700 MHz. After demodulation
and analog digital conversion (ADC), it transmits them via USB interface to the SBC. The core elements
of the DVB-T dongle are the tuner and the demodulator. The integrated circuit tuner used in this
work is an R820 chip. It receives analog EM signals, amplifies them and performs bandpass filtering.
Afterwards, it down-converts the signal to a lower intermediate frequency (sub-sampling). This allows
the subsequent eight-bit-ADC to sample at much lower sampling rates than the carrier frequency of
the incoming analog RF signal. The demodulator, a RTL2832U chip, contains the ADC and encodes
the signal to I/Q samples via coded orthogonal frequency-division multiplexing (COFDM). The I/Q
samples are then processed by the SBC for spectrum analysis and RSS estimation. The maximum
sample rate of the demodulator amounts to 3.2 MS/s. However, in order to avoid sample dropping
and due to USB 2.0 data transfer restrictions, the sample rate is set to 2.4 MS/s.

RTL2830 DemodulatorR820T Tuner

•
Antenna input

•

USB output

Figure 12. Covered and uncovered version of a NooElecTM NESDR Mini DVB-T dongle used as an
software-defined radio (SDR) with an R820 tuner, RTL2832 demodulator and USB interface.

3.3.2. Single Board Computer

The localization algorithm runs onboard the mobile receiver unit. The single board computer
needs to be compact enough to fit the geometrical constraints of µAUVs. Its main tasks consist of
powering and interfacing the DVB-T dongle via the USB interface, running all required computations
for localization and providing the position estimates to other modules. The SBC Raspberry Pi Zero is
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chosen as the computing unit. With a size of 66 mm × 30 mm × 5 mm and a weight of 9 g, it fulfills
all physical requirements for the use in µAUVs. It has a single-core CPU, which runs at 1 GHz, and it
has 512 MB of RAM. The Raspberry Pi runs Raspbian, a Debian-based operating system.

4. Firmware Design

The firmware controls the localization module and runs on the SBC. In order to obtain a position
estimate of the mobile receiver unit from RSS values, the firmware executes all required tasks, e.g.,
power spectrum computation or Bayesian filtering. The open source firmware can be obtained at
https://github.com/DanielDuecker/RF_Localization or https://github.com/EugenSol/RFLoc.

The Python programming language is chosen for the firmware implementation, because it is a
widely-available cross-platform open-source language. The DVB-T dongle is interfaced via the librtlsdr
library (https://github.com/librtlsdr/librtlsdr), which provides drivers for the RTL2832U chip-set.
The wrapper pyrtlsdr (https://github.com/roger-/pyrtlsdr) is included, as well, as it conveniently
wraps functions of the librtlsdr library to make them accessible within the Python software architecture.
These functions include setting the center frequency, i.e., 433 MHz, on the DVB-T dongle and the access
to the complex eight-bit I/Q samples, which are provided as an array for further signal processing.
The communication chain is shown in Figure 13.

RTL2832U

librtlsdr pyrtlsdr in
Source code

Python

Figure 13. Communication between the digital video broadcasting-terrestrial (DVB-T) dongle and the
single board computer (SBC). The RSL2832U chip-set is interfaced by the library librtlsdr. The wrapper
pyrtlsdr provides convenient access to the library function. Both, librtlsdr and pyrtlsdr run on the SBC.

The localization process and, thus, the firmware are split into two main workflows: first, the
calibration, which performs the parameter identification of the URSM, and second, the localization,
which contains the localization algorithm via Bayesian filtering. Both steps are part of the super class
RfEar-provided functionalities, which are commonly used for its subclasses CalEar and LocEar.

4.1. Calibration

The calibration process identifies the URSM parameters α and Γ for each beacon. It is organized
within subclass CalEar and consists of three steps:

1. Measurement of the power spectrum density of the EM-field at a series of different positions,
i.e., a grid.

2. Determination of RSS values for each beacon frequency by applying an FFT on the measured
power spectrum density at each measurement position.

