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Abstract: Infrared thermography offers significant advantages in monitoring the temperature of
objects over time, but crucial aspects need to be addressed. Movements between the infrared
camera and the inspected material seriously affect the accuracy of the calculated temperature.
These movements can be the consequence of solid objects that are moved, molten metal poured,
material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring
the temperature of material in these scenarios. In this work both real movements and vibrations
are treated equally, proposing a unified solution for both problems. The three key steps of
the proposed procedure are image rectification, motion estimation and motion compensation.
Image rectification calculates a front-parallel projection of the image that simplifies the estimation and
compensation of the movement. Motion estimation describes the movement using a mathematical
model, and estimates the coefficients using robust methods adapted to infrared images. Motion is
finally compensated for in order to produce the correct temperature time history of the monitored
material regardless of the movement. The result is a robust sensor for temperature of moving
material that can also be used to measure the speed of the material. Different experiments are
carried out to validate the proposed method in laboratory and real environments. Results show
excellent performance.
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1. Introduction

Temperature is one of the most measured physical properties. It describes the average kinetic
energy of the molecules and atoms that make up a substance. Temperature provides information
about the internal energy of an object, thus measurement, monitoring and control are crucial in most
industrial processes.

Many different types of temperature sensors have been developed [1]. However, the most
common are based on four different technologies: mechanical, electrical, ultrasonic and infrared.
Most mechanical sensors are based on the volume of a fluid that changes with temperature.
Mercury and alcohol are commonly used, although mercury based sensors are not sold any more
due the toxicity and potentially harmful effects from broken thermometers. Electrical sensors are
mostly thermocouples or thermoresistors. Thermocouples contain a junction of two dissimilar
metal wires where voltage varies with temperature. Thermoresistors are made of semiconductors
where the resistance varies rapidly and predictably with temperature. Ultrasonic sensors generate
an ultrasonic wave and measure temperature based on the variation in the speed of propagation.
Infrared sensors are based on the infrared radiation emitted by objects, which is mainly a function of
their temperature.
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Temperature sensors based on infrared thermography have many advantages over other types
of sensors [2]. Infrared sensors are non-contact, thus they do not intrude upon the measurement.
Moreover, they can measure the temperature of extremely hot objects. These sensors are also very
fast, producing temperature readings in microseconds. They can also be grouped in an array of
sensors called a focal plane array, in which each sensor provides information about the radiation at
a single point, combining to produce a 2D thermal image. These advantages make sensors based on
infrared thermography extremely useful in many different applications, such as electrical inspection [3],
mechanical inspection [4], non-destructive testing [5], building inspection [6], industrial processes
monitoring [7], medicine [8], cultural heritage diagnostics [9] or even pest detection [10].

Monitoring temperature using 2D thermal images equipped with infrared cameras means
measurements can be taken at different areas of the scene simultaneously [2]. Moreover, these
devices are able to acquire images at very high frame rates. Consequently, the temperature time
history in these areas can be recorded and analyzed. This approach is commonly used in many
different applications. For example, in [11] the temperature time history of pig iron is monitored while
it is being poured. Analyzing the temperature time history is especially important for non-destructive
testing applications. In these applications, objects are thermally stimulated to induce contrast between
regions of interest [5]. The temperature time history at each point describes the thermal propagation of
the external stimulation. Subsurface anomalies produce thermal variations during heating or cooling
which sound areas do not. Hence, the analysis of the temperature time history can be used to detect
thermal contrast, i.e., defects.

Under controlled conditions where the position of the camera does not change relative to
the monitored object, the analysis of the temperature time history at different positions consists
of the selection of different pixels, or an area of pixels, in the image. The intensity value of
these pixels, or the average intensity if an area is selected, is calculated from the sequence of
images, providing the required temperature time history. However, in many different environments
measurements are affected by vibrations [12], which can be described as periodic or random motion
from an equilibrium position. Vibrations can affect the camera or the monitored object. In either
case, the selected position in the image will not correspond to the same area of the monitored
object in consecutive images, which invalidates the calculation of the temperature time history.
A different scenario, but with similar consequences is when the monitored object or material is
moving. Again, a static selection of points in the image cannot be used to calculate the temperature
time history of the regions of interest.

The compensation for unwanted camera motion, generally called image stabilization has been
widely studied with visible images [13–15]. However, in the case of infrared images research works
is scarce, and generally focused on particular applications. In [16], the authors propose an image
stabilization algorithm for infrared images based on the 2D Fourier Transform. In this case, the problem
is focused on the analysis of the temperature distribution in biomedical applications, where motion
appears because patients move due to breathing, pulse and other voluntary and involuntary reactions.
In [17] a similar approach is applied to compensate for vibrations in online welding monitoring.
In this case, a combination of point tracking and direct phase substitution is used. Both works
assume that vibrations only provoke slight movements of the camera relative to the inspected object.
Moreover, they do not consider the problem of temperature monitoring when the object is really
moving, i.e., when the position of the region of interest in the image also changes because the object
is moving, not just affected by vibrations.

