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Abstract: The rise of autonomous systems operating close to humans imposes new challenges in
terms of robustness and precision on the estimation and control algorithms. Approaches based
on nonlinear optimization, such as moving horizon estimation, have been shown to improve the
accuracy of the estimated solution compared to traditional filter techniques. This paper introduces
an optimization-based framework for multi-sensor fusion following a moving horizon scheme.
The framework is applied to the often occurring estimation problem of motion tracking by fusing
measurements of a global navigation satellite system receiver and an inertial measurement unit.
The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering
airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence
of the horizon length on the quality of the solution is presented and evaluated against filter-like
and batch solutions of the problem. The versatile configuration possibilities of the framework are
finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear
behavior of the sensor fusion problem.

Keywords: multi-sensor fusion; state estimation; moving horizon estimation; nonlinear optimization;
inertial navigation

1. Introduction

During the last few years, fully autonomous systems have been a highly active research field,
which pushed product development towards the commercialization of such systems. For applications
such as autonomous driving and unmanned aerial vehicles (UAVs) more semi-autonomous features
become available every day. Besides the future of self-driving cars, autonomous drones will
soon take over tasks in transportation, agriculture, maintenance, surveillance or energy generation.
The first prototypes have already proven to be feasible and have successfully delivered small sized
goods, simplified inspection processes in rough terrain or harvested wind energy at previously
unreachable altitudes. These recent developments allow the prediction of an increasing number
of UAVs applications (see Figure 1), which will result in a more crowded airspace, representing a
paradigm shift in comparison to traditional airborne applications where the airspace is heavily secured
and supervised.
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(a) Quadcopter (b) Airborne Wind Energy

Figure 1. Examples for autonomous airborne applications: (a) shows a flying drone (available at
https://unsplash.com/photos/ZlkRrzJl20Q, published under CC0, photo by imKirk); (b) shows a
prototype of an airborne wind energy system developed at TU Delft (http://www.kitepower.eu).
Courtesy of Roland Schmehl, TU Delft.

UAVs operating in a more occupied airspace close to humans require increased robustness to
avoid fatal incidents, which translates to a strict set of requirements imposing new challenges for the
estimation and control algorithms. Moving horizon estimation (MHE) and model predictive control (MPC)
are promising strategies that use numerical optimization methods over a window of data to increase
stability and accuracy of the system’s motion. MPC has been successfully applied to challenging
control problems with nonlinear dynamics and difficult environment conditions [1–3]. The counterpart
to the optimal control theory for state estimation is represented by MHE which has already been used
for decades to estimate the state of nonlinear chemical processes [4] or more recently, to increase fault
tolerance of relative navigation problems [5]. The computational burden of solving an optimization
problem has become less restrictive due to advances in computer technology and the development of
tailored optimization algorithms [6,7] that nowadays allo the usage of efficient optimization-based
methods on embedded systems. These recent developments make these strategies attractive for a
broad range of applications including autonomous systems.

To estimate the motion of a system exposing a high degree of freedom with high accuracy,
it often becomes necessary to fuse information from different sensors. Sensor fusion is a well
known strategy to reduce the impact of measurement errors on the state estimate [8] and estimate
not directly observable system states. One traditional way to solve multi-sensor fusion problems
for time critical applications is the famous Kalman filter (KF) algorithm [9] and its derivatives for
nonlinear systems extended Kalman filter (EKF) and unscented Kalman filter (UKF). To achieve high
estimation accuracy, KF-based algorithms require, in practice, a procedure to tune the filter parameters,
which is, for complex systems, non-trivial yet crucial. To overcome this problem, adaptive methods
have been proposed [10,11]; however, filter stability can become an issue under certain conditions.
Optimization-based approaches allow for a more elegant formulation respecting system constraints [12].
Typical Newton-type optimization algorithms use an iterative approach and are therefore known to
better capture the nonlinearity of the problem yielding a more accurate and robust solution.

