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Abstract: For a Software Defined Network (SDN), security is an important factor affecting its
large-scale deployment. The existing security solutions for SDN mainly focus on the controller
itself, which has to handle all the security protection tasks by using the programmability of the
network. This will undoubtedly involve a heavy burden for the controller. More devastatingly, once
the controller itself is attacked, the entire network will be paralyzed. Motivated by this, this paper
proposes a novel security protection architecture for SDN. We design a security service orchestration
center in the control plane of SDN, and this center physically decouples from the SDN controller
and constructs SDN security services. We adopt virtualization technology to construct a security
meta-function library, and propose a dynamic security service composition construction algorithm
based on web service composition technology. The rule-combining method is used to combine security
meta-functions to construct security services which meet the requirements of users. Moreover, the
RETE algorithm is introduced to improve the efficiency of the rule-combining method. We evaluate
our solutions in a realistic scenario based on OpenStack. Substantial experimental results demonstrate
the effectiveness of our solutions that contribute to achieve the effective security protection with a
small burden of the SDN controller.

Keywords: software defined network; security service; service composition; RETE

1. Introduction

Recently, with the rapid development of Internet and network virtualization technology becoming
widely used, the traditional network architecture is unable to handle massive network traffic data.
Traditional network security protection systems lack unified design and deployment, which leads
to the exposure of more and more defects, such as security threats on cyberspace, wide variety of
network security, and the lack of unified management interface [1].At the same time, the development
of network virtualization technology urgently calls for the innovation of network architecture.
Software-defined networking (SDN) is an architecture purporting to be dynamic, manageable,
cost-effective, and adaptable, seeking to be suitable for the high-bandwidth, dynamic nature of
today’s applications [2]. The SDN architecture is based on decoupling the control plane from the data
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plane [3]. With its physically distributed but logically centralized controlled networking framework,
SDN offers limitless features worthy of investigation.

Due to the increase of sophisticated network attacks, the legacy security services find it difficult
to cope with such network attacks in an autonomous manner. SDN has been introduced to make
networks more controllable and manageable, and SDN technology promises to autonomously deal
with such network attacks in a prompt manner. SDN security has drawn intensified concerns from
researchers. Their studies have mainly focused on two aspects: (i) improving the traditional network
security using SDN [4]; and (ii) improving SDN security itself [5,6]. The former focuses on how SDN
brings new solutions to the traditional network security. The latter pays more attention to security
itself in SDN architecture, which is the concern of this paper.

Further, the SDN security problem can be classified into two categories. One is the traditional
SDN security problem (traditional network attack), which includes switch security, fake network
data, management station security, etc. The other is the special SDN security problem, which
includes controller security, interface protocols security, the consistency and validation of flow rule,
etc. Traditional network security threats such as malicious data flow attack, table manipulation,
application software vulnerabilities, confidentiality and availability threats of data management still
occur in the context of SDN. This dependence on the controller will aggravate its burden [7]. Therefore,
how to share the burden of controller is an important challenge in SDN security protection, and this
is an important issue in this paper.

The main contributions of this paper are summarized as follows. Firstly, we propose a novel
security protection architecture for SDN and design a security service orchestration center in the
control plane of SDN. This center physically decouples from SDN controller and constructs SDN
security services. Secondly, by drawing from the rule-combining method in web service composition,
a rule-combining strategy based on expert system is presented to dynamically combine security
meta-functions as required. In particular, the RETE algorithm is introduced in order to improve the
speed of service composition to satisfy the requirements from massive users.

The remainder of this paper is organized as follows. Section 2 overviews the related work.
Section 3 presents a new security service architecture for SDN. Section 4 proposes a dynamic
construction scheme for virtualization security service . Emulations and numerical results are given
in Section 5 and we conclude this paper in Section 6.

2. Related Work

From the available information, we can find that the study on SDN virtualization network security
protection is still at an early stage. SDN virtualization security service construction mainly involves
three aspects: SDN security, network function virtualization and security service composition, and they
respectively provide theory, technology and method support.

2.1. SDN Security

There have appeared some study accumulations and achievements on SDN security,
such as the vulnerability of controller [6,8,9], the consistency of flow rules [10,11], interface
standardization [9,10] and specific security threats [12].