Vibration control and compensation is an active research field with numerous developments [18,19].
Mechanical sensors include different components to compensate for vibrations. Generally, a sensor
measures the vibrations using an accelerometer. Then, the resulting signal is transformed so that
different actuators can generate movements that compensate for the detected vibrations. Digital sensors
use the acquired images to extract features that can be used to detect the vibrations. Then, they transform
subsequent images to compensate for the movements.
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In this work, a general solution is proposed for the problem of temperature monitoring of moving
material. The proposed procedure includes tracking. Therefore, not only the image stabilization
problem is solved, but also the calculation of the temperature time history of moving material.
Both vibrations and movement are treated equally. The solution to these problems is unified
in a single method composed of three steps: image rectification, motion estimation and motion
compensation. Image rectification calculates a transformed image with a front-parallel projection
where measurements in real-world units (mm), rather than pixels, can be carried out. Assuming all
points of interest lie on the same plane, then motion can be described accurately using a 2D rigid body
transformation. This approach greatly simplifies the mathematical model used to describe motion
and also the compensation. Motion is estimated using a combination of feature detection applied
to the rectified images and robust model estimation. The proposed method is evaluated in different
applications in laboratory experiments and also in real industrial environments.

The main contribution of this paper is the proposal of a new sensor for temperature of
moving objects. The sensor is based on infrared thermography, and keeps track of the movements
between the infrared camera and the material to calculate the temperature time history accurately.
Processing infrared images is a challenging task because standard algorithms do not provide good
results. Therefore, specific procedures are proposed. The proposed solution can also be applied to
measurement scenarios where the camera or the inspected object are affected by vibrations. This work
includes camera calibration, therefore, it produces the correct temperature time history using a simple
yet accurate linear mathematical model. Moreover, the real speed of the material can be calculated
at any point in time. The intelligent sensor proposed in this work can provide accurate readings
regardless of the movement. Excellent performance is obtained in terms of accuracy and robustness.

Including the compensation for the movement of the monitored material using rectified images
present a novel approach to solve the considered problem. It provides not only a very accurate
method to model motion but also a robust method to measure the speed of the material. This provides
a major advantage when designing a sensor that needs to provide accurate information about a signal,
temperature in this case, of a material that is moving at variable speed. Moreover, it can also be used to
detect when the material is moved or stopped, which can be key to detecting abnormal measurement
patterns correctly.

The remainder of this paper is organized as follows. Section 2 presents the proposed approach for
temperature monitoring; Section 3 discusses the results obtained with real data; and finally, Section 4
reports conclusions.

2. Monitoring Procedure

The temperature monitoring procedure proposed in this work first acquires the images using
an infrared camera. Images are rectified to calculate a front-parallel projection, removing perspective
distortion. This step requires the estimation of the camera projection parameters. The proposed
method is based on the extraction of the contour of the inspected object and an iterative approximation
to the reference shape. Next, motion estimation and compensation is applied to the rectified
images. This requires a preprocessing procedure to enhance the contrast in the images. Features are
extracted from these enhanced images and used to estimate the movement model robustly. Finally,
the temperature time history of the inspected object is calculated. The following sections describe
the details of these steps. Figure 1 shows a summary of the steps.

2.1. Image Acquisition

The first required step in order to monitor the temperature is the acquisition of the infrared
images. The images are acquired using an infrared camera. These devices measure infrared radiation
in a particular wavelength, typically from 8 to 12 µm, or from 2 to 5 µm. The measured infrared
radiation is converted into temperature based on the properties of the inspected material, including
the emissivity, and the conditions in which the image was acquired, including reflected temperature,
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ambient temperature, distance, or relative humidity. The accuracy of the calculated temperature values
is greatly affected by errors in the estimation of these parameters.
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Figure 1. Summary of the proposed approach.

The most common cameras used to acquire infrared images in industrial applications
are long-wavelength infrared cameras based on uncooled microbolometers that operate in the range
from 8 to 12 µm. They do not require cooling. However, the acquisition rate is low compared with
high-end mid-wavelength infrared cameras that operate in the range from 2 to 5 µm. These cameras
are usually based on cooled semiconductor detectors that provide much better temperature resolution
and higher speed, but they are also more expensive and require more maintenance. Thus, both camera
types have their advantages and disadvantages. In the case of fast moving objects, the proposed
procedure would require high-end cameras to operate correctly and avoid blurred images. However,
the proposed monitoring procedure can be applied using any type of camera.

Vibrations or camera motion cause not only a shifting of the monitored object in the image, they
can also cause blurring of the image. Cooled cameras require short integration times (around 1 to
1.5 ms at room temperature). However, a microbolometer detector usually requires an integration
time ten times higher. Therefore, depending on the speed of the movement between the camera and
monitored object, motion blurring could appear in the acquired images. This work does not deal with
this issue. It is assumed that moving objects are exposed sharply and edges can be detected accurately,
either because objects move slowly or because a high-end camera based on cooled semiconductor
detectors is used. In case motion blurring cannot be avoided, motion deblurring should be applied
to the images before applying the proposed procedure. This issue is studied with detail in [20] for
visual images. Reference [21] proposes a procedure for motion deblurring of infrared images from
a microbolometer camera.

