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Abstract: Little is known about the changes in moisture that occur at the body–seat interface during
sitting. However, as increased moisture can add to the risk of skin damage, we have developed
an array of MEMS (Micro-Electro-Mechanical System) humidity sensors to measure at this interface.
Sensors were first evaluated against traceable standards, followed by use in a cross-over field test
(n = 11; 20 min duration) using different wheelchair cushions (foam and gel). Relative humidity
(RH) was measured at the left mid-thigh, right mid-thigh and coccyx. Sensors were shown to be
unaffected by loading and showed highly reliable responses to measured changes in humidity,
varying little from the traceable standard (<5%). Field-test data, smoothed through a moving average
filter, revealed significant differences between the three chosen locations and between the gel and
foam cushions. Maximum RH was attained in less than five minutes regardless of cushion material
(foam or gel). Importantly, RH does not appear to distribute uniformly over the body–seat interface;
suggesting multiple sensor positions would appear essential for effectively monitoring moisture
in this interface. Material properties of the cushions appear to have a significant effect on RH
characteristics (profile) at the body–seat interface, but not necessarily the time to peak moisture.

Keywords: humidity measurement; cushion; wheelchair; sensor position

1. Introduction

Among the sedentary life-style related chronic diseases, epidermal ulceration is one of the most
painful, hardest to treat successfully and has the potential to create life-threatening complications [1].
This situation is made more serious for those wheelchair users who cannot reposition themselves
because of their incapacity, inability or simply because they may not have sufficient sensory awareness
to recognise when their skin integrity is threatened due to their immobility. The local skin and
subcutaneous tissue blood supply (including muscle) can become severely compromised without
regular interventions that target relieving the mechanical stress and ventilating the microenvironment
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at the body–seat interface. The consequence of insufficient or inefficient intervention will initially be
deterioration of the epithelial and subcutaneous tissues, increasing friability of the tissue and eventual
tissue necrosis; resulting in an open wound (ulcer) [1,2].

Treatment of skin ulcers is costly [3,4] and rarely either easy or successful [5]. As a consequence,
it is essential to understand more about the body–seat interface environment in order to establish
strategies capable of preventing skin ulcer formation. Today, moisture is becoming recognised as
one of the leading contributory factors in skin ulcer development at the body–seat or body–mattress
interface [5,6]. Therefore, the properties of cushions in relation to humidity control is becoming
an aspect of greater importance for seat design as well as subjected to greater scrutiny for the purpose
of ensuring healthy prolonged sitting.

Initial studies of wheelchair or office seat surface (or cushion) materials were based upon humidity
probes [6,7], which have inherent drawbacks including being obtrusive and difficult to accurately place
in relation to specific regions of interest. We have previously reported use of discrete, small humidity
sensors [8], placed at anatomically relevant locations (under both thighs and ischial tuberosities as
well as under the coccyx) to study the relative humidity (RH) changes when sitting on a standard
foam cushion. This system allowed us to report similar patterns in RH between thighs and ischial
tuberosities. In those experiments [8], the sensors were embedded in small wells in the foam in order
to ensure stable positions and record without the subjects’ awareness. However, at the time, we did
not fully ascertain the reliability of the sensors or whether some aspect of the RH recorded could have
been contributed by non-vapour elements in the experimental procedure (such as pressure). The study
presented here reports the results of our more thorough investigation into the reliability, accuracy and
effect of additional variables such as loading pressure (simulated sitting) on the output of the chosen
sensors. We follow this with results from a preliminary study of humidity sensors to investigate the
effect of introducing a gel-pack (standard pressure relieving supplement to wheelchair foam cushions)
on the RH profile, including the maximum RH attained and the time to reach maximum RH when
compared to a more standard foam cushion.

2. Materials and Methods

2.1. Data Acquisition Unit

In order to achieve the task of continuously acquiring RH information in real time, a parallel
analogue-to-digital converting (ADC) module was considered the most appropriate choice. Based on
factors such as reliability and stability, the Pico ADC-11/12 (Pico Technology, Cambridgeshire, UK) was
selected as the data sampling unit. The Pico ADC-11/12 has 11 ADC channels with 12-bit resolution
and up to 1 kHz sampling frequency per channel. To implement device initialisation, real-time data
storage and off-line analysis, a user-friendly graphic user interface was developed with the help of
the Visual Basic Integrated Development Environment (IDE; Microsoft Co., Redmond, WA, USA).
In addition, the whole measurement system was powered through the computer universal serial bus
(USB) port, which increased portability and prevented possible errors when connecting the power
supply to the humidity sensors.