In this paper, we present an optimization-based sensor fusion framework for state estimation
following an MHE approach, extending [13]. The framework is applied to the well-known sensor
fusion problem for inertial navigation of a global navigation satellite system (GNSS) receiver measuring
position and an inertial measurement unit (IMU) measuring linear acceleration and angular velocity.
The measurement data is used to estimate the 3D-pose and velocity of a maneuvering object, such as
an aircraft or satellite. There are several methods to integrate the inertial data and GNSS, such as loosely
coupled and tightly coupled integration. The integration is typically achieved by adapting a nonlinear
KF [14–16]. By preprocessing the nonlinearities of the problem, linear KFs represent a further option
for the sensor fusion problem [17].
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The sensor fusion problem discussed in this paper arises from the use of consumer-grade
IMUs for which sensor errors introduce a drift that needs to be compensated for by using different
measurement updates such as those given by vision based sensors [18] or GNSS receivers. The resulting
sensor fusion problem for inertial navigation has been addressed using traditional and advanced
approaches for Kalman filtering [17,19]. The observability of sensor parameters, such as biases
of the IMU, is strongly coupled to the motions of the system. Therefore, a unique solution to the
estimation problem cannot be guaranteed [20]. By considering a time window of measurement data,
the estimated solution is suggested to achieve improved accuracy and robustness [21]. Several MHE

formulations for sensor fusion in the context of inertial navigation have been published in the recent
past and have been shown to outperform traditional EKF approaches for the integration of GNSS and
IMU [22,23] and online-identification of IMU parameters [24]. Despite the different sets of sensors,
models and optimization methods, all authors present an accuracy improvement for a specific horizon
length compared to Kalman filtering. This paper contributes to the existing research by presenting a
general sensor fusion framework capable of analyzing moving horizon estimators over the spectrum
of filter-like configurations to batch processing. Furthermore, the estimated results are evaluated
against an accurate reference of a maneuvering aircraft that was obtained using high-grade sensors.
A detailed study of the influence of the horizon length on the quality of the solution is given and
critically analyzed.

This paper is organized as follows. First, in Section 2, we describe the relevant system and sensor
models to address the sensor fusion problem by the definition of an equality-constrained optimization
problem, which components are explained in detail. In Section 3, the presented approach is used
to estimate the trajectory of an aircraft, and the results are compared against an accurate reference
trajectory. Finally, the conclusions of this work are presented in Section 4.

2. Methods

Section 2 introduces the necessary coordinate frames to define the system and sensor models,
which will finally be used to derive the optimization problem of the MHE state estimator.

2.1. Coordinate Frames

The sensor fusion problem contains measured and estimated quantities expressed in several
coordinate frames (see Figure 2). The position measurements are obtained by the GNSS sensor in
the earth-centered, earth-fixed (ECEF) frame and often expressed in latitude, longitude, altitude (LLA).
The measurements are transformed to a locally-fixed and non-moving frame L following the east, north,
up (ENU) convention with its origin located at a reference location. Since the transformation between
global and local frame is constant over time, the measurements are converted to the local frame in
a preprocessing step. The measurements of the IMU are obtained in the sensor coordinate frame S,
which is moving with respect to the local frame L. Throughout this document, the notation ·L or ·S is
adopted to indicate measured or estimated variables according to the local or sensor frame, respectively.

Figure 2. The relevant navigation frames for the fusion of GNSS and IMU. The figure shows the fixed
frames (ECEF and L) and the free moving sensor frame S.
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2.2. System Model

A generic piecewise constant linear acceleration and angular velocity model are used to model
translational and rotational dynamics of the moving system. These models are widely used in the
target tracking community and can be reviewed in detail in, e.g., the survey of [25]. The ordinary
differential equations (ODEs) of the navigational states are defined by

ṗL(t) = vL(t), (1a)

v̇L(t) = aL(t), (1b)

q̇LS(t) = 1
2 qLS(t)�ωS

LS(t), (1c)

where the position pL(t) ∈ R3 and velocity vL(t) ∈ R3 are obtained by integration of the acceleration
aL(t) ∈ R3. The angular velocity ωS