2.2. Image Rectification

In this work image rectification is used to calculate a front-parallel projection of the images that can
be used to estimate the motion between images accurately. Image rectification requires an estimation
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of the parameters that control camera projection. These parameters can be classified as extrinsic or
intrinsic camera parameters.

Extrinsic parameters control the transformation of points in world coordinates to points in camera
coordinates, and include three rotations and three translations. This transformation can be expressed
as (1).

Text =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (1)

Intrinsic parameters determine the projection of points from camera coordinates to pixels
in the image, and include the focal length ( f ), the size of the pixels (width and height: Sx and Sy),
and the position of the central pixel (Cx and Cy). This projection can be described as the combination
of a perspective projection from 3D to 2D, expressed as (2), and a 2D affine transformation,
expressed as (3).

Tproj =
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0 f 0 0
0 0 1 0

 (2)
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 (3)

The transformation of a 3D point P = (xw, yw, zw)T in world coordinates into a 2D point
p = (r, c)T in pixel coordinates can be expressed as (4), where r and c stand for pixel row and column
in the image.

p = Ta f f TprojTextP

(
r
c

)
=


1

Sx
0 Cx

0 1
Sy

Cy

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




xw

yw

zw

1

 (4)

In order to estimate the optimal values for the projection camera parameters, observations of
a known target are required. Feature extraction from the images provides the position of known
reference points in the calibration target. The parameters of the camera projection model are then
estimated by using direct or iterative methods based on this set of reference points. This approach
for the estimation of the camera parameters requires calibration targets with features of known
dimensions. In visible cameras, accurate calibration targets can be accurately printed using off-the-shelf
printers. However, infrared cameras require calibration targets with distinguishable features in terms
of infrared radiation.

A recent work on infrared camera calibration estimates the projection parameters in (4) without
using specific calibration targets [22]. In this work the projection parameters are estimated with
iterative approximations based on the position of the edges in the image, which represent a great
advantage for infrared image because objects of interest in infrared images can be easily distinguished
from the environment due to temperature differences. This procedure does not consider distortions,
but provides accuracy acceptable for common infrared applications. This method is easy to apply, and
it does not require specific calibration targets because it is based on information that can be extracted
from objects in the image. Moreover, it can be applied from only one image of a known object.
Therefore, this is the method used to estimate camera projection parameters in this work.

The considered rectification procedure assumes that the area where the measurement is performed
is flat. Therefore, the extracted points from the images lie on the same plane. This plane, the measurement
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plane, appears in many different applications where infrared thermography is used, such as building
inspection or non-destructive testing where the inspected specimens are usually flat. Considering this
plane Z = 0 then all world points have a zw equal to zero. Thus, (4) can be expressed as (5). c
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1
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(5)

The iterative method proposed to estimate the coefficients of H requires a coarse estimation of
the coefficients. The initial coarse estimation of the intrinsic parameters is provided by the manufacturer
of the particular camera used (focal length, detector pitch and IR resolution). The initial estimation
of the extrinsic parameters consists of the estimation of the displacement (vertical, horizontal and
distance) and rotation (pan, tilt and roll) of the measurement plane relative to the camera.

The estimation of the projection parameters continues from the coarse estimation of H. A contour
of the inspected object is extracted from the image and transformed into world coordinates using
H−1. The proposed method to extract the contour of the inspected object is the Canny edge
detector [23]. Then, correspondences are estimated by computing the closest points from the model
to the object after applying the transformation to world coordinates. Incorrect correspondences bias
the procedure, thus they must be filtered using robust statistics. The final step is the estimation of
a homography using the correspondences. The procedure is repeated until convergence is reached.
In each iteration the distance from the extracted contour to the real shape of the object is reduced.
The result is a homography that describes the projection parameters accurately. This transformation
can be directly applied to the original infrared image in order to obtain the rectified image
in world coordinates.

In order to illustrate this procedure, a solid object is manually moved while temperature
monitoring is performed. The goal is to measure the temperature in a particular location regardless
of the movement. This experiment simulates the temperature monitoring of material that is moved,
for example hot metal stones on a conveyor belt, or affected by vibrations. Next section will extend
the tests with images acquired in real environments. In this example, a test piece made up of metal
is used. The dimensions of the test piece are 300 mm × 199 mm × 5 mm. A visible image of the test
piece can be seen in Figure 2. The test piece is placed on a hot plate (electric griddle), which is at 150 ◦C
approximately. The experiment is performed when the test piece is around 100 ◦C.

Figure 2. Visible spectrum image of the test piece.

An infrared image of the test piece placed on the hot plate can be seen in Figure 3a. This image
is the first of a sequence of images acquired while the test piece is moved within the measurement
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plane to simulate movements of the material or vibrations. A piece of electrical tape is stuck on
the surface for later tests. The temperature of the electrical tape is nearly identical to the underlying
test piece and it is used for temperature monitoring. The electrical tape can be clearly distinguished
in the images because the emissivity of the tape is higher than the emissivity of the surface of the metal
test piece. Therefore, at the same temperature it emits more infrared radiation.