2.2. Sensor Evaluation

The humidity sensor (HIH4000, Honeywell Co., Morristown, NJ, USA), which is able to convert
the moisture information into a corresponding analog voltage signal, was chosen to detect the RH
level at the body–seat interface. The advantages of HIH4000 include: (1) simple connection to
a microcontroller; (2) easily solderable pins; (3) integrated signal conditioning circuit and (4) multilayer
protection construction suitable for hazardous applications. To evaluate the output accuracy of
humidity sensors, they were verified over a range of values (10% to 90% RH) using a traceably
calibrated humidity chamber (FS990-40V, Design Environmental Ltd.; Ebbw Vale, Gwent, UK,
Certificate No. 5493) with 10% RH increment each time. Averaged outcomes of the three sensors for
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the humidity increasing assessment (Figure 1) showed that deviations between the sensor and the
humidity chamber were within the scope of 1% to 5% over the full testing range (10% to 90% RH).
This variance further confirmed the suitability of the sensor for our proposed application.

To evaluate the presence and degree of hysteresis for the humidity sensors, a trial using stepped
decreases in humidity was also conducted with 10% RH decrement each time: the averaged output
of the three sensors also exhibited an approximately linear relationship (R2 = 0.998) in relation to the
preset values of the standardised humidity chamber. In addition, strong correlations were seen between
the increasing and decreasing trail results for each sensor (R2 = 0.997, 0.998 and 0.998, respectively).
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Figure 1. Humidity sensor evaluation with the help of the adjustable standardised humidity chamber
using 10% relative humidity (RH) increment each time. Note: the average output of the three humidity
sensors [- - -] (the % RH values were calculated using the manufacturers’ conversion algorithm from the
voltage output) approximate linearity corresponding to the traceably calibrated chamber output [—]
(chamber temperature was set to 25 ◦C ± 0.1 ◦C), suggesting a high reliability and strong correlation.
The average values of the measured points are illustrated by diamond markers with the error bars
indicating the ±1 standard deviation (SD).

2.3. Consistency Test under Sand Bag Loading

To simulate the effect of body pressure on the humidity sensors, two 25 kg sandbags were placed
on the foam cushion which was embedded with three humidity sensors: one at the rear (similar to the
coccyx region of the body) and one on either side of the mid line of the cushion approximately where
the middle parts of each thigh would be. An hour-long trial was conducted in a vacant research room
with ambient temperature 24.7 ◦C ± 0.2 ◦C and 38.6% ± 0.4% RH. To avoid any possible disturbance
coming from the change of environmental conditions, the door of the research room was closed during
the whole period of the experiment.
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Figure 2. Box and whisker plot of the data from the consistency test for the three humidity sensors
using two 25 kg sand bags to simulate the body pressure on the cushion surface [9]. The experiment
was conducted in a vacant research room for one hour under the relatively constant ambient conditions
(temperature 24.7 ◦C ± 0.2 ◦C and 38.6% ± 0.4% RH). Average output RH (±1SD) for the three sensors
were: 38.7% (±0.3%), 38.9% (±0.3%) and 38.8% (±0.3%), respectively. Top and bottom whiskers on the
figure represent the maximum and minimum values for the corresponding humidity sensors, while the
line inside each box indicates the median value. The upper side of each box is the third quartile and
the lower side is the first quartile.



Sensors 2017, 17, 775 4 of 11

Experimental results (Figure 2) indicated that there were no obvious differences (ranging from
38.0% RH to 39.5% RH, p > 0.1) between the three humidity sensors under the 50 kg (25 kg × 2 = 50 kg)
mass over the period of 1 h. The experiment further attested the measurement consistency of humidity
sensors in the same environmental RH. It could be concluded that any difference among the humidity
sensors in prolonged sitting experiments could quite confidently be considered as not deriving from
the pressure of the mass being applied.

2.4. Protocols of Sitting Experiments

2.4.1. Cushions

Two medium density foam wheelchair cushions were used for these experiments with one
containing a high-density gel pack placed in a well formed on the uppermost surface (Invacare Ltd.,
Bridgend, UK). Dimensions of the two cushions were 430 × 484 × 77 mm, except that the gel
cushion requires an additional contoured region to accommodate the gel pack. For the purpose
of being unobtrusive and imperceptible to subjects, humidity sensors were placed in small recesses
(30 mm × 40 mm × 20 mm) cut into the cushion foam (locations of sensors were approximately under
the regions of left mid-thigh, right mid-thigh and coccyx relative to the cushions rather than the person
sitting on it). There was only one exception for this protocol and that was for the coccyx region of gel
pack, where the sensor was placed on the top of it. According to previous studies [7,8], these three
locations provide better perspective for monitoring the RH properties of cushions.