LS ∈ R3 from the S-frame to the L-frame expressed in the S-frame
drives the ODE of the orientation, which is parametrized by a unit quaternion qLS(t) ∈ Q1 = {R4 :
‖q‖2 = 1} describing the orientation between the S and L-frame. The � operator is introduced

q� r := [−qv · r, q0r + qv × r] (2)

for the product of a vector r ∈ R3 and a quaternion q = (q0, qv) ∈ Q1 with q0 ∈ R and qv ∈ R3

being the scalar and vector part, respectively. The ODE Equations (1) of the system model lead to the
definition of the concatenated vector

xM(t) = [pL(t)T, vL(t)T, qLS(t)T]T, (3)

which contains the navigation states of the model and is therefore denoted by the index M.
The navigational states are driven by the piecewise constant control inputs

u(t) = [aL(t)T, ωS
LS(t)

T]T. (4)

2.3. Sensor Models

The sensors used for this estimation problem are a single GNSS receiver and an IMU which are both
rigidly attached to the moving system. The described sensor models relate the measured quantities
to the state and control variables defined accordingly in Equations (3) and (4). Section 2.2 defines a
continuous-time model; however, the sensors acquire the measurements at discrete times tk with a
sensor-specific measurement frequency fS. We define output functions for each sensor measurement,
which evaluate the continuous variables at the sampling times tk and establish the relation between
discrete measurements and estimated continuous state and control variables.

2.3.1. Inertial Measurement Unit

An IMU combines a three-axis accelerometer and a three-axis gyroscope in a single package.
The sensors can be based on different principles that define implicitly the accuracy of the sensor.
Due to the advances in micro-electro-mechanical system (MEMS) technology, the sensor modules can
be produced very cost efficiently on a single silicon chip. The MEMS accelerometer and gyroscope
are modeled in this paper using an additive bias term δS to compensate the time-varying offsets in
the average signal output of the sensor [26]. These biases δS

a ∈ R3 and δS
ω ∈ R3 are modeled as a

random walk using the device specific Allan variance [27]. To include the estimation of the bias terms,
we extend the state vector xM(t) as defined in Equation (3) to

x(t) = [xM(t)T, δS
a (t)

T, δS
ω(t)

T]T = [pL(t)T, vL(t)T, qLS(t)T, δS
a (t)

T, δS
ω(t)

T]T. (5)
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The bias terms are modeled as constants between consecutive sampling times tk and tk+1 of the sensor
exposing the lowest sampling rate fS leading to

δ̇S
a (t) = const, tk ≥ t > tk+1, (6a)

δ̇S
ω(t) = const, tk ≥ t > tk+1, (6b)

and the actual random walk is embedded inside the optimization problem by allowing discontinuities
according to the device specific random walk process noise.

The inertial quantities acceleration yS
a ∈ R3 and angular velocity yS

ω ∈ R3 are acquired by the
IMU at sampling rate fIMU � 100 Hz. The sampled IMU data is integrated between two consecutive
measurements of the slowest sensor, which is, in this specific problem, the GNSS receiver, and expressed
as motion increments [28]. The increments are converted to an average inertial measurement over
the interval [tk, tk+1], which directly translates to the piecewise constant control inputs defined in
Equation (4). The following output functions define the IMU measurements in terms of state and
control variables:

yS
a (x, u, tk) = R(qLS(tk)

−1
, aL(tk)− gL) + δS

a (tk), (7a)

y
S

ω(x, u, tk) = ωS
LS(tk) + δS

ω(tk), (7b)

where gL stands for the constant gravity vector in the L frame and R(q, r) denotes the rotation of a
vector r ∈ R3 by a unit quaternion q ∈ Q1.

2.3.2. GNSS Receiver

A GNSS receiver is used to retrieve position measurements based on pseudo ranges estimated
from satellite signals. The interested reader is referred to [29] for more information. A typical GNSS

receiver has an output frequency between 1 Hz and 10 Hz, at which the position measurements are
made available with respect to an earth fixed coordinate frame and converted to the local L frame as
described before in Section 2.1. The output function for position measurements at tk is defined by

yL
p(x, u, tk) = pL(tk), (8)

which relates the GNSS measurements directly to the state x(t). The position accuracy is estimated and
reported by the GNSS receiver and strongly depends on the signal and ambient conditions.

