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Abstract: Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering
target tracking may decline in accuracy and even diverge when a target makes abrupt state changes.
To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature
Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical
simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm.
Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted
states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that
the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this
way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high
accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the
performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get
better estimation accuracy and greater robustness for maneuvering target tracking.

Keywords: maneuvering target tracking; spherical simplex-radial rule; cubature Kalman filter; fading
factor; strong tracking filter

1. Introduction

Maneuvering target tracking has drawn increasing attention because of its widespread
application in areas such as radar tracking, aircrafts surveillance, and spacecraft orbit control [1,2].
For maneuvering target tracking, many algorithms are developed and grouped into two types.
One type is to improve the accuracy of the motion model, such as multiple-model (MM) methods [3],
optimization of multiple model neural filter [4], current statistical (CS) model [5,6], and so on. The other
type is to detect the target maneuverability and then to cope with it effectively, such as strong tracking
filter (STF) [7], tracking algorithm based on maneuvering detection [8], and so on. In these methods,
the performance of the filter is an important factor affecting the performance of these methods.
Therefore, improving the accuracy of the filter is also a useful method to improve the performance
of maneuvering target tracking. Thus, a large number of nonlinear filters have been developed.
Among these algorithms, the extended Kalman filter (EKF) [9] is one of the earliest and most widely
used nonlinear filters. The EKF uses a linearization technique, based on the first-order Taylor series
expansion, and approximates the nonlinear system. However, EKF has some limitations, such as
complex Jacobian matrix calculations and poor accuracy in estimating the states of the strongly
nonlinear system.

As better alternatives to the EKF, many nonlinear filters based on the idea of Bayesian theory
have been proposed. One popular approach for the nonlinear non-Gaussian filtering problem
is to use sequential Monte Carlo methods. The most famous method is known as particle filter
(PF) [10–13]. The key idea of PF is to represent the posterior distribution by a set of random samples
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and to calculate estimates based on these samples and weights. Although the PF can provide good
performance, the computational cost is very high and suffers from the curse of the dimensionality
problem. These shortcomings restrict their applications in a real-time system. A different approach
for nonlinear filtering is based on the point-based filtering technique that approximates intractable
integrals encountered by a set of deterministically sampled points. Compared with the Monte Carlo
numerical integration that relies on randomly sampled points, the deterministic point-based method
has lower computational complexity with high accuracy. The type of filter includes the unscented
Kalman filter (UKF) [14], Gauss-Hermite filter (GHF) [15], central difference filter (CDF) [16], etc.
Among these methods, the well-known filter is UKF. The UKF uses unscented transform (UT) to capture
the mean and covariance of a Gaussian density. It is shown that the UKF has better performance than
the EKF. Besides its higher approximation accuracy, this UKF can avoid the cumbersome evaluation of
Jacobian and Hessian matrices, making the algorithm easier to implement. Nevertheless, the unscented
transform of the UKF is potentially unstable [17], which restricts its practical applications. Apart from
the aforementioned filters, the cubature Kalman filter (CKF) has been proposed [17,18] by Arasaratnam
and Haykin. Making use of the third-degree spherical-radial cubature rule, the CKF is reported to be
more flexible in implementation form and more stable than UKF. In addition, Jia et al. [19] proposed the
high-degree CKF where the number of sample points increases rapidly with the increase of the degree
or state dimension. To further improve estimation accuracy with low complexity, a new nonlinear
filter named spherical simplex-radial cubature filter (SSRCKF) is developed in [20]. The new class of
CKF is based on the simplex spherical radial (SSR) rule, which improves the accuracy of CKF with
only two more cubature points necessary.

Although the SSRCKF can achieve good accuracy in tracking non-maneuvering or weak
maneuvering targets, it may lose the tracking ability to the abrupt state change when the system
reaches the stable state. This is because the reaction of the gain matrix is delayed to the sudden change
of the prediction error. To tackle the problem mentioned above, a new algorithm called strong tracking
spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The STSSRCKF
is developed based on the combination of strong tracking filter (STF) [7,21,22] and SSRCKF. The new
algorithm using the strong tracking idea and the fading factor based on the residual to modify the prior
covariance matrix quickly. Thus, the gain of the filter can be adjusted in real time to enhance tracking
capacity for the maneuvering target. In addition, the algorithm can also keep a normal tracking
accuracy for weak maneuvering targets. Compared with the STF, strong tracking unscented Kalman
filter (STUKF) [23], strong tracking cubature Kalman filter (STCKF) [24] and SSRCKF, the proposed
algorithm has a good accuracy and robust advantage over a wide range of maneuver. The performance
of the proposed filter is demonstrated by the simulation.