Prior to the sitting experiment, both sensor-embedded cushions were covered with the standard
black upholstery (Invacare Ltd., Bridgend, UK). After that, they were mounted on identical
wheelchairs (Ben 9+: Invacare UK, Bridgend, UK) having a backrest, armrests and adjustable footrests.
These additional functions to the wheelchairs created conditions that appeared to generate more
consistent sitting postures between subjects [10]. Since upholstery-covered cushions and wheelchair
have the same appearance, subjective effects relating to humidity were minimised. As the upholstery
is vapour permeable, moisture produced at the body–seat interface is able to penetrate the cover.
As a result, the system can effectively collect RH information, though humidity sensors are placed in
the cushion underneath the upholstery.

As RH values between the body and the seat would not be expected to vary abruptly over
short periods (<1 s), the sampling frequency of the measurement system was set at 1 Hz/sensor.
Matlab (MathWorks Co., Natick, MA, USA) and Excel (Microsoft Co., Redmond, WA, USA) were used
to process and analyse recorded humidity information.

2.4.2. Participants

Eleven university students (six males and five females) took part in the sitting experiment which
had been approved by the Faculty of Health, Sport and Science ethics sub-committee, University of
Glamorgan (now University of South Wales). All volunteers who participated in the trial gave written
informed consent form prior to the experiment. Age range for the subjects was from 21 to 40 years old,
while their body mass index (BMI) was in the range 19.31–26.44 kg·m−2. The experimental protocol
comprised each subject sitting in their natural (usual) posture for 20 min on either of the wheelchair
cushions. Duration of sitting was based on our previous studies [8,10] which found that although
the humidity profile initially changed rapidly, it was followed by a relatively ‘stable’ phase after
being seated for 15–20 min. Before commencing experiments, subjects were randomly (generated
by Microsoft Excel) allocated into one of the two groups, based on whether they were to sit on foam
or gel cushion first. Subjects then returned to the research laboratory on the following day at the
same time of day to sit on the alternative cushion. The duration between any two tests on the same
cushion was at least an hour, allowing sufficient time for the humidity sensors to re-equilibrate with
the ambient conditions. At the onset of experiments, the height of footrests for each wheelchair was
adjusted to ensure the angles at the knee and hips of the sitting person were approximating 90◦ and to
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create an even seating contact across the sitting area. To avoid any impact of garment materials on
the outcomes of the sensors, subjects were asked to wear similar cotton pants when attending each
experiment. All measurements were conducted in the same research room with monitored ambient
temperature and RH (mean ± 1SD during the experimentation period was 21.7 ◦C ± 0.2 ◦C and
42.9% ± 2.0% RH, respectively).

2.4.3. Data Smoothing

It was necessary to suppress unwanted noisy disturbance combined in the raw data before
exploring moisture characteristics of different cushions for prolonged sitting. A moving average
filter [11] was used to smooth the data:

ys(i) =
1

2N + 1
[y(i + N) + y(i + N − 1) + . . . + y(i − N)] (1)

where ys(i) is the smoothed value for the ith data point. For our practical application, N = 3 is the
number of neighbouring data points on either side of ys(i), and 2N + 1 represents the filtering span.
Comparison between original data and filtered signal was shown in Figure 3, where the spiky noise
(unwanted large electronic noise in amplitude) had been affectively removed.

Sensors 2017, 17, 775 5 of 11 

 

pants when attending each experiment. All measurements were conducted in the same research 
room with monitored ambient temperature and RH (mean ± 1SD during the experimentation period 
was 21.7 °C ± 0.2 °C and 42.9% ± 2.0% RH, respectively). 

2.4.3. Data Smoothing 

It was necessary to suppress unwanted noisy disturbance combined in the raw data before 
exploring moisture characteristics of different cushions for prolonged sitting. A moving average  
filter [11] was used to smooth the data: 

 )()1()(
12

1)( NiyNiyNiy
N

iys 


   (1) 

where )(iys  is the smoothed value for the ith data point. For our practical application, N  = 3 is 

the number of neighbouring data points on either side of )(iys , and 2 N  + 1 represents the filtering 
span. Comparison between original data and filtered signal was shown in Figure 3, where the spiky 
noise (unwanted large electronic noise in amplitude) had been affectively removed. 