2.4. Optimization Problem

To define the optimization problem for the nonlinear sensor fusion of GNSS and IMU, we first
define the components of the cost function, the implicit integration method using direct collocation,
and the necessary equality constraints.

2.4.1. Measurement Residuals

The cost function of the optimal estimation problem is defined by the squared weighted sum of
residuals between the estimated output variables yk and the measurements ȳk at sampling times tk.
The cost terms for the position and inertial measurements are defined by

cp(x, u, tk) =
1
2

∥∥rp(x, u, tk)
∥∥2

Q−1
p

=
1
2

∥∥∥yL
p(x, u, tk)− ȳL

p,k

∥∥∥2

Q−1
p,k

, (9a)

ca(x, u, tk) =
1
2
‖ra(x, u, tk)‖2

Q−1
a

=
1
2

∥∥∥yS
a (x, u, tk)− ȳS

a,k

∥∥∥2

Q−1
a

, (9b)

cω(x, u, tk) =
1
2
‖rω(x, u, tk)‖2

Q−1
ω

=
1
2

∥∥∥yS
ω(x, u, tk)− ȳS

ω,k

∥∥∥2

Q−1
ω

, (9c)
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and evaluate the continuous output functions of IMU (7) and GNSS (8) at time tk. The residuals are
weighted according to the measurement noise variances using the diagonal matrices Q(·).

2.4.2. Direct Collocation

We use a direct collocation approach to embed the integration of the nonlinear dynamics inside
the optimization problem. Direct collocation is a strategy known from the field of direct optimal
control [30] that is based on the discretization of control and state trajectory, therefore lifting the
problem to higher dimensional space in comparison to traditional single shooting methods [31].
By embedding the numerical integration inside the optimization problem using collocation variables,
the need of an explicit call to an integrator vanishes. We decided to adopt direct collocation for the
presented sensor fusion problem because of the potential to decrease the number of iterations by
initializing the collocation variables well. The discretization of x(t) and u(t) at times t0:N leads to the
discrete sets of states X = {x0 . . . xN} and controls U = {u0 . . . uN−1}. While the control trajectory is
defined to be piecewise constant, the state trajectory is approximated using Lagrange polynomials P0:D
of degree D at Gauss–Radau collocation points τ ∈ RD [32]. Hence, the state trajectory is represented
by the sum of the weighted polynomials

x(tk+1) ≈ C(xk, ck, τ) =
M

∑
m=0

Nx

∑
n=0

ck,mnenPm(τ), ck,0 = xk, 0 > τ0:D > 1,

where the polynomial is scaled by the collocation variables ck ∈ RNx×D . The additional collocation
variables enter the optimization problem over the collocation states C = {c0 . . . cN−1} and increase
the number of decision variables. To retrieve a physically meaningful state trajectory, the collocation
variables require being constrained using the system dynamics. This is enforced by constraining
the derivative of the time-scaled polynomial at the collocation points τ1:D to the ODE of the system
ẋ(t) = f (x(t), u(t)) evaluated at the same point in time using equality constraints. We obtain D
equality constraints for each time interval [tk, tk+1] of duration T = tk+1 − tk defined by

∂

∂τ
Ck(xk, ck, τ)|τd T−1 = f (x(tk + τdT), uk), d = 1, . . . , D, k = 0, . . . , N − 1. (10)

The discretization of the state trajectory X = {x0 . . . xN} requires further equality constraints to
obtain a closed state trajectory. The continuity constraints,

ZMxk+1 = ZMC(xk, ck, τD), ZMx(t) = xM(t), τD = 1.0, k = 0, . . . , N − 1, (11)

constrain the next state to correspond to the propagated previous state. ZM ∈ RNx×Nx is defined as a
selection matrix for the system model states xM(t). The continuity constraint is exclusively applied to
the system states xM(t) as defined in Equation (3).