The remainder of this paper is organized as follows. The overview of the background theory
is presented in Section 2. The proposed algorithm is developed in Section 3. Simulation results and
performance comparisons are presented in Section 4. Finally, conclusions are provided in Section 5.

2. A Review of UKF and CKF

The nonlinear discrete-time system is represented by{
xk = f(xk−1) + wk−1

zk = h(xk) + vk

(1)

where k ∈ N denotes discrete time, f(·) represents the nonlinear function, h(·) represents the
measurement function. xk ∈ Rn is the state vector of system, zk ∈ Rm is the measurement,
wk ∈ Rn is the process noise vector, and vk ∈ Rm is the measurement noise vector. The process
wk and measurement noise vk are uncorrelated zero-mean Gaussian white sequences and have zero
cross-correlation with each other, represented as wk ∼ N(0, Qk) and vk ∼ N(0, Rk), respectively.

Under the Gaussian assumption in the Bayesian filtering framework, the key problem of the
nonlinear filtering problem is to calculate the multi-dimensional integrals. However, in most cases,
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the multi-dimensional integrals cannot be solved analytically. As a result, several approximation
methods have been proposed, such as the unscented transformation (UT) and the cubature rule.

The UT with 2n + 1 the sigma points χi and corresponding weights is chosen as

χ0 = xk|k

χi = xk|k +
[√

(n + λ)Pk|k

]
i
(i = 1, · · · , n)

χi = xk|k −
[√

(n + λ)Pk|k

]
i
(i = n + 1, · · · , 2n)

ω
(0)
m = λ/(n + λ)

ω
(0)
c = λ/(n + λ) + (1− α2 + β)

ω
(i)
m = ω

(i)
c = 1/2(n + λ)(i = 1, · · · , 2n)

(2)

where [Pk|k]i is the ith column of the matrix square root of Pk|k, n is the dimension of state.
λ = α2(n + κ)− n is the scaling parameter; α determines the spread of the sigma points around
xk|k. The positive constants β and κ are used as parameters of the method.

The third-degree cubature rule with 2n cubature points and weights is given by:
χi = xk|k +

[√
(n/2)Pk|k

]
i
(i = 1, · · · , n)

χi = xk|k −
[√

(n/2)Pk|k

]
i
(i = n + 1, · · · , 2n)

ω
(i)
m = ω

(i)
c = 1/2n (i = 1, · · · , 2n)

(3)

As indicated above, the main difference between the UT used in UKF and the third-degree
cubature rule used in CKF is that the UT has one more point in the center with a tune parameter κ.
If the parameter κ is set to zero, the sigma points set will evolve into the cubature points set and the
UKF becomes identical to the CKF. For UKF, the scaling parameter κ is always set to n− 3. Based on
this point, for high-dimensional problems (n > 3), it will lead to the negative weight of the center
point. The presence of the negative weight may lead the covariance matrix to become non-positively
defined. Thus, the cubature rule is more stable than the UT. In summary, the CKF is virtually a special
case of UKF and the CKF has better numerical stability than UKF.

3. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter

The heart of the spherical simplex cubature Kalman filter is the spherical-radial cubature rule.
The spherical-radial cubature rule does not approximate the nonlinear function, but it can approximate
the integral of the form (nonlinear function × Gaussian) using weighted quadrature point sets.
The integral with the standard Gaussian distribution N(x; 0, I) can be approximated by the quadrature

∫
Rn

f(x)N(x; 0, I)dx ≈
m

∑
i=1

ωif(γi) (4)

where m is the total number of quadrature points in the state-space Rn, {γi, ωi}m
i is a set of

quadrature points and corresponding weights. The general Gaussian integral
∫
Rn f(x)N(x; x̂, P)dx can

be approximated by the following transformation∫
Rn f(x)N(x; x̂, P)dx =

∫
Rn f(
√

Px + x̂)N(x; 0, I)dx

≈
m
∑

i=1
ωif
(√

Pγi + x̂
) (5)
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The computational complexity of the numerical integration is proportional to the number of
quadrature points, and the accuracy of the numerical integration rule is usually assessed by the
polynomial approximation degrees.