 
Figure 3. Noise suppression of humidity data with the help of the moving average filter. Original 
data within the first one minute approximates a straight line (any fluctuations resulting from 
unwanted noise) because each subject was required to stand in front of their randomly assigned 
wheelchair and wait for the “start” order before taking a seat. This requirement provided a reference 
value. 

2.4.4. Data Representation 

To study the effect of cushion properties on RH, several parameters were employed including 
average, maximum and median RH values as well as the time to reach the maximum value (Tm) 
extracted from the 20-min sample data of each participant. Beyond those parameters, data from 30-s 
epochs at 5th min, 10th min, 15th min and 20th min were used to analyse RH characteristics at 
different measurement locations. 

3. Results 

A Kolmogorov–Smirnov test was used initially to determine normality of the filtered data.  
In order to study the relationship among sensors at different measurement positions on each of the 
two cushion materials, outputs from left mid-thigh, right mid-thigh and coccyx for each individual 
were examined using one way analysis of variance (ANOVA) and t-test. The threshold value for 
significance was set to 0.05. 

3.1. Comparison among Different Measurement Locations 

For each participant, data from 30-s epochs prior to the end of the time stamps (5 min, 10 min, 
15 min and 20 min) were employed to investigate RH features of the three measurement locations. 
The recorded RH values from each of the three positions were significantly different from each other 
(ANOVA p < 0.01) regardless of time epochs or underlying cushion materials. 

Figure 3. Noise suppression of humidity data with the help of the moving average filter. Original data
within the first one minute approximates a straight line (any fluctuations resulting from unwanted
noise) because each subject was required to stand in front of their randomly assigned wheelchair and
wait for the “start” order before taking a seat. This requirement provided a reference value.

2.4.4. Data Representation

To study the effect of cushion properties on RH, several parameters were employed including
average, maximum and median RH values as well as the time to reach the maximum value (Tm)
extracted from the 20-min sample data of each participant. Beyond those parameters, data from 30-s
epochs at 5th min, 10th min, 15th min and 20th min were used to analyse RH characteristics at different
measurement locations.

3. Results

A Kolmogorov–Smirnov test was used initially to determine normality of the filtered data. In order
to study the relationship among sensors at different measurement positions on each of the two cushion
materials, outputs from left mid-thigh, right mid-thigh and coccyx for each individual were examined
using one way analysis of variance (ANOVA) and t-test. The threshold value for significance was set
to 0.05.

3.1. Comparison among Different Measurement Locations

For each participant, data from 30-s epochs prior to the end of the time stamps (5 min, 10 min,
15 min and 20 min) were employed to investigate RH features of the three measurement locations.
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The recorded RH values from each of the three positions were significantly different from each other
(ANOVA p < 0.01) regardless of time epochs or underlying cushion materials.

It became clear that obvious and consistent differences (paired t-test, p < 0.01) might exist between
the three measurement positions for this small, relatively homogeneous population under these
controlled conditions (Figure 4).
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Figure 4. Averaged RH values from the three different measurement locations (left mid-thigh,
right mid-thigh and coccyx) using data from 30-s epochs (n = 30 × 11 = 330 data points per site)
at the time of 5 min, 10 min, 15 min and 20 min. For clarity, the positive error bars represent 1SD of
upper values, while negative error bars are the 1SD of the lower values. For the gel cushion, the right
mid-thigh produces the largest RH outcomes among the three measured places based on data derived
from the 30-s epochs at the 5th min, 10th min, 15th min and 20th min. (a) Results of the foam cushion;
(b) Results of the gel cushion.

3.2. Comparison between Different Cushions

The average, maximum and median of RH values (Table 1) show that there exists significant
difference between the RH change profile for the foam and the gel wheelchair cushions (p < 0.05, paired
t-test) at the regions of right mid-thigh and coccyx. However, the difference is not significant between
the foam and the gel at the area of the left mid-thigh (p = 0.12, 0.14, 0.13 for average, maximum and
median, respectively, paired t-test).

Table 1. Results of RH measurement for foam and gel cushions.