2.4.3. Random Walk

As described in Section 2.3, the biases are modeled by a random walk process. This behavior is
introduced by relaxing the continuity constraint

δk+1 ≈ δk, k = 0, . . . , N − 1, (12)

and defining additional cost terms

cδ(xk, uk, tk) =
1
2
‖Zδx(tk)− Zδx(tk−1)‖2

Q−1
δ

, k = 1, . . . , N, (13)
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where the difference between previous and current state is weighted according to the sensor’s random
walk process noise and minimized accordingly. The selection matrix Zδ ∈ R3×Nx is used to extract the
bias states from the state vector x(t).

2.5. MHE Estimator

The components of the optimization problem introduced in Section 2.4 are leading to the definition
of the following minimization problem for the MHE estimator

minimize
X , C,U

cA(xj) +
j+N

∑
k=j

[
cp(xk, uk, tk) + ca(xk, uk, tk) + cω(xk, uk, tk)

]
(14a)

+
j+N−1

∑
k=j

[cδa(xk, uk, tk) + cδω
(xk, uk, tk)] ,

subject to

ẋ(t) = f (x(t), u(t)), (14b)

Zqxj+N(Zqxj+N)
T = 1, (14c)

ZMxk+1 = ZMC(xk, ck, τ) k = j, . . . , N − 1, (14d)

∂

∂τ
Ck(xk, ck, τ)|τd T−1 = f (x(tk + τdT), uk) d = 1, . . . , D, k = j, . . . , N − 1, (14e)

where N ∈ N and T = tk+1 − tk define the horizon length and the sampling time. Since the quaternion
is an over-parametrization of a rotation, we have to guarantee that the estimated quaternions satisfy
the unit norm condition. The quaternion ODE of an orientation as defined in Equation (1c) preserves
the unit norm, allowing for adding a single unit norm constraint at the end of an estimation horizon.
The constraint (14c) is expressed using the selection matrix Zq for the quaternion entries of the state
vector xj+N .

The additional cost term in the objective function (14a) defines the arrival cost cA(xj),
which summarizes the history of measurements by penalizing deviations to previous estimates of
x(tj). The arrival cost is defined as a quadratic approximation of the Schur complement correction
and is calculated while marginalizing the system before shifting the horizon [33]. Depending on
the nonlinearity of the system, the approximation of the past by the arrival cost might be more or
less accurate. In an MHE approach, longer horizons can increase the information about the past by
considering more measurement data. The benefit of having a more information about the recent past
becomes negligible in cases where the approximation of the past by the arrival cost is already accurate,
and vice versa.

3. Experimental Results

3.1. Dataset

The MHE estimator described in Section 2 is used in the following to study the influence of the
horizon length N on the accuracy of the solution. The dataset used for evaluation has been recorded
during a flight with a small Socata single propulsion aircraft (see Figure 3a) flying different maneuvers
in hazy weather conditions. In the 100 s long data selection, the airplane completes two sharp turns
(see Figure 4), while reaching roll angles up to 60 deg.
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(a) Socata airplane (b) Sensors

Figure 3. Socata airplane and sensors used for data collection.
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Figure 4. Flight trajectory of airplane used for evaluation (recorded near Enschede, The Netherlands).

3.2. Sensor Setup

The complete sensor setup used for data collection contains two independent sets of sensors:
one for the estimation results and one to obtain the reference trajectory. Both sets use a GNSS receiver
and an IMU, which differ in their specifications. While the estimation setup includes exclusively
consumer-grade sensors, the reference setup uses higher-grade sensors.

To collect the data used for estimation, we used a Xsens MTi-G-700 [34] motion tracker which
combines an IMU and GNSS receiver in a single package. By sharing the same signal pipeline, the risk
of time synchronization errors between the independent sensors is reduced. The Allan variance curves
of the contained MEMS accelerometers and MEMS gyroscopes are plotted in Figure 5 and define the
noise density and bias stability of the sensor. The noise density is used to fill the weighting matrices
Q−1

ω and Q−1
a used in the cost functions (9b) and (9c). The GNSS receiver measures the position and

its accuracy at time tk. The latter is further used to fill the weighting matrix Q−1
p,k in Equation (9a).