In order to extract the contour of the test piece, an edge detector is applied to the image.
The result can be seen in Figure 3b. The extracted contour in Figure 3c is used for the estimation of
the projection parameters.

(a) (b) (c)

Figure 3. Test piece used to illustrate the rectification procedure. (a) Infrared image of the heated test
piece; (b) Edges in the image; (c) Extracted contour of the objects in the image.

The infrared camera used in this experiment is a FLIR T450sc (FLIR Systems, Wilsonville, OR,
USA). The manufacturer provides information that can be used to obtain a coarse estimation of the
projection parameters: 18 mm focal length, 25 µm detector pitch and 320 × 240 image resolution.
For the initial values of the extrinsic parameters the following values are roughly estimated: 3◦ pan,
54◦ tilt, 180 mm and 180 mm horizontal and vertical displacements, and 1200 mm distance. This camera
can acquire raw infrared images, and lossless videos. Therefore, the images used in the tests are not
corrupted by noise, for example due to JPEG compression. The technical specifications of this camera
are given in Table 1.

Table 1. Technical specifications of the infrared camera FLIR T450sc used in the experiments.

Camera FLIR T450sc
Temperature range −20 to +120 ◦C

Thermal sensitivity/NETD 30 mK at 30 ◦C
Detector 320 × 240 Uncooled Focal Plane Array (UFPA)

Spectral range 7.5 − 13 µm
Image frequency 60 Hz
Spatial resolution 1.36 mrad

Field of view (FOV) 25◦ × 19◦

Detector pitch (µm) 25

The initial values of the projection parameters are used to transform the extracted contour to
world coordinates. The result can be seen in Figure 4a. The shape of the inspected object (test piece
is 300 mm × 199 mm) is included in the figure. As can be seen, the transformation of the extracted
contour does not match the real shape of the object, as it is only an approximation.

The fine estimation of the projection parameters is carried out by minimizing the distance from
the extracted contour in world units to the real shape of the object. The procedure runs iteratively until
convergence. In each iteration the approximation improves, that is, the estimation of the projection
parameters is more accurate. Figure 4b shows the results after 5 iterations. Figure 4c shows the results
when convergence is reached, where an accurate estimation of the projection parameters is obtained.
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Figure 4. Iterative estimation of the projection parameters. (a) Initial estimation; (b) Iteration 5;
(c) Final iteration.

Not all the points in the extracted contour produce valid correspondences. As can be seen
in Figure 4, the edges of the base plate are not part of the shape of the test piece. Therefore, these points
are discarded [24].

The final valid correspondences are used to accurately estimate the projection parameters, that is,
the homography that describes the projection of points from world coordinates to image coordinates,
and vice versa. The estimated homography is used to rectify the infrared image. In this procedure the
image is interpolated according to a rectangular grid in order to calculate a front-parallel projection of
the image using the projection parameters described in the homography. This procedure is generally
available in most image processing packages as a projective transformation of an image [25]. The result
can be seen in Figure 5, where an image with pixel coordinates is transformed into an image with
a front-parallel projection in real-world units. The coordinates of the image in Figure 5b are real-world
units. Thus, useful geometric information can be easily extracted from the image.
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Figure 5. Result of the image rectification procedure. (a) Original image; (b) Rectified image.

2.3. Motion Estimation

Motion estimation is required to compensate for the movement of the monitored material
in the sequence of images. This movement must be described with a mathematical model. Therefore,
motion estimation requires the estimation of the values of the mathematical model. Once the model
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is estimated, it can be used to compensate for the movement of the object, by applying the inverse
transformation to the objects that have moved in the image.

2.3.1. Mathematical Model

Modeling the movement between two images is complex, as an image provides a 2D
representation of a 3D scene. However, rectified images provide a major advantage in this aspect
as pixels represent world coordinates in the measurement plane. This way, the mathematical model
required to describe movement is greatly simplified, yet accurate and complete. In a rectified image,
the movements of the objects is 2D. Thus, it can be modeled using a 2D rigid transformation.
This transformation has three coefficients: the rotation angle θ; and the horizontal and vertical
translations: tx and ty. This transformation can be expressed as (6).

M =

 cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty

0 0 1

 (6)

Working with rectified images has many advantages. One of them is that the model of
the movement is very simple.

2.3.2. Feature Detection

This step detects salient and distinctive features from the images. Features must be distributed
over the image. Also, the same features must be efficiently detectable in consecutive images. The goal
is to find matching features between consecutive images, that is, a feature that identifies the same
point in the scene in the two images. Generally, these features are detected from distinctive locations
in the images, such as region corners or line intersections.