The authors of [6] extended security functions on the basis of the floodlight controller, including
security application management, certification service, role-based authorization and security audit, in
order to build a new security protection controller named SE-floodlight. The authors of [13] proposed a
new SDN security architecture and introduced a resource pool and some key modules (e.g., application
management, intrusion tolerance) into the traditional controller for security improvement. The authors
of [14] proposed two security architectures for realizing SDN security: Virtualized Security Appliance
(VSA) and Software Defined Security (SDS). For the former, security can be embedded into the SDN
network by traditional security device virtualization. For the latter, it can separate and reconstruct the
control plane and data plane to achieve modularity and reusability. The common drawback of these is
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that the control plane, which performs security protection, can be handled by the controller alone. It is
unavoidable to increase the burden on the controller. Once the controller itself is attacked, the entire
network will be paralyzed.

2.2. Network Function Virtualization

Research on Network function virtualization (NFV) and SDN cannot be separated from each
other. NFV decouples software from hardware to enable network business to be deployed flexibly.
However, SDN decouples the control plane from the data plane. NFV technology can be applied to
all the network elements (NE) in the network, such as data exchange NE (e.g., Broadband Remote
Access Server), traffic analysis equipment (e.g., Deep Packet Inspection), service security equipment
(e.g., Service-Level Agreement (SLA) equipment, Content Delivery Network), and security products
(e.g., firewall, intrusion detection system) [15]. The construction of SDN virtualization security
service depends on NFV technology, namely, we need virtualize all the security meta-functions in the
network. The authors of [16] proposed a framework for protecting network resources via SDN-based
security services using an Interface to Network Security Functions (I2NSF). The aim was to create
a self-governed protection system against network attacks, capable of providing rapid responses to
new threats.

2.3. Security Service Composition

The process of developing a composite service is called service composition. Security service
composition originates from Web service composition. Web service composition is essentially a plug-in
or interface composition technology, which allows the definition of increasingly complex applications
by progressively aggregating components (security services) at higher levels of abstraction. There exist
many mature Web service composition methods. The authors of [17] summarized several common
Web service composition methods: static vs. dynamic, model-driven, declarative, automated vs.
manual, and context-based. Rule optimization was also involved in security service composition [18].
The authors of [19] optimized the results of the rule-based service composition by using the RETE
algorithm and drew a conclusion that RETE algorithm greatly improved the composition efficiency.

3. Security Service Architecture

The security service architecture is shown in Figure 1. This architecture can be divided into three
planes: infrastructure plane, control plane and application plane.

The infrastructure plane includes switches, routers and other devices. In this paper, it is mainly
made up of Open VSwitch (OVS) and HOST. The application plane is used to control some applications
in SDN. Here, the application plane is considered as a security service requirement. In detail, a user
can send an application service requirement via a certain application. The control plane is the core
of this architecture, and is composed of controllers. In addition, the control plane includes a security
service orchestration center which cooperatively performs the construction of virtualization security
services in SDN. SDN decouples this center from the controller to relieve its load. This center integrates
security services in the traditional network using virtualization technology, which efficiently protects
traditional security problems. Moreover, the security service orchestration center is responsible for
extracting security meta-functions from the security meta-function library. Hence, how to design
security meta-functions is also an important factor to be considered. Some solutions can be described
in three aspects: security service requirement description, security service orchestration center,
security meta-function.

3.1. Security Service Requirement Description

The parsing of security service is to identify the requirement of the security service. This means
that the requirement of security service should be described. An effective description language for
service requirement helps a machine better understand Web service and thus combine Web service
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intelligently. Among several service requirement description languages, JavaScript Object Notation
(JSON) has unique properties. For example, JSON is a language-independent data format. It derives
from JavaScript. Code to generate and parse JSON-format data is available in many programming
languages. These properties make JSON an ideal data-interchange language.

Application plane

App1 App2

SDN controller

Control plane

Infrastructure plane

Host 1 Host 2 Host 3 Host 4

OVS 1 OVS 2 OVS 3

Security service 

requirement

Security service 

orchestration center

Security meta-

function database

Figure 1. Security protection architecture for SDN.