3.1. Review of the Third-Degree Spherical Simplex-Radial Cubature Rule

The SSRCKF algorithm has the same structure as the general Gaussian approximation filters,
such as the CKF, but uses the third-degree spherical simplex-radial cubature rule to calculate the
Gaussian weight integral I(f) =

∫
Rn f(x)N(x; 0, I)dx. By using the spherical simplex-radial cubature

rule, the SSRCKF method can get more accurate estimation than CKF. In the third-degree spherical
simplex-radial cubature rule, the following integral is considered [19]:

I(f) =
∫

Rn
f(x) exp(−xTx)dx (6)

where f(·) is arbitrary nonlinear function, Rn is the integral domain. To calculate the above integral,
let x = rs (sTs = 1, r =

√
xTx). Equation (6) can be transformed into the spherical-radial

coordinate system

I(f) =
∫ ∞

0

∫
Un

f(rs)rn−1 exp(−r2)dσ(s)dr (7)

where s = [s1, s2, · · · , sn]
T, Un = {s ∈ Rn : s2

1 + s2
2 + · · ·+ s2

n = 1
}

is the spherical surface, and σ(·)
is the area element on Un. Then, the Equation (7) can be decomposed into the spherical integral
S(r) =

∫
Un

f(rs)dσ(s) and the radial integral I(f) =
∫ ∞

0 S(r)rn−1 exp(−r2)dr.

3.1.1. Spherical Simplex Rule

As can be seen from the literature [25], the spherical integral
∫

Un
f(rs)dσ(s) can be approximated

by the transformation group of the regular n-simplex with vertices aj. P0 The third-degree spherical
simplex rule with 2n + 2 quadrature points is given by

S(r) =
An

2(n + 1)

n+1
∑

j=1
(f(raj) + f(−raj))

=
Ns
∑

j=1
ωs,jf(ryj)

(8)

where An = 2
√

πn/Γn(1/2), Ns = 2n + 2.

3.1.2. Radial Rule

The radial integral
∫ ∞

0 S(r)rn−1 exp(−r2)dr can be calculated by the following moment
matching equation ∫ ∞

0
S(r)rn−1 exp(−r2)dr =

Nr

∑
i=1

ωr,iS(ri) (9)

where S(r) = rl is a monomial in r, with l an even integer. Using the moment method with the
minimum number of points, the third-degree radial rule (Nr = 1) can be derived. From Equation (9)
we can obtain the moments’ equations as

ωr,1r0
1 =

1
2

Γ(
n
2
)

ωr,1r2
1 =

1
2

Γ(
n + 2

2
) =

n
4

Γ(
n
2
)

(10)
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By solving Equation (10), the points and weights for the third-degree radial rule are given by{
r1 =

√
n/2

ωr,1 = Γ(n/2)/2
(11)

3.1.3. Spherical Simplex-Radial Rule

By using Equations (7), (8) and (11), the third-degree spherical simplex-cubature rule (Nr = 1,
Ns = 2n + 2) is given by ∫

Rn f(x)N(x, 0, I)dx

=
1√
πn

∫
Rn f(
√

2x) exp(−xTx)dx

≈ 1√
πn

Nr
∑

i=1

Ns
∑

j=1
ωr,iωs,jf(

√
2risj)

=
1

2(n + 1)
×
(

n+1
∑

j=1
f(
√

naj) +
2n+2

∑
j=n+2

f(−
√

naj))

)

=
m
∑

k=1
ωkf(ξk)

(12)

where m = 2n + 2, ξk =
√

n[a,−a]k and ωk = 1/(2n + 2) are the corresponding weights.
The steps of SSRCKF algorithm for the nonlinear system can be found in the literature [17].