Cushion
Sensor Locations

Left Mid-Thigh Right Mid-Thigh Coccyx

Foam

Average (% RH) 50.3 ± 5.9 50.6 ± 6.4 51.4 ± 5.6
Maximum (% RH) 56.0 ± 6.3 53.6 ± 7.0 54.7 ± 5.8

Median (% RH) 49.6 ± 6.2 50.9 ± 6.6 52.2 ± 5.8
Tm (s) 79.6 ± 6.0 119.8 ± 7.1 101.7 ± 4.8

Gel

Average (% RH) 54.0 ± 9.4 56.7 ± 9.2 56.4 ± 8.2
Maximum (% RH) 59.8 ± 11.0 60.1 ± 9.7 59.9 ± 9.2

Median (% RH) 53.2 ± 9.1 57.3 ± 9.5 57.2 ± 8.2
Tm (s) 115.5 ± 4.4 139.1 ± 9.2 111.8 ± 8.3

Note: Data of humidity sensors from the three locations for each cushion type (t = 20 min: each value presented as
mean ± 1SD; n = 11). Among these parameters, Tm allows comparison of moisture production rates between the
different cushions and measurement sites. The average values can be used to investigate steady-state features of
different cushions on RH for prolonged sitting, while the maximum value is a good indicator to assess transient-state
characteristics of different cushions on RH.
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4. Discussion

4.1. Humidity Sensor Calibration

In the calibration test, all the maximum deviations were within the range given by the datasheet,
however, there was no predictable deviation from the preset values of the humidity chamber. For the
increasing test, the maximum deviation (5.0% RH) occurred when the preset value of the chamber was
90% RH, whereas, for the decreasing test, the maximum deviation was 6.9% RH when the preset value
of the chamber was 80% RH. Though the hysteresis phenomenon between increasing and decreasing
tests was not obvious, we would suggest that sufficient time (≥1 h) should be provided to allow
humidity sensors to go back to its environmental moisture when undertaking sitting trials where the
same seat sees repeated use (as reported here).

For the sandbag loading test, the output from the sensors appeared very consistent (p > 0.1) with
the maximum deviation between the three sensors being 1.5% RH (Figure 2). Data from the 40% RH
test in the humidity chamber (similar RH to the sandbag trial) and profiles of humidity measurement
(Figure 5) indicated that the humidity sensors were capable of effectively reflecting moisture changes
expected and found at the testing locations. Any significant difference among the three sensors during
the sitting trials was considered to be associated with cushion properties.
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At the current stage, the small size of the variation was deemed to be insignificant in terms
of the magnitude changes expected and found in the seating experiments. However, knowing the
sensors had individual variations in output gave us the opportunity to visit the minor differences
and determine if these were real or related to the inter-sensor differences in the accuracy calibration.
Therefore, from the perspective of best practice the authors would respectfully suggest that based on
the system performance tests, the calibration data should be integrated into data analysis algorithms
in the future when converting voltage outputs to RH values.

4.2. RH Distribution over the Interface

No matter which cushion (either foam or gel) is considered, coccyx and right mid-thigh exhibited
higher averaged RH values than the left mid-thigh (Table 1). This could be interpreted as the RH not
being uniformly distributed over the entire contact surface of the lower body. The best explanation of
this lateralisation regarding RH probably lies in all the subjects’ tendency to prefer a better contact with
their right side, rather than there being some previously undocumented difference in sweat generation
favouring the right lower limb over the left. Handedness was not documented in this experiment;
however, this might be a factor worth noting in future experiments as differences in loading due to
handedness (sidedness) could introduce an unnecessary confounding variable.
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The foam and gel cushions produced significantly different RH values (average, maximum
and median in Table 1) at the three measurement locations (p < 0.05). Furthermore, significant
differences existed between foam and gel (p < 0.05) based on the averaged data over the entire surface.
To further investigate the effect of cushion material properties on this result, we conducted an extreme
experiment by shaping a chipboard kitchen worktop into a wooden “cushion” equivalent with the
same dimensions as the other two cushions (foam and gel). The humidity sensors were embedded in
the same positions as the foam and gel cushions, with the unlaminated side facing upward and the
rounded edge facing forward and the same upholstery used. In accordance with the experimental
protocol, the same subjects (six male and five female) were invited back to sit on the upholstery-covered
wooden ‘cushion’, which was mounted on the same wheelchair for 20 min. An interesting finding
was that the averaged RH output for the wood ‘cushion’ over the 20 min lay between foam and gel
cushions, while the trend in RH was similar to foam: decreasing (Figure 6). These findings indicate that
cushion material property appears to influence moisture at the user–seat interface and is a potentially
important factor to be considered in the process of seat design.
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In addition, all cushions show that the maximal RH can be reached within five minutes (Tm < 300 s).
This finding may be beneficial for cushion manufacturers as less time will be needed to examine those
properties of different materials that affect moisture at the user–seat interface [12,13]; which would
also be instrumental in reducing time for cushion selection. Consequently, the authors can conceive
of the development of a simple, quick and easy system to allow clinicians to offer constructive
suggestions regarding suitability of cushion materials in a semi-bespoke manner to wheelchair-reliant
patients/end-users or their caregivers [14,15].