3. Fitting of the URSM for each beacon according to the collected data by using a non-linear
least-squares algorithm.

4.2. Localization

The subclass LocEar is used to execute the localization of the receiver unit based on measured RSS
values. Thus, the URSM parameters must be determined in advance through calibration. In order to
localize the position of the receiver unit, different estimation algorithms are implemented, i.e., EKF and
PF, which fuse the measured RSS values to an estimated position of the receiver unit. The estimated

https://github.com/DanielDuecker/RF_Localization
https://github.com/EugenSol/RFLoc
https://github.com/librtlsdr/librtlsdr
https://github.com/roger-/pyrtlsdr
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position and its uncertainty can then be transmitted to other algorithms, i.e., to allow closed-loop
trajectory following.

5. Results

This section presents experimental results to validate the feasibility and performance of the
embedded RF localization system in water. We analyze performance tradeoffs arising due to data
processing with the NooElecTM NESDR Mini DVB-T dongle instead of a full-fledged signal analyzer.
We show localization results for static position hold and dynamic position estimation along trajectories.

5.1. Experimental Setup

All experiments were carried out in a water tank available at the Institute of Mechanics and
Ocean Engineering, Hamburg University of Technology. The experimental setup and the performed
experiments are shown in Figure 14. In Figure 14b, the dashed lines depict the receiver unit trajectories
and the stars the static positions. The conductivity of the water was measured and amounts to 0.031 S

m .
Four EM beacons, as introduced in Section 3.2, are deployed in the experimental tank as shown in
Figure 14.
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Figure 14. Experimental setup to validate the embedded EM localization system.

The four beacons transmit EM signals at 433.90 MHz, 434.05 MHz, 434.20 MHz and 434.35 MHz.
The receiver unit is mounted to a horizontal movable gantry unit with a workspace of 3 m by 1.6 m.
This allows moving the receiver unit along pre-programmed trajectories and taking signal strength
measurements with arbitrary high geometric resolution.

During static measurements, the localization system is able to reach sampling frequencies of
20 Hz. For dynamic measurements, the sampling frequency is approximately 4.5 Hz. This is mainly
due to the long response time of the gantry position encoder. It is worth mentioning that the sampling
frequency is independent of the number of emitting beacons, since the algorithm executes an FFT
for the relevant part of the power density spectrum, which includes all transceiving frequencies of
the beacons.

5.2. Data Processing

The presented setup allows pre-programing the motion of the receiver unit and capturing RSS
values on a fine grid that is spread in the test tank. This is useful to study the EM field in the workspace.
It allows analyzing tank specific field characteristics like reflections and noise. The measured signal
strengths at the four different frequencies (433.90 MHz, 434.05 MHz, 434.20 MHz, 434.35 MHz) are
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illustrated as contour plots in Figure 15. The measurements were taken on a grid with a 50 mm by
50 mm resolution, where each of the 1952 grid points initiated a 5-s motion-free measurement sequence.
The contour plots show the mean values of these measurement sequences. In each of the subfigures,
the RSS is largest at the position of the respective beacon and decreases with distance, as expected.
For the case of an ideal omnidirectional antenna, the potential lines of equal RSS values form circles.
All beacons demonstrate this characteristic. However, with increasing distance from the beacons and
in the vicinity of the tank walls, the circular contours ravel out. This is due to the noise floor level,
which the RSS measurements reach, which begins for our system at approximately −85 dBm. The
disturbances close to the tank walls are due to reflections from the tank walls, which are made of steel
beams, wood and glass. The contour lines in Figure 15b are elliptically shaped around Beacon 2. This is
likely due to an antenna mounting error, which results in a slight tilt of the antenna. Thus, the emission
plane of the antenna is not aligned with the horizontal measurement plane of the receiver node.
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Figure 15. Contour plots of RSS values measured over 5 s on each grid point at the beacons
frequencies. Black markers depict the beacons.Figure 15. Contour plots of RSS values measured over 5 s on each grid point at the beacons’ frequencies.

Black markers depict the beacons.