Here, we adopt JSON as service requirement description language. The format of a security
service requirement can be described as follows:

S = {“User” : “tom”, “UserID” : “1111”, “GroupID”
: “1002”, “Object” : “web server”, “Address” :
“[192.168.1.1]”
“Request description” :
{“Protection Object Type” : “server”,
“Protection Level” : “1”,
“Protection Functions request” : “SYN, DOS”,
“Protection Performance request” :
{“Width” : “”, “Time-delay” : “”}

}“Result Feedback” : “”}

3.2. Security Service Orchestration Center

The security service orchestration center is the core part of SDN virtualization security service
construction, and includes service request queue, parser, service search engine, database, feature
extraction, drive, etc. The architecture of the security service orchestration center is illustrated
in Figure 2, which can provide security protection for the SDN controller as well as the whole network.

The kernel of the security service orchestration center is the service search engine, which consists
of the reasoning algorithm, rule selection, attack dataset and rule database. The attack dataset and
the rule database are constructed according to expert knowledge, and the elements in the attack dataset
are the basis of rule selection. The fact property affects the choice of attack elements in the attack
dataset, and can be obtained from a requirement description.
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Figure 2. Architecture of the security service orchestration center.

The workflow of rule composition based on expert system can be described as following. A user
request is sent to the rule composition unit by the parser. After extracting the fact property from
a service request, rule composition will match the corresponding attack elements from the attack
dataset. The reasoning algorithm sets the initial state, and its corresponding rule will be selected from
the rule database. The item of rule strategy is included in a rule, and determines which kind of security
meta-function will be used. This strategy is then written into the initial state, and the initial state turns
into the next state. The rule searching will go on until the final state. In other words, the process in
which the state changes is the one that determines the meta-functions. The security meta-function
extracted from the library can be issued and executed by a security agent. Finally, a security logging is
recorded in the resource state database and fed back from a security service scheme to the user, and
thus completes the whole process of rule composition.

3.3. Security Meta-Function

A security service which consists of security meta-functions can be determined by security threats
in SDN. The nature of security threats in SDN is as same as that in a traditional network. Security
threats come from physical layer, network layer, system, virus, and data transmission. There are three
kinds of common security protection approaches in the traditional network, namely, firewall, intrusion
detection, anti-virus system [20].

Directly inspired by the security protection ways of the traditional network, we consider firewall
and intrusion detection as the two main service types of security protections in SDN. Here, anti-virus
will not be considered any longer because of its high demand for real-time updates. Besides the firewall
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and the intrusion detection mentioned above, SDN itself can complete dynamic flow scheduling service.
This service can dynamically specify flow path(s) in situations in which network congestion is caused
by a network attack. Hence, flow scheduling is considered as a type of security service in SDN. In
addition, the deployment of security service in the virtualization environment requires the support of a
Kernel-based Virtual Machine (KVM). So, the KVM service is also considered. In conclusion, there are
four types of security services included in this system: firewall, intrusion detection, flow scheduling
and KVM.

Different security meta-functions make up different types of security services. Four different
types of security services are described below.

• Firewall is a network security system that monitors and controls the incoming and outgoing
network traffic based on predetermined security rules [21]. The firewall typically establishes
a barrier between a trusted, secure internal network and another outside network.

• Intrusion detection monitors a network or systems for malicious activity or policy violations by
collecting network behaviors, security logs, audit data, and other key information in a network
system [22].

• SDN flow scheduling is unique, and is attributed to the separation of the control plane and data
plane of SDN. Once a certain link (or path) congestion occurs in the network, other optional links
can be re-assigned or a black list can be set for a certain link.

• Because the system design is implemented on OpenStack, KVM service class is defined considering
that the deployment of some security services might require additional network equipment as
a carrier.

In all, four types of security meta-functions included are listed in Table 1.

Table 1. Four types of security meta-functions included.

Type Name Description

Firewall ACL_FUNCTION ACL access control
DOS_FUNCTION Anti-DOS attack

WBLIST_FUNCTION White-black list control
CON_FUNCTION Policy configuration

Intrusion detection NETDEC_FUNCTION Network detection
LOG_FUNCTION Security log

RULE_FUNCTION Rule configuration
WAR_FUNCTION Real-time warning

KVM KVMCRE_FUNCTION KVM creation
NETCON_FUNCTION Network configuration
KVMDEL_FUNCTION KVM deletion

Flow scheduling PATHDES_FUNCTION Path assignment
PATHLIM_FUNCTION Limited path

4. Dynamic Security Service Construction Algorithm

The dynamic security service construction algorithm consists of two sub-algorithms:
rule-combining algorithm and optimized rule-combining algorithm. The rule-combining algorithm is
used to perform rule composition; and the optimized rule-combining algorithm is used to solve the
problem of long service response time. In the dynamic security service construction algorithm,
the problem of rule based security service composition can be defined as a six-element model
〈P, F, E, R, T, O〉. The meanings of these elements in this model can be described as follows.
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• P (service requirement): is described by JSON-format.
• F (fact property): is determined by service requirement.
• E (attack dataset): corresponds to security service.
• R (rule dataset): is the basis of security task execution.
• T (composition state): composition state recorded.
• O (feedback result): the feedback result of security service composition to a user.