4.3. Sex Influence on RH

To study the possible impact of different sexes on RH outcomes, recorded data were divided
into two groups: male (n = 6) and female (n = 5). However, no significant difference (p > 0.05) was
seen between the two groups of data, at any of the three locations for both cushions. This finding
further indicated that moisture changes at the contact surface were resulting from aspects of the
cushions’ property.

If the accumulated moisture between the body–seat interface were not released through
air circulation [16], wetness associated with continuous high pressure could facilitate tissue
damage. This relationship has seen growing importance in considering cushion structure in tandem
with the cushion materials’ physical properties from the perspective of design on water vapour
dissipation [9,12,13]. An example of this is the suggestion that notched seats presumably provide
better vertical permeability [7,14].
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Patients who use wheelchairs are at greater risk of developing ulcers associated with prolonged
ischemia at local areas or due to insufficient ventilation to compressed body parts, especially at the
contact surface. Although many ulcer locations are at predictable points on the body, ensuring accurate
RH determination at that point may not be possible with the simple approach used here. Owing to
the uneven RH distribution over the whole body–seat interface, it will only be possible to provide
exact and local descriptions with a grid-like arrays containing many humidity sensors. Therefore,
to effectively detect and prevent wetness-caused skin weakening in its early stages, it is necessary to
develop a sensor-array-based humidity monitoring system. The results presented here make such
a system realisable, as we have shown, the sensors are available and can be used in an unobtrusive
manner to gather robust and sufficiently accurate information from the user–seat interface.

4.4. Clinical and Physiological Significance

Humidity is one of the most important factors to be considered when selecting an appropriate
cushion for people who use wheelchairs. However, there is no universal standard to evaluate
the moisture retaining or dispersing properties of different cushions or their covering materials.
From the physiological point of view, the mechanism of sweating is constrained when surface
pressure is high enough to occlude the blood supply to the sweat gland (reduced blood supply,
reduces available interstitial fluid and thus less fluid is available for sweat production). Therefore,
there is a push-pull effect between interface pressure, sweat (sensible moisture build up) and humidity.
Another factor linked to surface moisture is associated with thermophysiological responses to changes
in relative humidity under different thermal environments [17]. Having some understanding of the
thermodynamics at the seat cushion interface is essential when selecting wheelchair cushions for
wheelchair users in order better understand and ultimately prevent tissue damage due to a prolonged
sitting lifestyle where there is a minimal neurological recognition of potential damage.

However, since no material currently offers excellent performance in all aspects of seating comfort
(such as interface pressure reduction, efficient thermal flux and fast moisture dissipation), a multi-layer
theoretical model has been proposed for clinical applications which divides a cushion into different
layers and employs a specific material to that region [18,19]. Our developed system will be beneficial
in assessing humidity properties of different materials in situ and eventually could help clinicians give
advice to wheelchair users.

5. Conclusions

We report the development and testing of a sensor-based measurement system capable of allowing
investigation of RH at the user–seat surface interface. The results indicate that the system can reliably
monitor RH changes at this important interface and appears unaffected when simulating pressures
imposed on sensors during normal sitting.

Compared with previous studies, the system introduced here closely examined the stability and
reliability of humidity sensors using traceable calibration methods. These results confirm what we
have previously presented with a greater degree of confidence, especially in the stability of the sensors
over a period of use, and show if they were affected by the pressure of sitting rather than the humidity
alone. Additionally, new data processing methods were employed including that of 30 s epochs
statistical analysis and the moving average filter. Furthermore, this paper reports data from a reduced
number of sensors and experimental time; reductions being based on our pilot research and confidence
in the sensors (sensor number decreased from five to three and trial duration was shortened to 20 min
compared with one hour testing time in the preliminary research [8]).