An important aspect in the context of RSS data processing is the dynamic range of the receiver
unit. The dynamic range is a measure for how well the weak signals can be detected in the presence
of stronger signals on neighboring frequency channels. Hence, high dynamic range is desirable as it
allows one to detect signals from far away beacons in the vicinity of other beacons. The NooElecTM

NESDR Mini DVB-T dongle has a dynamic range of approximately 60 dBm.
The RSS data can be used to validate the URSM (2) introduced by [3] first and summarized

in Section 2.2. The measured data presented in Figure 16 are used to fit αi and Γi of (2). Figure 16
illustrates the measured RSS values as a function of distance for a single frequency and the fitted
URSM. The data correspond to the analytical model, whereby the scattering increases with distance.
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Moreover, the measurements deviate from the URSM in direct vicinity of the emitting beacon. This
effect is due to a vertical offset between the horizontal transmission plane of the beacon and the
receiver node. For distances of more than 1.8 m the RSS measurements deviate significantly from the
URSM, as the RSS reaches the noise floor level of the receiver unit. There are two options to resolve the
effect with modifications of the beacons: first, increasing the power of the emitter and, second, using
antennas with higher directivity. Both will increase average RSS in the test tank and, thus, push the
noise floor to further regions. Another option is to add more beacons to the test tank, i.e., a total of six
beacons arranged in a three by two pattern. In this case, the localization system does not need to rely
on the RSS from far away beacons, as there are closer beacons whose EM signals allow more accurate
RSS measurements. However, this approach would require a distance-dependent weighting of the
RSS measurements in the filter algorithm to reduce the influence of inaccurate RSS measurements on
the localization.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

−100

−80

−60

−40
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R
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Figure 16. Underwater range sensor model and RSS measurements.

5.3. Static Position Estimation

For the static position estimation experiment, ten positions with known ground truths are chosen.
The receiver unit is placed at those positions, and the receiver positions are estimated with the
localization system. Figure 17 shows the results for those positions, whereby the estimation is
performed with a PF and M = 1000 particles. While Park et al. [4] report root-mean-square errors
between 1 mm and 2 mm for their original method, the errors in Figure 17 are an order of magnitude
higher. The data processing capabilities of the hardware are inferior to the signal analyzer in [4].
However, it is compact and inexpensive. Another reason for the degraded performance is the strong
reflections in the tank. The points in proximity to the tank walls, e.g., 1, 2, 3 and 9, show systematic
biases due to reflections, whereas results for points further away are more accurate, e.g., Points 3 and 4.
Despite their biases, all measurements show a small variance. This emphasizes our assumption that
the deviations mainly result from the reflections and are, thus, caused by the characteristics of our test
basin, which is significantly smaller than the test tank used in [4].
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Figure 17. Static receiver self-localization at ten different positions. A PF with 1,000 particles merges
the measurements.
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Figure 17. Static receiver self-localization at ten different positions. A PF with 1000 particles merges
the measurements.

5.4. Dynamic Position Estimation

In the final experiment, the receiver unit is guided along two different rectangular trajectories
similar to the one in [4], albeit smaller. The first trajectory lies completely within the convex hull
spanned by the beacons. The second trajectory lies outside of the convex hull. The results for the
two trajectories are shown in Figures 18 and 19. For each of the trajectories, an EKF and a PF are
used to fuse the RSS values for position estimation. The ground truths and the estimated positions
of the receiver are shown in Figure 18a,b for the inner and in Figure 19a,b for the outer rectangle.
The RSS measurements at the four distinct frequencies are illustrated in Figures 18c and 19c. As in
the previous subsection, the results are less accurate than the ones reported in [4]. However, for most
µAUV applications in confined test tanks, the results are sufficient, especially given the small size and
cost of the system.

The EKF and PF approaches show similar results for both trajectories. In general, PFs tend to
outperform EKFs if nonlinearities are strong and noise variance is large. For these cases, the Gaussian
assumption on noise of the EKF framework is not accurate enough anymore. The PF allows including
uniform priors, which can be an advantage in certain applications. It is worth mentioning that coupling
with other sensors such as IMUs can be more straight forward for EKF’s framework than for PF’s.