3.2. Strong Tracking Filter

To improve the performance of EKF, a concept of STF was proposed by Zhou and Frank [7].
They proved that a filter can obtain the strong tracking estimation of the state can have the strong
tracking performance only if the filter satisfies the orthogonal principle [7]. In strong tracking,
the time-varying suboptimal fading factor is incorporated, which online adjusts the covariance of
the predicted state. In this way, the algorithm has the ability to track abrupt state change and strong
robustness against mode uncertainties. The algorithm has the following steps [21]:

x̂k|k−1 = fk(x̂k−1|k−1)

Pk|k−1 = λkFk|k−1PkFT
k|k−1 + Qk

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))

Pk|k = [I−KkHk]Pk|k−1

(13)

where Fk|k−1 and Hk are the process matrix and measure matrix, respectively. The suboptimal
time-varying fading factor λk is given by

λk =

{
ck, ck ≥ 1

1, ck < 1
, ck =

tr[Nk]

tr[Mk]
(14)

Nk = Vk −HkQk−1HT
k − βRk (15)

Mk = HkFkPk−1|k−1FT
k HT

k (16)
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Vk =


v0vT

0 k = 0

ρVk−1 + vkvT
k

1 + ρ
k ≥ 1

(17)

where tr[·] is the trace operation, vk = zk − ẑk|k−1 denotes the measurement residual vector; β ≥ 1 is
the softening factor, which can improve the smoothness of state estimation; 0 < ρ ≤ 1 is the forgetting
factor. In generally, the parameters β and ρ are chosen as 4.5 and 0.95, respectively [26,27].

3.3. Equivalent Expression of the Fading Factor

As we know, STF need calculate the linearization of the nonlinear measurement matrix (Hessian
matrix). However, SSRCKF is not necessary to compute the Hessian matrix. So we give the equivalent
expression of STF, which need not calculate the Hessian matrix. Suppose Pl

k|k−1 is the state error

covariance matrix before introducing fading factor, Pl
zz,k|k−1 is the measurement covariance matrix and

Pl
xz,k|k−1 is cross-covariance matrix, Equations (15) and (16) have the following equivalent expressions:

Nk = Vk − (Pl
xz,k|k−1)

T
(Pl

k|k−1)
−1

Qk−1(P
l
k|k−1)

−1
(Pl

xz,k|k−1)− βRk (18)

Mk = Pl
zz,k|k−1 − Vk + Nk + (β− 1)Rk (19)

The new fading factor can be obtained through Equations (14) and (17)–(19). It can be verified
from Equations (18) and (19) that the calculation of suboptimal fading factor in the Equation expression
does not need to compute any Jacobian matrix.

3.4. Steps of the STSSRCKF

Based on the previous sections, the strong tracking spherical-simplex cubature Kalman filtering
(STSSRCKF) can adjust the prediction error covariance matrix by introducing a suboptimal factor.
Hence, the robustness and real-time tracking ability are provided in the STSSRCKF algorithm.
The initial state is assumed to be Gaussian distribution with x̂0|0 and P0|0. The computation steps of the
third-degree strong tracking spherical simplex-radial cubature Kalman filter is summarized as follows:

Step 1. Give the state estimate x̂k−1|k−1 and the error covariance matrix Pk−1|k−1;
Step 2. State estimate prediction:
The cubature points are obtained as

χl
j,k|k−1 = x̂k|k−1 + chol

(
Pk|k−1

)T
ξ j (20)

where chol(·)is the Cholesky factorization.
Propagate the cubature points, the predicted state xk|k−1, and the predicted covariance Pl

k|k−1
without the fading factor are given as

χ∗j,k|k−1 = f (χj,k−1) (21)

x̂k|k−1 =
m

∑
j=1

ωjχ
∗
j,k|k−1 (22)

Pl
k|k−1 =

m

∑
j=1

ωj(χ
∗
j,k|k−1 − x̂k|k−1)(χ

∗
j,k|k−1 − x̂k|k−1)

T + Qk−1 (23)

where Qk−1 is the covariance matrix of process noise.
Step 3. Calculation of the fading factor λk:
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Using the predicted state x̂k|k−1 and the predicted covariance Pl
k|k−1, the innovation covariance

Pl
zz,k|k−1 and the cross covariance Pl

xz,k|k−1 can be calculated as

zl
j,k|k−1 = h(χ∗j,k|k−1) (24)

ẑl
k|k−1 =

m

∑
j=1

ωjzl
j,k|k−1 (25)