The system also appears capable of discriminating between two commonly used, commercially
available cushions and can supply information such as:

1. RH properties at different measurement locations vary (right and left thighs, coccyx). Thus, it is
of importance to deploy multiple sensors at the user–seat interface if greater resolution of the RH
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is needed to determine the highest ‘at risk’ regions. In future research, the optimal number of
humidity sensors and their locations will be investigated.

2. RH and changes in RH at the three locations are different for the gel and foam cushion (p < 0.05).
As cushion composition may have significant impact on moisture at the user–seat interface, it is
vital to consider the effects on RH of different materials when selecting cushions for prolonged
sitting applications with those in need, such as wheelchair-dependant patients. In addition,
this system might help in the future design of materials which can reduce the build-up of
moisture at this critical interface zone.

3. For both foam and gel cushions, the time to reach a maximum humidity value during
uninterrupted sitting is less than five minutes. This means a shorter testing duration may
be possible when evaluating transient humidity properties related to different cushion materials.
However, it is important to note that these subjects were not impaired and as a result might
have created movements capable of increasing ventilation and reducing interface RH. Therefore,
this study should be extended into those populations which are dependent on wheelchairs and
may not have the capability of sensing changes at the seat interface.

Acknowledgments: This work was supported by Natural Science Foundation of Heilongjiang Province
(Grant No. F201421).

Author Contributions: Peter W. McCarthy, Vincenzo Cascioli and Andrew I. Heusch designed the humidity test
experiments. Zhuofu Liu and Nadia R. Nair performed the trials. Zhuofu Liu, Zhongming Luo and Haifeng Cheng
analyzed the data. All authors discussed the manuscript and completed the writing process.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ostadabbas, S.; Yousefi, R.; Nourani, M.; Faezipour, M.; Tamil, L.; Pompeo, M.Q. A resource-efficient
planning for pressure ulcer prevention. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1265–1273. [CrossRef]
[PubMed]

2. Xu, W.; Huang, M.C.; Amini, N.; He, L. Ecushion: A textile pressure sensor array design and calibration for
sitting posture analysis. IEEE Sens. J. 2013, 13, 3926–3934. [CrossRef]

3. Demarré, L.; van Lancker, A.; van Hecke, A.; Verhaeghe, S.; Grypdonck, M.; Lemey, J.; Annemans, L.;
Beeckman, D. The cost of prevention and treatment of pressure ulcers: A systematic review. Int. J. Nurs. Stud.
2015, 52, 1754–1774. [CrossRef] [PubMed]

4. Meddings, J.; Reichert, H.; Rogers, M.A.; Hofer, T.P.; McMahon, L.F., Jr.; Grazier, K.L. Under pressure:
Financial effect of the hospital-acquired conditions initiative—A statewide analysis of pressure ulcer
development and payment. J. Am. Geriatr. Soc. 2015, 63, 1407–1412. [CrossRef] [PubMed]

5. Thosar, S.S.; Bielko, S.L.; Mather, K.J.; Johnston, J.D.; Wallace, J.P. Effect of prolonged sitting and breaks in
sitting time on endothelial function. Med. Sci. Sport Exer. 2015, 47, 843–849. [CrossRef] [PubMed]

6. Stockton, L.; Rithalia, S. Pressure-reducing cushions: Perceptions of comfort from the wheelchair users’
perspective using interface pressure, temperature and humidity measurements. J. Tissue Viability 2009, 18,
28–35. [CrossRef] [PubMed]

7. Vlaovi, Z.; Domljan, D.; Grbac, I. Research of temperature and moisture during sitting on office chairs.
DRVNA Ind. 2012, 63, 105–112. [CrossRef]

8. Mccarthy, P.W.; Liu, Z.; Heusch, A.I.; Cascioli, V. Assessment of humidity and temperature sensors and their
application to seating. J. Med. Eng. Technol. 2009, 33, 449–453. [CrossRef] [PubMed]

9. Ferguson-Pell, M.; Hirose, H.; Nicholson, G.; Call, E. Thermodynamic rigid cushion loading indenter:
A buttock-shaped temperature and humidity measurement system for cushioning surfaces under anatomical
compression conditions. J. Rehabil. Res. Dev. 2009, 46, 945–956. [CrossRef] [PubMed]