Feature detection includes two parts: the detection of the points of interest, and the description of
these points. Points of interest in the image are stable and repeatable positions in the image. In visible
images, these points can correspond to corners. A vector of features is calculated then for each of
these points. These features include derivatives, or moment invariants. One of the most used method
for feature detection is SURF (Speeded Up Robust Features) [26]. This method is based on Hessian
detectors and use the Haar wavelet to calculate the features of the detected points.

SURF does not provide good results using raw infrared images because in most cases the contrast
in the region of interest is not enough to detect the features required to estimate movement. Moreover,
when the image contains information about the moving material but also about non-moving objects,
such as the background, features can also be detected in non-moving areas. This mixture of features
cannot be used to estimate movement. Therefore, a preprocessing stage is proposed.

The first step of the preprocessing stage is to extract the region of interest from the image, that is,
the part where the moving material is located. This step is application dependent, but can be carried
out in most cases using thresholding techniques [27]. The moving material inspected using infrared
thermography usually has a different temperature from the rest of the image. Thus, thresholding
the image based on the temperature level is an effective solution that works for most applications.
The example presented in Figure 3 is slightly different because in the image three parts can be
distinguished based on temperature: the background, the hot plate and the test piece. In this case an
effective approach is to apply thresholding twice: a first thresholding to distinguish the plate and the
test piece from the background, and then a second thresholding applied only to the extracted region in
the first thresholding to distinguish the plate from the test piece.

The second step of the preprocessing stage is the enhancement of the contrast in the image.
This step enables SURF to extract meaningful features from the region of interest in the image.
Applying SURF to the raw image can result in a low number of features focused on the corners
of the material that do not provide the required information to estimate movement correctly. One of
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the most common methods to enhance contrast in images is a method known as CLAHE (Contrast
Limited Adaptive Histogram Equalization) [28]. This is the proposed method for contrast enhancement
in this work.

Figure 6 shows the results of the feature detection procedure for the test piece used in the
previous example. Figure 6b shows the results of the first thresholding, where a region that includes
the hot plate and the test piece is obtained. This first thresholding is applied to distinguish the hot
plate and the test piece from the background. The result is a binary image, where the white part
represents the foreground and the black part the background that is ignored in next steps. The results
of the second thresholding are shown in Figure 6c. In this case, the obtained regions distinguish the test
piece from the plate. The white area in this image represent the region of interest for the considered
problem: the region in the image where the test piece is located. Using this region in the original
image in Figure 6a produces the result shown in Figure 6d. This image is obtained by multiplying
the images in Figure 6a,c (in some references this is described as the application of the and logical
operator to the images). Figure 6e shows the result of the next step in the preprocessing: contrast
enhancement using CLAHE. The resulting image can now be used to detect the features required to
estimate the movement. The location of the features for the example can be seen in Figure 6f.

(a) (b) (c)

(d) (e) (f)

Figure 6. Result of the feature detection procedure. (a) Rectified image; (b) Region extracted after
the first thresholding; (c) Region extracted after the second thresholding; (d) Extracted object of interest;
(e) Contrast enhancement of the image for the object of interest; (f) Location of the detected features.

As can be seen in Figure 6f, some features are located outside the boundary of the test piece.
This is because features are calculated based on derivatives that use windows of pixels around the pixel
in which the derivative is calculated. Cropping the image around the test piece would solve this
problem, but some interesting features in the corners could be missed.
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2.3.3. Feature Matching

Feature matching looks for correspondences between two set of features. Features from the two
considered images are compared and linked by minimizing the sum of squared differences. The result
is a set of possible correspondences, in most cases containing outliers.

Figure 7 shows an example of feature matching. In this example a second image of the same test
piece acquired later is shown. When the second image is acquired the test piece is slightly moved to
the left and upwards. The movement of the test piece is performed within the measurement plane,
thus, the same projection parameters are used to rectify the second image. The feature detection
procedure is applied to the two images, including preprocessing and enhancement. The results
are shown in Figure 7a,b. The goal of the feature matching procedure is to find the corresponding
features between the two images. The initial result of the feature matching procedure can be seen
in Figure 7c. A line connects the matched features between the two images. They also indicate
the estimated movement, from the crosses to the circles. The initial result includes many outliers that
do not provide the correct information about the movement of the test piece. Ideally, all the matched
features should identify the same movement. Part of these outliers can be removed using heuristics.
For example, distances between feature vectors can be sorted. Then, only a percentage of the closest
distances can be selected as valid in order to reject ambiguous matches. Multiple features in the first
image matching the same feature in the second image can also be removed to reduce the number of
outliers. Using these two heuristics, the result of the feature matching procedure reduces the number
of outliers, as can be seen in Figure 7d. However, no heuristic can guarantee there will not be outliers
in the result of the matching. In the example, there are still clearly visible outliers.

(a) (b)

(c) (d)

Figure 7. Result of the feature matching procedure. (a) Features from the first image; (b) Features
from the second image; (c) Results of the feature matching; (d) Results of the feature matching
using heuristics.

When using infrared images, features can also change with time due to temperature differences
that can diminish due to heat diffusion. Therefore it is not possible to find matching features between
images acquired at distant time periods. In this work feature matching is applied between images
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acquired consecutively, where the features are expected to remain constant. However, temperature
differences could generate some outliers that need to be considered for the model estimation.