The GNSS data ȳL
p,k was acquired at the maximum rate of 4 Hz and the IMU was configured to stream

motion increments, as described in Section 2.3 at an output frequency of 4 Hz. The further available
velocity measurements acquired by the GNSS receiver are not considered in this document.
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Figure 5. Allan variance curves for accelerometer and gyroscope of the Xsens MTi-700 used
for estimation.

Table 1 allows a direct comparison between the noise parameters of the sensors used for
estimation and reference. The iMAR-FSAS IMU [35] uses a tactical-grade fibre optic gyro (FOG) with
lower measurement noise compared to the consumer-grade MEMS gyroscopes used for estimation.
Furthermore accurate GNSS receivers were used in a differential GPS (DGPS) configuration allowing for
very precise positioning with errors below 0.1 m. To improve the accuracy of the ground truth trajectory
further, the acquired data of the reference sensors was fused using a batch processing approach [36].

Table 1. Sensor specifications for estimation and reference setup.

Estimation Reference

IMU MTi-G-700 iMAR-FSAS

Gyro Technology MEMS FOG

Gyro Rate Bias Repeatability [deg/s] 0.2 0.21× 10−3

Gyro Rate Bias Stability [deg/h] 10 < 0.1

Angular Random Walk [deg/
√

h] 0.6 0.16

Accelerometer Technology MEMS Servo

Accelerometer Bias Repeatability [mg] < 5 1.0

Accelerometer Bias Stability [µg] 40 < 10

Accelerometer Random Walk [µg/
√

Hz] 80 < 50

GNSS MTi-G-700 FlexPak-V2-RT2

Constellation GPS GPS + GLONASS

Bands L1 L1 + L2 (DGPS)

Accuracy [m] 2–4 0.1

max. Rate [Hz] 4 40

All sensor devices (Figure 3b) were rigidly attached to the airplane (Figure 3a). The sensor
frame S of the IMU was aligned with the body frame of the aircraft, which implies that no further
transformations were required to retrieve physically meaningful output for the navigation states
defined in Equation (3).

3.3. Algorithm Configuration

Crucial for every kind of nonlinear optimization is the initialization of the decision variables.
To initialize the states X and controls U , we first compute the initial orientation qLS

0 using the velocity
vector estimated from consecutive GNSS measurements, assuming the system obeys holonomic
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constraints and has sufficient speed. The measurements of GNSS receiver and IMU are used to initialize
position pL

0 and controls u(t0), respectively. The accelerometer and gyroscope biases are initialized
to zero. The resulting initial guess x(t0) (as defined in Equation (3)) and its corresponding standard
deviations are summarized in Table 2.

Table 2. Parameters of MHE algorithm defining the initial conditions.

Parameter Unit Value Standard Deviation

Position [m] ȳL
p,0 10

Velocity [m/s] d
dt ȳL

p,0 5

Orientation [deg] qLS
0 (pL

0 , vL
0 ) 8

Accelerometer Bias [m/s2] 0 0.05

Gyroscope Bias [deg/s−1] 0 0.5

3.4. Horizon Length Evaluation

To analyze the estimation accuracy depending on the horizon length N, the estimation is repeated
for different values N = {1, 2, 4, 8, 16, 20}. The horizon length N directly defines the number of
measurements NM = N and the number of decision variables

NDV = N(Nx + Nu + NxM D) + Nx (15)

contained in each MHE optimization problem, where Nx, Nu and NxM represent the dimensions of the
state and control vectors defined in Equations (3) and (4). The degree of the collocation polynomials D
defines implicitly the number of collocation variables used for the integration of the navigation states
and is set to D = 3 for this evaluation.