4.1. Rule-Combining Algorithm

The rule-combining algorithm is the basis of the security service construction center. The rules
need to be designed and described before the rules are combined. Rule description is how to represent
expert knowledge in the form that program can handle. For a specific field, we should choose
the corresponding rule description which matches the reasoning method. Forward regular reasoning
and backward regular reasoning are quite distinct from each other. In detail, forward regular reasoning
starts with the available data and uses inference rules to extract more data until a goal is reached.
Its disadvantage is that the search time in large-scale rule database has to increase. Backward regular
reasoning starts with a list of goals and works backwards from the consequent to the antecedent to
see if there is data available that will support any of these consequents. The advantage of backward
reasoning is pertinence without searching knowledge which is unrelated to the goal. Considering the
actual situation of security service, our system makes use of the forward regular reasoning algorithm.

Some parameters used in the process of forward reasoning are listed in Table 2.

Table 2. Some parameters used in the process of forward reasoning.

Parameter Meaning

Ti state
ei condition
Ri rule

Ri
xi−→ Rj rely relationship
li priority

There are three types of basic state transition formulas between the two reasoning states,
which are defined as follows. Moreover, their corresponding state transition diagrams are given
in Figures 3–5.

T1 = T0 ∩ (R1 ∪ R2), (e1 & R1
x1−→ R2) (1) T1 = T0 ∩ (R2 ∪ R3), (e1 & R2

x1−→ R3)

T
′
1 = T0 ∩ (R1 ∪ R3), (e2 & R1

x2−→ R3)
(2)

{
Tn+1 = Tn ∩ (R2), (e1 & l1)

T
′
n+1 = Tn ∩ (R1), (e1 & l2)

(3)

0T
1T

1e 1x
1R 2R

(a)Ⅰ 

Figure 3. State transition diagram I.
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Figure 4. State transition diagram II.
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Figure 5. State transition diagram III.

Formula (1) represents a reasoning process that state T0 selects rule R1 with the condition e1.
Meanwhile, R1 has a rely rule R2. After adding these two rules into state T0, the reasoning process
achieves the state transition from T0 to T1.

Formula (2) represents a reasoning process such that the initial state T0 selects a different rule Ri
with a different constraint ei. However, different Ri may have the same rely rule R3, which leads to a
different state transition T1 or T

′
1.

Formula (3) represents that state Tn may have two kinds of alternative rules with the condition
ei, but these two rules have different priorities. In this case, the choice of rule can be decided by rule
priority li.

Attack database …

Rule database

?

1e 2e 3e

1T 2T
3T0T 1R

2R

3R

4R 5R 6R

1x

2x
1l

2l

Figure 6. State transition diagram.

These basic state transitions constitute a general state transition (see Figure 6). After the reasoning
process mentioned above, the final state Tn is obtained. Tn can be a choice basis for extracting security
meta-functions.

Tn = T0 ∩ (Ri ∪ ...∪ Rj),
n∑

i,j=0

(ei & li & Ri
xi−→ Rj) (4)
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The description of the expert system based rule-combining algorithm is given in Algorithm 1.

Algorithm 1 Expert system based rule-combining algorithm.

Input: P = {name, ID, type, property}.
Output: O = {O1, O2, ..., On}.
begin

INIT_REQUEST(P); //initialize queue
F.property(P.type); //extract fact property
FOR i=0 TO E.number //determine the elements in the attack dataset

IF (F.property IN E.type) THEN
e=E.content;
RETURN;

ELSE
RETURN NULL;

ENDIF
ENDFOR
INIT_T(T); //initialize state T
IF e!=NULL THEN

WHILE(e[i]) DO
IF number(R.AttackName(e[i]))>1 THEN

R=CONFLICT(R.AttackName, l[i]=P.property);
ELSE

R=MATCH(e[i])
ENDIF
T.ADD(R.Strategy); //add state T
WHILE(R.Rely) DO //judge rule rely