Pl
xz,k|k−1 =

m

∑
j=1

ωj(χ
l
j,k|k−1 − x̂k|k−1)(z

l
j,k|k−1 − ẑl

k|k−1)
T

(26)

Pl
zz,k|k−1 =

m

∑
j=1

ωj(zl
j,k|k−1 − ẑl

k|k−1)(z
l
j,k|k−1 − ẑl

k|k−1)
T
+ Rk (27)

The fading factor λk can be calculated by using Equations (14) and (17)–(19).
Step 4. Measurement updating modified by the fading factor:
The modified prediction covariance P

′

k|k−1 can be updated by

P
′

k|k−1 = λk(P
l
k|k−1 −Qk−1) + Qk−1 (28)

By utilizing the predicted state estimate x̂k|k−1 and the modified predicted covariance P
′

k|k−1 with

the fading factor λk, the modified predicted measurement ẑ
′

k|k−1, the modified cross covariance and

the modified innovation covariance P
′

zz,k|k−1 can be calculated as follows

χ
′

j,k|k−1 = chol(P
′

k|k−1)ξ i + x̂k|k−1 (29)

z
′

j,k|k−1 = h(χ
′

j,k|k−1) (30)

ẑ
′

k|k−1 =
m

∑
j=1

ωjz
′

j,k|k−1 (31)

P
′

xz,k|k−1 =
m

∑
j=1

ωj(χ
′

j,k|k−1 − x̂k|k−1)(z
′

j,k|k−1 − ẑ
′

k|k−1)
T

(32)

P
′

zz,k|k−1 =
m

∑
j=1

ωj(z
′

j,k|k−1 − ẑ
′

k|k−1)(z
′

j,k|k−1 − ẑ
′

k|k−1)
T
+ Rk (33)

Step 5. Estimation results:
The state estimate x̂k and the covariance Pk at time k are calculate as follows

Kk = P
′

xz,k|k−1

(
P
′

zz,k|k−1

)−1
(34)

x̂k|k = x̂k|k−1 + Kk(zk − ẑ
′

k|k−1) (35)

Pk|k = P
′

k|k−1 −KkP
′

zz,k|k−1KT
k (36)

The STSSRCKF combines the advantages of STF and SSRCKF. Then the STSSRCKF has strong
robustness against model uncertainties and good real-time state tracking capability [28]. Moreover,
the STSSRCKF algorithm eliminates the cumbersome evaluation of Jacobian/Hessian matrices,
its numerical stability and estimated accuracy are significantly improved.
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4. Simulation and Results

The effectiveness of the proposed algorithm will be illustrated through two examples of
maneuvering target tracking. Taking the root mean square error (RMSE) and accumulative
RMSE (ARMSE), the study compared the STSSRCKF algorithm with the EKF algorithm and the
SSRCKF algorithm.

4.1. Tracking Model and Measurement Model

The constant acceleration (CA) model is a common tool for tracking target modeling. The state
Equation of CA model in two-dimensional case is described as follow:

Xk = diag[ΦCA, ΦCA]Xk−1 + GCAVk−1 + wk−1 (37)

where Xk−1 = [xk−1,
.
xk−1,

..
xk−1, yk−1,

.
yk−1,

..
yk−1]

T is the target state at time k − 1, (xk−1, yk−1),
(

.
xk−1,

.
yk−1) and (

..
xk−1,

..
yk−1) represent the target position, velocity and acceleration in the x and

y coordinate at time k− 1, respectively; diag[ΦCA, ΦCA] is the state transition matrix, Gk−1 is the state
input matrix, Vk−1 is the process noise, wk−1 is zero-mean white Gaussian noise and its corresponding
covariance matrix is Qca. ΦCA, Gk−1 are described as:

ΦCA =

 1 T T2/2
0 1 T
0 0 1

 (38)

GCA =

 T2/2
T
1

 (39)

where T is the sampling interval.
In radar tracking system, the target motion is usually modelled in Cartesian coordinates, whereas

the target’s position and azimuth are obtained in polar coordinate. The radar is located at the origin,
and provides range and bearing measurements. The measurement model can be established as

zk =

( √
x2

k + y2
k

atan2(yk, xk)

)
+ vk (40)

where atan2(·) is the four-quadrant inverse tangent function, vk is the white Gaussian measurement
noise with zero mean and covariance Rk = diag([σ2

r , σ2
θ ]). σr and σθ denote the standard deviation of

range measurement noise and bearing angle measurement noise, respectively.