Figure 6 shows the estimated values for velocity and orientation as well as the calculated reference
values. For all configurations, the MHE estimator output follows the reference trajectory and no
major differences are observable. The plots reveal, however, that the estimation results recover faster
from an incorrect initialization with longer horizons and that, in general, larger horizons show an
improved tracking behavior of the reference trajectory. The evolution of the standard deviations of
position, velocity, and orientation for the evaluated horizons is plotted in Figure 7. The standard
deviations converge after the first turn to a steady state, which is determined by the measurement
noise. The turn maneuver results in sufficient excitation of the system to observe the orientation,
which is the only navigational state that is not directly related to the measurements of the sensors.
In Figure 8, we observe that the bias estimates are converging towards the same steady-state for all
evaluated horizons. Furthermore, the evolution of the bias standard deviations confirms the necessity
of motion changes to identify sensor parameters. The estimated biases converge only after finishing
the first turn at around 40 s to their corresponding steady state.
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Figure 6. Estimated state trajectories for the first 50 s of velocity and orientation for increasing horizons
N, compared to the reference trajectory ( ).
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Figure 7. Evolution of standard deviations of the time-lagged estimate of the navigation states: position,
velocity, and orientation with increasing horizons N.
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Figure 8. Time-lagged solution for bias values (x , y , z ) of accelerometer and gyroscope
and their corresponding standard deviations for different horizons N.

Before taking a closer look at the results for different horizons, we define two types of solutions:
the real-time solution represents the estimate of the most recent state in the horizon, whereas the
lagged solution represents the oldest state in the current window. In the latter case, the value of
the state estimate gets updated until it is not contained anymore in the window. Considering a
dataset with current data index j = 1, . . . , J of total length J, the lagged solution can be compared
to fixed-lag smoothing, maximizing the probability of p(xj−N |y1:j), whereas the real-time solution
corresponds to filtering approach estimating p(xj|y1:j). For completeness, we remind readers that
a typical batch processing approach estimates p(x0:J |y1:J). Even though both real-time and lagged
solutions contain more measurement data with increasing horizons, there are differences in their
interpretation. Both estimators contain an approximation of the past that is defined by the arrival cost
cA(xj) in Equation (14a). While the lagged version evaluates the first state in the window, the real-time
version estimates the last state in the window, which time is defined by the latest measurement at time
tj. From a time perspective, this means that the lagged version contains information about its past and
future, whereas the real-time problem only contains information about its past.

A comparison between real-time and lagged solutions for different horizon lengths is given in
Figure 9. A noticeable decrease in terms root mean square error (RMSE) with increasing horizons can
only be observed for the lagged solution. The accuracy of the lagged solution converges towards the
solution of the batch estimator (dotted lines), which can be interpreted as a locally optimal solution
since all measurement data is contained in the optimization problem, allowing the removal of start-up
effects due to the initialization of the algorithm.
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Figure 9. Evaluation of RMSEs for real-time ( ) and lagged ( ) MHE estimators over an increasing
horizon length N compared to the batch estimation results ( ).

In terms of error quantities, we observe relatively large RMSEs for the position estimate, ranging up
to 3.5 m in the z-direction. The batch solution confirms this large error of 3.1 m, which allows the
conclusion that the error is not coupled to start-up effects or initialization errors but rather a systematic
offset between the sensor setups. Table 1 shows that the GNSS receiver, used in the reference setup,
operates on the L1/L2-band, which improves position accuracy and especially the altitude estimate
compared to a single L1-band GNSS receiver as used for estimation.

The orientation estimate reveals error reductions for roll φ and pitch θ angles with increasing
horizon length. The yaw angle ψ reveals the largest RMSE, which is an expected behavior due to limited
system dynamics contained in the dataset. The 100 s long flight is not subject to larger changes in
pitch or strong accelerations in the xy-plane, which contributes to the challenging conditions for the
estimation of the yaw angle in the presence of sensor biases. The consequence of a lack of excitation can
be further observed in the bias estimates and their standard deviations in Figure 8. The initial jumps of
the bias estimates reveal that the biases are not observable under constant motion. After completion
of the first turn, the biases in x- and y-directions become observable and the values converge to their
corresponding steady state.

Coming back to Figure 9, we notice that only the lagged MHE solution (solid lines) achieves
major RMSE improvements in position, velocity, and orientation with an increasing horizon length
N. The real-time solution does hardly improve by considering a bigger horizon in comparison to the
filter solution, where N = 1. The evaluated sensor fusion problem exposes a close to linear behavior,
which can be approximated well by an arrival cost. Therefore, only small improvements can be
achieved by considering a longer window and, therefore, a more detailed representation of the recent
past for the real-time solution.