T.add(R.Rely.Strategy);
R.Rely=R.Rely.Rely;

ENDWHILE
ENDWHILE

ENDIF
RETURN T //return state T
INIT_STACK();
stack.append(T); //add state T into the task stack
WHILE(stack!=NULL) DO

TaskPickup(stack.pop()); //execute the task in stack
O.append(Task.state); //feedback task state to result

ENDWHILE
RETURN O

end

4.2. Optimized Rule-Combining Algorithm

During the process of SDN security service construction, the increase of the number of users
causes the explosive growth of security service requirements. There is no doubt that the rule-combining
time will increase greatly. The main reason for this is that for each rule composition, query rules
have to be traversed in the database. It is very time-consuming to traverse a database with a great
amount of data. This will make service response time too long. To solve this problem, this paper
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takes the idea from the RETE algorithm in order to optimize the proposed SDN security service
construction algorithm.

The RETE algorithm is a pattern matching algorithm for implementing production rule systems.
It is used to determine which of the system’s rules should fire based on its data store. The RETE
algorithm provides a generalized logical description of an implementation of functionality responsible
for matching fact property using rules in a pattern-matching production system. The result consists of
one or more conditions and a set of actions which may be undertaken for each complete set of facts
that match the conditions. Conditions test fact attributes, including fact type specifiers/identifiers.
The RETE algorithm exhibits the following major characteristics [23]:

• It reduces or eliminates certain types of redundancy through the use of node sharing.
• It stores partial matches when performing joins between different fact types. This, in turn, allows

production systems to avoid complete re-evaluation of all facts each time changes are made to the
production system’s working memory. Instead, the production system needs only to evaluate the
changes (deltas) to working memory.

• This allows for efficient removal of memory elements when facts are retracted from
working memory.

• This provides a means for many-many matching, an important feature when many or all possible
solutions in a search network must be found.

The RETE algorithm can be divided into two parts: rule complication and runtime execution.
The compiled result of RETE algorithm is a directed acyclic graph (RETE network) that represents
higher-level rule sets. The RETE network includes root node, type node, α node, β node and
action node.

• α network: is composed of type nodes and α nodes. Type node denotes the type of condition,
and α node denotes constraint condition, both of them are single input ones. The α network is
used to store the rule condition instances. The root node receives the fact property of an object,
and thus judges what kind of type node the constraint condition is. Each kind of type node
corresponds to different α node. Moreover, fact property enters into the β network to match
the β node according to condition type and constraint condition. Each α node represents a rule
condition. That is, each α node stores the constraint condition for rule selection [24].

• β network: is composed of β nodes, which are double input nodes. β node is used to compare
two objects and their fields. The type of objects compared may be the same or different. The two
inputs of a double input node are named left input and right input, respectively. Generally, left
input is a group of object lists, and right input is a certain object. The result of α node can be
added into the β node pattern. Then we check whether there is a fact that meets the condition or
not in the other input set. If yes, it enters the corresponding β node pattern. Otherwise, it can be
regarded as an action execution node, and the corresponding action will be executed on an action
execution node.

• Action node: including a series of actions. Each action node has its corresponding action.
Each action node has its own unique constraint conditions. Because each kind of constraint
condition corresponds to different actions, the number of action nodes is unknown.

The dynamic security service construction optimized algorithm for SDN takes the ideas from
RETE algorithm. The rules combined can be compiled into a RETE network. Four types of security
services are regarded as type nodes, and the security meta-functions for each kind of service are
regarded as the α node. Moreover, the composition results from different security meta-functions are
regarded as β nodes, and the specific actions for composition results are regarded as action execution
nodes. The following two points should be noted:

• In our solution, type nodes and α network can be pre-complied, however, β network can be
formed by constantly composition.
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• In contrast to the traditional RETE network, there may exist the combination among α nodes under
the same type node. Hence, the structure of the optimized security rule composition network is
illustrated in Figure 7.