4.2. Simulation of the STSSRCKF

Example 1. In this simulation, the sampling interval is T = 1 s and simulation time is 100s. The Monte Carlo
simulations are carried out 200 times. The RMSE of the target position at time k and the accumulative RMSE
(ARMSE) of estimated position at all times are defined in Equations (41) and (42):

RMSEpos(k) =

√√√√ 1
M

M

∑
m=1

((xk − x̂m,k)
2 + (yk − ŷm,k)

2) (41)

ARMSEpos =

√√√√ 1
N

N

∑
k=1

(RMSE2
pos(k)) (42)
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where M is the number of Monte Carlo runs, (xk, yk) is the actual value of the target position at time k and
(x̂m,k, ŷm,k) is the estimated position at time k in mth Monte-Carlo. The RMSE and the accumulative RMSE in
the velocity and acceleration can be defined in the same way.

This example considers a two-dimensional simulation scenario including one motion mode of
high maneuver. The initial location of the target is (x, y) = (100 m, 400 m), its initial velocity is
(vx, vy) = (15 m/s, 20 m/s), and its initial acceleration is (ax, ay) = (0 m/s2, 0 m/s2). The target
makes a uniform motion during the first 150 s. Then, it takes a high maneuver with the acceleration
(ax, ay) = (15 m/s2, 25 m/s2) up to the end of this simulation at t = 200 s. In this simulation,
the initial value x̂0|0 and the initial covariance matrix P0|0 are set to be [100 m, 15 m/s, 0 m/s2,

400 m, 20 m/s, 0 m/s2]T and diag[ (50 m)2, (20 m/s)2, (1 m/s2)
2, (50 m)2, (10 m/s)2 (1 m/s2)

2
]T ,

respectively. The standard deviation of range measurement noise σr is 30 m and the standard deviation
of bearing angle measurement noise σθ is 10 mrad.

The example is executed to examine the performance among the SSRCFK, STF, STUKF, STCKF
and STSSRCK methods. The RMSEs of the position, velocity and acceleration using the five filters
are shown in Figures 1–3. It can be shown that the STF, STUKF, STCKF and STSSRCK methods can
converge quickly when the target engages in high maneuvering. The SSRCKF algorithm only has a
good performance for uniform motion. However, the performance of SSRCKF decreases seriously
when the target engages in high maneuvering. This is because that the prediction covariance cannot be
adjusted timely when the target state suddenly changes. The STF algorithm has the fourth speed of
convergence, which is due to the fact that the linear approximation in the STF may introduce errors
in the state which may lead the state to diverge. As can be seen from Figures 1–3, when the target is
making uniform motion within the first 100 s, the five methods have a similar performance. When the
maneuver starts at t = 101 s, it obviously shows that STF, STUKF, STCKF and STSSRCKF have the
ability to convergence. The main reason is that the fading factor can adjust the prediction covariance
and the corresponding filter gain in real time, which makes these algorithms converge in a short
time. We can also see that the RMSE of the proposed algorithm is lower than that of STUKF and
STCKF. It means that estimate precision of the proposed algorithm is higher than that of the two
algorithms. It is demonstrated that the proposed algorithm can effectively track the abrupt motion
state of the target.
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To quantitatively describe the tracking performance, the ARMSEs of the five methods in estimating
different target parameters are listed in Table 1. As shown, the STSSRCKF provided the best result in
terms of estimation. The STCKF also performed well, followed by the STUKF and STF. The SSRCKF
provided the worst estimate. We can also draw the conclusion that the STSSRCKF has the highest
tracking accuracy of the position, velocity and acceleration.

Table 1. Tracking performance comparison.