2.3.4. Model Estimation

The movement model is described using a 2D rigid transformation. The coefficients of this model
must be estimated using the result of the feature matching procedure: a set of point correspondences.
These correspondences provide information about the movement of the material in the image. In this
work, the method used to estimate a rigid transformation is a fast 2D method [29].

Considering a set of n points P = {p1, p2, . . . , pn}, and Q = {q1, q2, . . . , qn} in R2,
where pi = (pix, piy)

T and qi = (qix, qiy)
T represents the 2D coordinates of the i-th point in P and

Q, the rigid transformation that maps P into Q can be described as (7), where R is the rotation and
t the translation.

Q = PR + t (7)

Solving (7) requires minimizing E, which is obtained using the least squares error criterion and
can be defined as (8).

E =
n

∑
i=1
|Q − PR− t|2 (8)

The value of t that minimizes E must satisfy (9).

0 =
∂E
∂t

= −2
n

∑
i=1
|Q − PR− t| (9)

Therefore, t can be calculated using (10), where p̄ and q̄ are the centroids of P and Q

t = q̄− Rp̄ (10)

Substituting the centered points P z = {pz
1 = p1 − p̄, pz

2 = p2 − p̄, . . . , pz
n = pn − p̄}, and

Qz = {qz
1 = q1 − q̄, qz

2 = q2 − q̄, . . . , qz
n = qn − q̄} in (8) yields (11).

E =
n

∑
i=1
|Qz −P zR|2 (11)

The angle of rotation θ defines the rotation matrix. The rotation of point pz
i using this angle is (12).

Rpz
i =

(
cos(θ)pz

ix − sin(θ)pz
iy

sin(θ)pz
ix + cos(θ)pz

iy

)
(12)

Substituting (12) in (11) gives an equation where E only depends on θ. Solving for θ results in (13).

θ = tan−1


n
∑

i=1
(pz

ixqz
iy − pz

iyqz
ix)

n
∑

i=1
(pz

ixqz
ix + pz

iyqz
iy)

 (13)

In order to calculate the translation t, the value of R must be substituted in (10).
The method used to estimate the rigid transformation between correspondences should only

be applied when there are no outliers in the data. Correspondence outliers would lead to major errors
in the resulting estimated transformation. Therefore, the method to estimate the rigid transformation
cannot be applied to the matched features directly.

The proposed solution for the estimation of the rigid transformation using noisy correspondences
is MLESAC [30]. This robust estimator is an enhanced version of the Random Sample Consensus
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(RANSAC) algorithm [31], widely applied to estimate mathematical models robustly. The algorithm
randomly samples the available correspondences and estimates rigid transformations using
the previously described method. Not all point correspondences are used, just the strictly required
number to estimate the rigid transformation. Among all the putative solutions, the solution that
maximizes the likelihood is chosen.

Figure 8 shows the results of the motion estimation procedure for the considered example. As can
be seen in Figure 8a, only some of the correspondences in Figure 7d are truly considered for the robust
estimation of the movement model. The final result represented in Figure 8b is an accurate estimation
of the movement in the test piece between the two images. The result of the robust estimation of
the movement is a 2D rigid transformation that perfectly describes the movement of the material
in the measurement plane.

(a) (b)

Figure 8. Result of the motion estimation procedure. (a) Results of the feature matching after the robust
model estimation; (b) Estimation of the movement (arrows are not to scale).

2.4. Motion Compensation

Motion compensation can be applied in two equivalent ways. The first possible approach is to
move the pixels in the second image according to the inverse of the estimated movement. This approach
requires image reinterpolation.

Figure 9 shows an illustration of the image reinterpolation approach. The first row of images
shows the raw infrared images acquired while the test piece is moved. In the first image (Figure 9a),
a circular measurement region is established on the electrical tape stuck on the test piece. As expected,
while the test piece is moved the position of the measurement region misses the location of the center
of the tape. The second row in the figure shows the images after motion compensation. In this
case, the circular measurement region always stays at the same position relative to the electrical tape,
regardless of the movement.

Monitoring the temperature in the circular measurement region of the previous example provides
the results shown in Figure 10. When the raw images are used, the position of the circular measurement
region fails to identify the position of the center of the tape, as can be seen in Figure 9. Therefore,
the resulting signal does not provide the correct temperature of the tape over time. However,
when the movement is compensated using the proposed approach, the position of the measurement
region is always correct, resulting is an accurate signal representing the temperature time history of
the inspected material.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Result of the motion compensation procedure. (a) Raw image at t0; (b) Raw image at
t1; (c) Raw image at t2; (d) Motion compensated image at t0; (e) Motion compensated image at t1;
(f) Motion compensated image at t2.
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Figure 10. Comparing temperature monitoring using raw images and the proposed approach.

The second approach to image reinterpolation is to move the measurement regions according
to the estimated movement of the monitored material. This approach does not require image
reinterpolation, thus, it is faster and produces the same results.