In the optimized security rule composition network, all the meta-functions, as rule composition
conditions, constitute the α networks. Different combinations of these meta-functions constitute
different security services. Different security services correspond to different β nodes, and different
security services combined execute different actions. For example, when a service requirement needs
meta-functions Anti-DOS and ACL in the library, it can directly enter into the β1 node pattern and then
execute action A1. For another service requirement, it may require meta-functions ACL, security log as
well as KVM creation, which can be combined as the β3 node pattern and execute action A2. Particularly,
if a new service requirement, which adds meta-function network configuration on the basis of β3 is
proposed, then the β4 node pattern is created by combining β3 and network configuration, and thus
execute action A3. Because the security rule composition network is pre-compiled, the combination
time is greatly reduced without traversing the whole rule database.
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Root node
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A1 A3 A5A4

Type node
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α network
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Firewall
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Path 
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ent

·····

β5

A2

Root node

Figure 7. Optimized security rule composition network.

5. Emulation & Analysis

Currently, there are two mature cloud platforms [25]: VMware and OpenStack, which can support
the construction of SDN environment. Considering the flexible requirement and high demand on
migration of VMs, this paper selects an OpenStack platform, which can be deployed on three servers.
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Server 1 can be configured as the control node, and Server 2 and Server 3 can be configured as data
nodes. We put the security service orchestration center on WebServiceController in order to realize
decoupling with Open Network Operating System (ONOS) controller. The whole network topology
can be illustrated in Figure 8. This network topology includes an ONOS controller with IP address
192.168.1.116, a WebService controller with IP address 192.168.1.101 used to communicate with ONOS
controller and 10.0.0.11 used to communicate with ProxyHosts, 4 OVSes are on network segment
192.168.1.110∼192.168.1.113 and 3 ProxyHosts are on network segment 10.0.0.1∼10.0.0.5, respectively.

ONOS2

192.168.1.116

OVS4

192.168.1.111

OVS3

192.168.1.110

OVS6

192.168.1.113

OVS3-4 OVS3-6

OVS5

192.168.1.112

OVS4-5 OVS5-6

ProxyHost1

10.0.0.1

10.0.0.2

ProxyHost2

10.0.0.3

10.0.0.4

ProxyHost3

10.0.0.5

WebServiceController

10.117.2.52

192.168.1.101

10.0.0.11

Figure 8. Network topology.

The configuration requirements of VMs in the network topology are listed in Table 3.

Table 3. The configuration requirements of VMs in the network topology.

Parameter Configuration

OS Ubuntu 14.04
OS Type 64 bit

CPU Type Intel Core i5-3210M CPU@2.5GHz*4
Memory 1.9 G

Disk 31.3 GB

5.1. Function Test

In this part, the service requirement can be described as follows. ProxyHost 10.0.0.1 configures
itself with firewall in order to prevent DOS attack. We set the ProxyHost 10.0.0.3 to blacklist on
ProxyHost 10.0.0.1. An intrusion detection system is deployed, and all the data packets that reach
ProxyHost 10.0.0.1 are assigned to pass OVS5 (192.168.1.112) only but not OVS3 (192.168.1.110).

A service requirement can be submitted on the client side. From the configuration result of the
Firewall shown in Figure 9, we can obtain the result that (1) all the data packets from ProxyHost
10.0.0.3 were dropped; and (2) the attack for SYN was also dropped.

By looking at the flow information given in Figure 10, we can find that all the OVSes (OVS4, OVS5
and OVS6) have flow information without including OVS3. It shows all the data packets that reach
the ProxyHost10.0.0.1 cannot pass OVS3 (192.168.1.110).

The results mentioned above show that the firewall service, intrusion detection service,
flow scheduling service and KVM service can functionally achieve the design requirements.
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Figure 9. Configuration result of Firewall.

(a) OVS3

(b) OVS4

Figure 10. Cont.
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(c) OVS5

(d) OVS6

Figure 10. Flow charts of (a) OVS3; (b) OVS4; (c) OVS5 and (d) OVS6.

We can conclude that, compared to VSA and SDS, our security protection architecture design has
the following two characteristics:

• From the testing results, the issuing and implementing cannot be controlled by SDN in our
architecture. That is, the security protection of this architecture is decoupled from the SDN controller.
Even if the SDN controller itself is attacked, the network still has the ability of security protection.

• From the protection results, our architecture can achieve security protection by fully combining
the advantages of VSA and SDS. Specifically, security can be embedded into SDN network by
traditional security device virtualization, and the control plane and data plane are it separated
and reconstructed so as to achieve modularity and reusability.