The estimated positions are compared against the ground truth, and the RSS measurements
are assigned to corresponding gantry positions. The RSS values in Figures 18c and 19c exhibit
discontinuities at Time Steps 100 and 300, respectively. At this point, the gantry did not provide ground
truth data, and the RSS measurements were rejected for several consecutive time steps. Nevertheless,
the system is able to recover the position as soon as the RSS measurements become available again,
which demonstrates the robustness of the system.
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Figure 18. Self-localization results along a rectangular trajectory within the convex hull of the beacons.
The receiver traverses the rectangle three times.Figure 18. Self-localization results along a rectangular trajectory within the convex hull of the beacons.

The receiver traverses the rectangle three times.
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Figure 19. Self-localization results along a rectangular trajectory outside the convex hull of the
beacons. The receiver traverses the rectangle three times.

Figure 19. Self-localization results along a rectangular trajectory outside the convex hull of the beacons.
The receiver traverses the rectangle three times.
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6. Summary and Outlook

In this paper, we presented a compact, low-cost localization architecture based on the EM wave
attenuation principle. The system provides satisfying performance with an accuracy in the centimeter
range at a fraction of the cost and size of existing systems. Our main contribution is the extension of
the system introduced in [3–7] to the µAUV domain.

The main system components are anchored beacons emitting EM signals in a frequency band
centered around 433 MHz and a passive mobile receiving unit, which measures the RSS values to
estimate its position relative to the beacons. The hardware part of the signal processing chain was
realized with an off-the-shelf USB DVB-T dongle capable of sampling parts of the EM spectrum and an
SBC, in this contribution a Raspberry Pi Zero. An FFT was implemented on the SBC to determine the
RSS from each beacon within the received power density spectrum. Calibration allows us to fit the two
parameters of the URSM to the RSS values and the distances between the mobile receiver unit and the
corresponding beacons. The measured RSS values were fused to estimate the position of the receiver
unit based on the RSM by deploying Bayesian filtering algorithms, such as EKF. Since the receiver unit
is passive, only one-way signal transmission is required, and the system is not affected by the number
of fleet members.

We demonstrated the performance of our architecture in experiments for static and dynamic
applications and analyzed the EM field characteristics of the test tank. The experiments have shown
an accurate and reliable localization of the receiver unit. However, the accuracy depends highly on the
receiver’s position within the test tank. The results show that within the convex hull of the beacons,
the localization is very accurate, whereas the accuracy decreases with larger distances from beacons
and also in the vicinity of the tank walls. As the static position measurements have shown very
small variances, we assume that the localization accuracy would improve significantly in a larger test
environment, as inhomogeneities of the EM field that are mostly due to reflection from the tank walls
would be reduced.

Further investigations should be conducted on the EM field characteristics. This includes
the influence and improvement of antenna design. In order to analyze the system performance
independently from the tank characteristics, we plan to deploy our system in a larger water tank with
characteristic lengths of approximately 5 to 10 m to achieve a better homogeneity of the EM field.
Moreover, we plan to extend the system capabilities to enable 3D localization, which is challenging
due to the directivity of the antennas. Therefore, a possible option is to use the approach of [6] and
extend it to µAUVs. It adds more beacons to the system and stacks them in multiple horizontal planes.
The received measurement signals are to be fused together with the actual depth measurement of the
µAUV to obtain the absolute position in 3D space. The goal is to embed the system in µAUVs and
perform closed-loop position control.
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Abbreviations

The following abbreviations are used in this manuscript:

µAUVs Micro autonomous underwater vehicles
ADC Analog digital conversion
COFDM Coded orthogonal frequency-division multiplexing
CRLB Cramér–Rao lower bound
DVB-T Digital video broadcasting-terrestrial
EKF Extended Kalman filter
EM Electro-magnetic
FFT Fast Fourier transformation
GNSS Global Navigation Satellite Systems
I/Q In-phase and quadrature
PF Particle filter
RF Radio frequency
RSM Range sensor model
RSS Received signal strength
SBC Single board computer
SDR Software defined radio
UHF Ultra-high frequency
USB Universal serial bus
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