Filters Position ARMSE/m Velocity ARMSE/(m/s) Acceleration ARMSE/(m/s2)

SSRCKF 152.1 31.2 6.9
STF 129.7 28.4 6.2

STUKF 124.5 27.5 5.9
STCKF 123.1 26.7 5.8

STSSRCKF 119.3 25.1 5.6

The program is made on the Intel Core (TM) i5-4430 3.0GHZ CPU with 4.00G RAM. Table 2
shows the computational complexity and the computational time of SSRCFK, STF, STUKF, STCKF and
STSSRCK for each run. Apart from STF, the computational complexity of different filters is mainly
determined by the number of points they use. The computational complexity of STCKF as well
as STUKF differs only by one points. The computational complexity of SSRCKF and STSSRCKF is
O{(2n + 2)3}, where n denotes the dimension of state. In addition, we can see that the computational
complexity of STF is the lowest. Because there is a clear formula in STF to calculate the Jacobian matrix,
the computational complexity of STF is much smaller than other four algorithms. It is also shown
that the computational time of the SSRCKF is 0.07 s for each run. However, the computational time
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of the STSSRCKF is 0.15 s, which is greater than that of the SSRCKF. This is because the STSSRCKF
needs to calculate the suboptimal fading factor at each time step. At present, the time consumption
is acceptable. The STSSRCKF needs more computational time than the SSRCKF, but considering the
significant performance improvement gained from the STSSRCKF, this increased computational time
is not substantial.

From this simulation, we can conclude that the STSSRCKF can perform the best in terms of the
balance between computational complexity and estimation accuracy.

Table 2. Computational complexity and computational time of different filters.

Filters Computational Complexity Computational Time (s)

SSRCKF O{(2n + 2)3} 0.07
STF O{(n)2} 0.02

STUKF O{(2n + 1)3} 0.14
STCKF O{(2n)3} 0.14

STSSRCKF O{(2n + 2)3} 0.15

Example 2. This example evaluates the proposed algorithm in tracking a target with weak maneuver and
medium maneuver. Therefore, two simulations are simulated as follows. Assume that there is a target making
uniform at first. The initial location of the target is (x, y) = (5000 m, 5000 m), its initial velocity is (vx, vy) =

(150 m/s, 80 m/s), and its initial acceleration is (ax, ay) = (0 m/s2, 0 m/s2).

Case 1: Simulation of medium maneuvering target tacking. The target moves with initial acceleration
until t = 150 s. Then, it maneuvers with acceleration of (ax(151), ay(151)) = (5 m/s2, 5 m/s2)

up to end of this simulation at t = 200 s.
Case 2: Simulation of weak maneuvering target tracking. The initial position, velocity and acceleration

of the target are the same as those in Case1. The target also moves with initial acceleration until
t = 150 s. Then, it maneuvers with acceleration of (ax(151), ay(151)) = (0.5 m/s2, 0.5 m/s2)

up to end of this simulation at t = 200 s.

Table 3 lists the accumulative RMSEs of the five methods in estimation the three target parameters.
As can be seen from Table 3, the STSSRCKF algorithm also has a good tracking performance for a weak
or medium maneuvering target.

Table 3. ARMSEs in simulation of medium and weak maneuvering target.

Simulation Filters Position ARMSE/m Velocity ARMSE/(m/s) Acceleration ARMSE/(m/s2)

Case 1

SSRCKF 101.6 21.2 5
STF 95.3 20.2 4.5

STUKF 88.5 16.4 4.1
STCKF 87.4 16.8 4.1

STSSRCKF 81.1 15.9 3.7

Case 2

SSRCKF 50.5 8.2 1.8
STF 65.1 10.8 2.4

STUKF 57.3 8.8 2.2
STCKF 56.3 8.3 2.2

STSSRCKF 53.4 8.4 2.1

5. Conclusions

To implement higher tracking accuracy for a maneuvering target, a new method has been
proposed based on the STF and SSRCKF algorithms. Firstly, the time-varying suboptimal fading
factor is introduced in order to adjust the prediction covariance and the corresponding filter gain in
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real time. Secondly, in the proposed method, the spherical simplex-cubature rule takes the place of
calculating nonlinear function Jacobian matrix. In this way, STSSRCKF can converge rapidly in a
short time. Thus, the proposed method has a high tracking accuracy for maneuvering target tracking.
Simulation results show that the STSSRCKF can achieve higher accuracy and robustness than STF,
STUKF, STCKF and SSRCKF, and indicate that it is suitable for maneuvering target tracking.
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