The motion estimation procedure produces a 2D rigid transformation Hi between every two
consecutively acquired images, Ii−1 and Ii. The obtained transformations can be composed to obtain
the transformation from the first image to the current image i using (14).

HT,i = ∏j=i
j=0 Hj (14)

Using (14) any single point in one image can be transformed back and forth between any other
image. Therefore, it can be used to compensate for the movement of the material.

3. Results and Discussion

In order to test the proposed procedure, a first experiment is performed with the same test
piece with a different orientation and movement. The test piece is placed on a hot plate. The goal
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is to monitor the temperature of a piece of electrical tape stuck on the test piece while it is moved,
simulating vibrations.

The results of the experiment can be seen in Figure 11. The first step is the image rectification
using the estimated projection parameters. The results of this procedure are similar to those described
for the test piece in the original orientation. Using the rectified images, motion is estimated and
compensated. Images are reinterpolated in order to compensate for the movement. In this experiment,
the movement of the test piece is increased, as can be seen in the figure. However, this does not
affect the estimation and compensation of the movement, producing accurate results. Therefore,
robust temperature monitoring can be performed regardless of the movement. As can be seen,
the measurement region is always in the same position relative to the test piece.

(a) (b) (c)

(d) (e) (f)

Figure 11. Result of the motion compensation procedure for the test piece with different orientation
and movement. (a) Raw image at t0; (b) Raw image at t1; (c) Raw image at t2; (d) Motion compensated
image at t0; (e) Motion compensated image at t1; (f) Motion compensated image at t2.

The monitored temperature can be seen in Figure 12. The resulting temperature signal when
using the proposed approach provides the correct information about the temperature in the region of
interest. This result can be compared with the temperature signal obtained from the raw images. In this
case, the temperature time history is incorrect because it is affected by the movement of the material.

In order to calculate the temperature of the test piece in the experiments, the infrared camera
was configured using the emissivity of the electrical tape: 0.96 (ScotchTM Premium Vinyl Electrical Tape
88, 3M, Maplewood, MN, USA); the reflected temperature estimated using the reflector method [32]:
22.4 ◦C; and the distance, ambient temperature and relative humidity.
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Figure 12. Comparing temperature monitoring using raw images and the proposed approach for the
test piece with different orientation and movement.

Experiments have also been performed in a real environment: a sinter cooler. Sinter is a solidified
porous material used in the steel industry. It is created by applying heat and pressure to a mixture
of different raw materials including fine particles of iron, and other materials such as limestone and
coke [33]. The material is later moved to a rotatory cooler where the temperature must be monitored
before the final transportation using a conveyor belt to the next step of the industrial process in the blast
furnace, where pig iron is produced.

The sinter cooler is a 3.2 m wide circular rotatory ring where air is blown from fans. The cooler
moves slowly while the sinter material cools. Temperature monitoring in the cooler is critical to ensure
that the cooling pattern is correct. Moreover, temperature monitoring is also used to prevent fires
due to excessive temperature in the transportation by conveyor belt. Figure 13 shows an image of
the rotatory cooler and the camera used for monitoring.

Figure 13. Infrared camera for sinter monitoring.

Figure 14 shows an infrared image of the cooler and the contour extraction procedure. Due to
the optics of the camera and the distance from the camera to the object, only a partial view of the
cooler is available. However, this visible part is enough to apply the proposed rectification procedure.
The first step is to extract the contour of the cooler. This can be performed by applying an edge
detector to the image. The sinter material is hotter than the rest of the image. Thus, it can be clearly
distinguished. The extracted contour is the boundary of the visible part of the cooler in the image.
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(a) (b) (c)

Figure 14. Result of the contour extraction for the sinter material. (a) Infrared image of the sinter in the
cooler; (b) Edges in the image; (c) Extracted contour of the cooler in the image.

In this example a FLIR A315 infrared camera (FLIR Systems, Wilsonville, OR, USA) is used.
The information provided by the manufacturer and an estimation of the pan, tilt and distance to the
cooler is used for the coarse estimation of the projection parameters. The technical specifications of
this camera are given in Table 2.

Table 2. Technical specifications of the infrared camera FLIR A315 used in the experiments.

Camera FLIR A315
Temperature range 0 to + 500 ◦C

Thermal sensitivity/NETD 50 mK at 30 ◦C
Detector 320 × 240 Uncooled Focal Plane Array (UFPA)

Spectral range 7.5 −14 µm
Image frequency 60 Hz
Spatial resolution 1.36 mrad

Field of view (FOV) 25◦ × 18.8◦

Detector pitch (µm) 25

Figure 15a shows the transformation of the extracted contour to world coordinates. In this same
figure, a model of the cooler ring is represented. The information about the shape of the cooler
is obtained from the plans of the factory in which it is installed.
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Figure 15. Iterative estimation of the projection parameters for the sinter material. (a) Initial estimation;
(b) Iteration 10; (c) Final iteration.