5.2. Performance Test

5.2.1. Test on the Rule-Combining Time for Single User

For the rule-combining time, the influence of the dynamic security service assembly algorithm for
SDN mainly concentrates on the fact that the corresponding rules can be quickly searched without
traversing the whole rule database. In our experiment, the number of security meta-functions contained
in the state table be 13. For each composition, the number of security meta-functions recorded in β

network gradually increases, until all the security meta-functions are involved. The rule-combining
time comparison with and without using the optimization algorithm for single user can be illustrated
in Figure 11.

The experimental results show that the rule-combining time without using the optimization
algorithm is largely unchanged mainly because is traverses the whole rule database each time.
The rule-combining time with using optimization algorithm is greater than that without using
optimization algorithm at the beginning. For example, when the number of security meta-functions
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is 2, the rule-combining time with and without using optimization algorithm are 16.27 ms and 13.32
ms, respectively. This is because the optimization algorithm firstly needs to construct the RETE
rule network. As the number of security meta-functions recorded (that is, the shared nodes) in β

network increases, the rule-combining time decreases. For instance, when the number of security
meta-functions is 12, the rule-combining time with and without using the optimization algorithm are
13.26 ms and 13.30 ms, respectively. Once 13 security meta-functions are involved in the β network,
the rule-combining time with using optimization algorithm drastically reduces to 0.66 ms.

Figure 11. The rule-combining time comparison with and without using optimization algorithm for
single user.

5.2.2. Test on the Rule-Combining Time for Multiple Users

Next, we discuss the case that multiple users request security service. The rule-combining time
comparison with and without using the optimization algorithm for multiple users can be illustrated
in Figure 12.

Figure 12. The rule-combining time comparison with and without using optimization algorithm for
multiple users.

The experimental results show that, with the increase of the number of users, the rule-combining
time based on an expert system will increase about 500 ms for every 100 user requests increase.
After the optimization algorithm is used, the combination time is greatly shortened. With the increase
of the shared nodes in the RETE network,the growth of the combining time gradually tends to be gentle.
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For example, when the number of users is 600, the rule-combining time with and without using the
optimization algorithm are 443 ms and 3212.5 ms. When the number of users is 800, the rule-combining
time with and without using optimization algorithm are 580.2 ms and 4246.8 ms, respectively.

5.3. Comparison

We can obtain the result that the proposed dynamic security service composition algorithm is a
kind of efficient pattern matching algorithm. The rule matching process will be repeated without using
the optimization algorithm. Generally, the fact property contains two parts: a changed and unchanged
one, as is shown in Figure 13.

Unchanged 

fact property

Changed fact 

property

Rule database

Unchanged 

fact property

Changed fact 

property

Rule 

database

Before After

αnetwork βnetwork

Figure 13. Comparison between two algorithms.

The fact property will be modified dynamically in order to meet all the requirements. Once the fact
property changes, the traversal for rule database will happen. It has to prolong the rule-combining
time and affect the user experience. In contrast, the meta-functions can be recorded and stored by using
the optimization algorithm. Different security services correspond to the same security meta-functions,
and the share among β nodes can be achieved. Under the condition of a new requirement, we just
check whether the fact property in the new request changes or not. If yes, what we need to do is add
or delete the corresponding service composition(s) in the α network compiled by the rule database.

Hence, our security service composition algorithm can make full use of the structural redundancy
and similarity of rule to achieve intermediate state storage as well as multiple nodes sharing, and thus
significantly improve the efficiency of the service composition.

6. Conclusions

In this paper, a novel security architecture is proposed to solve the security problem in Software
Defined Networks. We design a security service orchestration center in the control plane of SDN,
which physically decouples from the SDN controller. Virtualization technology is used to construct
a security meta-function library, and a dynamic security service composition construction algorithm is
proposed. Particularly, to improve the efficiency of the rule-combining method, the RETE algorithm
is introduced. Convincing experimental results show that our solutions can effectively provide users
with security protection and improve the efficiency of the service composition.

In our future work, we plan to investigate more flexible security service composition model for
different types of users in order to satisfy their corresponding knowledge on SDN security.
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Abbreviations

The following abbreviations are used in this manuscript:

ACL Access Control Layer
BRAS Broadband Remote Access Server
DOS Denial of Service
JSON JavaScript Object Notation
KVM Kernel-based Virtual Machine
NE Network Element
NFV Network Function Virtualization
ONOS Open Network Operating System
OVS Open VSwitch
SDN Software Defined Network
VM Virtual Machine
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