The nearly linear behavior of the regarded problem is further proven by restricting the
optimization algorithm to a maximum number of one iteration [37]. This configuration achieves
a KF-like algorithm where only a single linearization of the system is calculated. Analyzing the solution
in Figure 10 for the RMSEs in orientation, we notice no visible difference between the single-iteration
and the iterated solution that satisfies the exit condition, even though the converged solutions will
naturally preserve constraints more accurately.
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Figure 10. RMSE error in orientation for a different number of iterations I = {1, 10}. The lagged
solutions are plotted on the left (A) and the real-time solutions on the right (B).

4. Discussion

The presented MHE approach for multi-sensor fusion allows a mathematically elegant formulation
in a single optimization problem where cost functions and constraints are recursively adapted with the
availability of new measurement data. We introduced the modules of the framework by applying it to
the commonly known sensor fusion problem of GNSS receiver and IMU and evaluated the accuracy
of the solution on a real flight dataset in comparison to an accurate reference trajectory for different
horizon lengths N = {1, 2, 4, 8, 16, 20}. Major improvements for the navigation states position, velocity,
and orientation in terms of RMSEs can be achieved when considering either the time-lagged or the
batch estimates. With an increasing horizon, the RMSEs decrease and errors approach the results of the
post-processed batch solution. For the real-time solution, which estimates the state at the most recent
measurement, the performance is only slightly better than the filter solution, corresponding to N = 1.

These findings coincide with relevant research [21], where MHE is suggested to improve
consistently the accuracy of the estimates at the price of a higher computational cost. In general,
it can be said that if applications allow for a time-lagged estimate, the results will be more accurate
considering larger horizons. This makes the time-lagged implementation of a MHE-based estimator a
versatile approach for systems with slow dynamics and represents an alternative for memory-restrictive
offline processing. For real-time critical applications which are governed by nearly linear equations,
the accuracy of the state estimates does hardly benefit from the nonlinear optimization approach
resulting in a comparable accuracy to filter solutions. The nearly linear behavior of the specific sensor
fusion problem was confirmed by evaluating an EKF-like configuration of the MHE estimator using a
real-time iteration scheme [37] with a single iteration and a horizon of N = 1 yielding similar results
in terms of RMSEs. Notice, the considered sensor fusion problem of IMU and GNSS receiver can be
considered a linear estimation problem when conditioned on orientation, i.e., the optimization problem
reduces to linear system if the orientation trajectory is known a priori.

The presented optimization-based framework for sensor fusion allows a seamless and detailed
evaluation of filter, MHE, and batch solutions by adapting the horizon length N. The modular structure
contains several key features which we aim to exploit in further research. By encoding the system
dynamics in a single set of ODEs, the framework can be adjusted to consider more complex system
kinematics in a straightforward manner. Additional measurement updates from further sensors can
be included by manipulation of the cost function of the optimization problem. When increasing
the number of sensors, the calculation of a common time-grid becomes nontrivial. The presented
framework is prepared to account for asynchronous measurements by estimating time-continuous state
trajectories using a direct collocation approach. The adaptivity of a MHE-based approach for sensor
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fusion is one major advantage compared to traditional filter schemes and combined with efficient
numerical solvers MHE is likely to be beneficial for many challenging applications.

The problem of motion tracking does not classify as nearly-linear problem in the general case.
By considering measurements of relative distance sensors, such as ultra-wideband (UWB), time of flight
(TOF) or camera sensors, the sensor models become strongly nonlinear. Therefore an MHE approach
with the appropriate optimization strategy is expected to improve the real-time estimates as well.
For the future, we plan to extend the presented sensor fusion approach of GNSS and IMU to include
the full calibration of the sensors, which will increase the nonlinearity of the optimization problem
and MHE is expected to outperform conventional filter techniques. The identification of parameters
like scale factors, misalignment or time delays will improve the accuracy when using uncalibrated
consumer-grade sensors.
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