As can be seen in Figure 15, the initial transformation of the extracted contour to world coordinates
is just a rough approximation. The fine estimation of the projection parameters is applied next.
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The iterative procedure minimizes the distance between the extracted contour and the model until
convergence. Finally, a nearly perfect match between the extracted contour in world coordinates
and the visible part of the cooler ring is obtained. The error obtained after the iterative procedure
converges is 13.36 RMS, with a mean error of 19.89 mm. This error is very low compared with the size
of the rotatory cooler, with a diameter of 13 m. The result of this iterative procedure is an accurate
estimation of the projection parameters that can be used to rectify the infrared images. The estimation
of the projection parameters is valid while the position of the camera is not changed.

The next step is the estimation and compensation of the movement of the material in the cooler.
In this case the approach used to monitor temperature is to update the position of the measurement
region according to the estimated movement. Therefore, in this case movement compensation is applied
as an equal movement to the position of the measurement region.

Figure 16 shows the result of the estimation and compensation of the movement of the material
in the cooler. The goal is to monitor the temperature of the hot spot in the images. As expected,
in the raw images monitoring cannot be performed because as soon as the material moves, the position
of the measurement region is incorrect, as seen in Figure 16b,c. However, applying the proposed
procedure monitoring is possible since motion is estimated and compensated accurately. As seen
in Figure 16d–f the position of the circular measurement region is updated correctly according
to the motion of the material. Therefore, this makes the temperature monitoring of the selected
region possible.

(a) (b) (c)

(d) (e) (f)

Figure 16. Result of the motion compensation procedure for the sinter material. (a) Raw image
at t0; (b) Raw image at t1; (c) Raw image at t2; (d) Rectified image at t0; (e) Rectified image at t1

with the position of the measurement region updated; (f) Rectified image at t2 with the position of
the measurement region updated.

Figure 17 shows the result of the temperature monitoring procedure when using the raw images
and the proposed procedure. The temperature values shown in this figure represent real temperature
readings using a calibrated infrared camera. The signal extracted from the raw images provides
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information about changes in the temperature at a fixed position of the cooler. On the other hand,
the signal extracted when using the proposed procedure contains an accurate representation of
the temperature time history of the material at a selected region. This signal provides information
about the cooling behavior and cooling per time unit, thus, it can be used to control the variables
of the industrial process, including speed or air flow of the fans. Temperature monitoring at a fixed
position is useless because the temperature of the material changes, and the temperature decay curve
cannot be calculated. The proposed procedure solves this problem by compensating for the movement
and measuring the temperature in the same area of material while it moves.

The proposed procedure not only provides the opportunity to monitor the temperature of
the material as it moves, it also produces images that can be used to extract useful geometric
information. For example, it is possible the measure the size of a region of interest in the image
in real-world units. Also, measurement regions in the material can be established with specific sizes.

Using rectified images to estimate motion greatly simplifies the definition of the mathematical
model of the movement and its estimation and compensation. However, there is another great
advantage: the estimated movement is in real-world units. Therefore, it provides information that can
be used to control the industrial process. Not only does the proposed procedure produce the correct
temperature time history, but also the real speed of the material at any point in time.

The proposed procedure is not without limitations. It assumes that the acquisition speed of
the infrared camera is much higher than the movement speed of the monitored object. This way image
blurring does not affect negatively the motion estimation. Moreover, it assumes that the acquisition
rate is also much higher than the speed at which the temperature of the monitored object changes.
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Figure 17. Comparing temperature monitoring using raw images and the proposed approach for the
sinter material.

4. Conclusions

This work proposes a solution for temperature monitoring when the inspected object is moved or
it is affected by vibrations, very common in many scenarios. The first step is an image rectification
procedure that calculates a transformed image in real-world units. This transformation produces
a front-parallel projection of the image which greatly simplifies the estimation and compensation
of the movements. Using this approach, motion is perfectly described using a simple 2D rigid
transformation. The procedure to estimate motion proposes a robust method adapted to infrared
images, but also based on well-known techniques successfully proven in visible images, such as feature
detection using SURF and robust model estimation using MLESAC. The result is an accurate and
robust method that provides the temperature time history of the inspected material without being
affected by the movements of the material. The proposed approach assumes that the region of interest
is flat, which is the case in many different types of applications.

The proposed method has been tested in laboratory and in real environments. Laboratory tests
consist of a test piece that is manually moved, simulating vibrations. The proposed method robustly
estimates and compensates for the simulated vibrations, providing movement free images that can
be used to monitor temperature easily. The method has also been tested in a real environment: a sinter
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cooler. In this scenario, the material moves inside a circular ring and temperature monitoring is critical
to calculate the cooling pattern and to avoid fires. The result demonstrated that the proposed work
can be used to calculate the required temperature time history of the material as it moves. Moreover,
additional geometric information can be extracted from result, such as the real speed of the cooler.
The results of these tests validate the performance of the proposed work as a robust and accurate
method to monitor the temperature of moving material. Tests are performed using long-wavelength
infrared cameras, but the proposed approach could also be used with high-end mid-wavelength
infrared cameras to monitor the temperature of fast moving objects.
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