10. Liu, Z.; Cascioli, V.; Heusch, A.I.; Mccarthy, P.W. Studying thermal characteristics of seating materials
by recording temperature from 3 positions at the seat-subject interface. J. Tissue Viability 2011, 20, 73–80.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/TITB.2012.2214443
http://www.ncbi.nlm.nih.gov/pubmed/22922729
http://dx.doi.org/10.1109/JSEN.2013.2259589
http://dx.doi.org/10.1016/j.ijnurstu.2015.06.006
http://www.ncbi.nlm.nih.gov/pubmed/26231383
http://dx.doi.org/10.1111/jgs.13475
http://www.ncbi.nlm.nih.gov/pubmed/26140454
http://dx.doi.org/10.1249/MSS.0000000000000479
http://www.ncbi.nlm.nih.gov/pubmed/25137367
http://dx.doi.org/10.1016/j.jtv.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/19329031
http://dx.doi.org/10.5552/drind.2012.1139
http://dx.doi.org/10.1080/03091900902952626
http://www.ncbi.nlm.nih.gov/pubmed/19479607
http://dx.doi.org/10.1682/JRRD.2008.10.0142
http://www.ncbi.nlm.nih.gov/pubmed/20104417
http://dx.doi.org/10.1016/j.jtv.2011.04.002
http://www.ncbi.nlm.nih.gov/pubmed/21646019


Sensors 2017, 17, 775 11 of 11

11. Chen, H.C.; Chen, S.W. A moving average based filtering system with its application to real-time QRS
detection. In Proceedings of the International Conference on Computers in Cardiology, Thessaloniki Chalkidiki,
Greece, 21–24 September 2003; pp. 585–588.

12. Bartels, V.T. Thermal comfort of aeroplane seats: Influence of different seat materials and the use of laboratory
test methods. Appl. Ergon. 2003, 34, 393–399. [CrossRef]

13. Cengiz, T.G.; Babalık, F.C. The effects of ramie blended car seat covers on thermal comfort during road trials.
Int. J. Ind. Ergonom. 2009, 39, 287–294. [CrossRef]

14. Freeto, T.; Cypress, A.; Amalraj, S.; Yusufishaq, M.S.; Bogie, K.M. Development of a sitting microenvironment
simulator for wheelchair cushion assessment. J. Tissue Viability 2016, 25, 175–179. [CrossRef] [PubMed]

15. Sonenblum, S.E.; Sprigle, S.H.; Cathcart, M.K.; Winder, R.J. 3D anatomy and deformation of the seated
buttocks. J. Tissue Viability 2015, 24, 51–61. [CrossRef] [PubMed]

16. Yu, C.H.; Chou, T.Y.; Chen, C.H.; Chen, P.; Wang, F.C. Development of a modularized seating system to
actively manage interface pressure. Sensors 2014, 14, 14235–14252. [CrossRef] [PubMed]

17. Kakitsuba, N. Physiological responses to changes in relative humidity under thermally neutral, warm and
hot conditions. J. Therm. Biol. 2016, 59, 86–91. [CrossRef] [PubMed]

18. Cochran, G.V.; Palmieri, V. Development of test methods for evaluation of wheelchair cushions. Bull. Prosthet.
Res. 1980, 17, 9–30.

19. Sumiya, T.; Kawamura, K.; Tokuhiro, A.; Takechi, H.; Ogata, H. A survey of wheelchair use by paraplegic
individuals in Japan. Part 1: Characteristics of wheelchair cushions. Spinal Cord. 1997, 35, 590–594. [CrossRef]
[PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0003-6870(03)00058-9
http://dx.doi.org/10.1016/j.ergon.2008.12.002
http://dx.doi.org/10.1016/j.jtv.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/27067837
http://dx.doi.org/10.1016/j.jtv.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25935874
http://dx.doi.org/10.3390/s140814235
http://www.ncbi.nlm.nih.gov/pubmed/25098206
http://dx.doi.org/10.1016/j.jtherbio.2016.03.013
http://www.ncbi.nlm.nih.gov/pubmed/27264893
http://dx.doi.org/10.1038/sj.sc.3100466
http://www.ncbi.nlm.nih.gov/pubmed/9300964
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Acquisition Unit 
	Sensor Evaluation 
	Consistency Test under Sand Bag Loading 
	Protocols of Sitting Experiments 
	Cushions 
	Participants 
	Data Smoothing 
	Data Representation 


	Results 
	Comparison among Different Measurement Locations 
	Comparison between Different Cushions 

	Discussion 
	Humidity Sensor Calibration 
	RH Distribution over the Interface 
	Sex Influence on RH 
	Clinical and Physiological Significance 

	Conclusions 

