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Abstract: A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed;
such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot
interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a
single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro
bubble. The sensitivity of the strain sensor with a cavity length of about 155 µm and a bubble wall
thickness of about 6 µm was measured to be up to 8.14 pm/µε.
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1. Introduction

The micro fiber Fabry–Perot interferometer (FPI) sensor with the advantages of compact
structure [1], anti-electromagnetic interference [2], and high sensitivity [3] has taken the leading role in a
large number of sensing applications such as strain, high sensitive temperature, high sensitive pressure
and so on [4–6]. It has been widely used in biomedical, non-destructive health monitoring and other
fields; among them, the Fabry–Perot (FP) can be effectively used in the optical fiber tip for a limited
space environment. This is a powerful function in harsh natural and chemical environments [7,8].

At present, optical fiber micro air bubbles can be manufactured by various technologies, such as
the use of hydrofluoric acid etching, due to the core material of doped germanium and pure silica
materials with different corrosion rates of oxygen fluorine acid; after a period of time after reaction,
a groove structure will appear on the endface of the optical fiber, and melt the two grooves together,
which can achieve an optical fiber FP interference structure [9,10]. Jiang Xiaogang used the chemical
etching method to make a groove in the tip of a multimode fiber (MMF); the etched fiber would be put
into a fusion splicer and then a micro-cavity would be created in the tip of the optical fiber by using
arc discharge at the fiber end [11]. However, this kind of structure reduces the device’s characteristics
because the corrosion process makes a certain roughness in the concave holes. Due to the discharge
current and parameters factor, the bubble will be formed within the fiber in the fusing splicer.

Recently, a new method was introduced by the Li group [12] and the Villatoro group [13]; it was
fusion splicing together a section of conventional single mode fiber (SMF) and a section of hollow
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core or solid core photonic crystal fiber (PCF) to form a micro bubble. Their fabricated FPIs have a
high strain sensitivity: 3.36 pm/µε and 2.7 pm/µε for the FPI fabricated by the Li group and Villatoro
group respectively. Therefore, they are suitable for strain measurement. However, the wall thickness
of the micro bubble structure made by PCF is random and uncontrollable.

Ma Jun et al. from Hong Kong Polytechnic University fabricated the sensor by splicing a silica
capillary to a SMF and then fusing (heating/melting) the capillary to form a microsphere with an
internal air-cavity [14]. The FPI strain sensor of the air bubble was fabricated by two standard
SMF and formed by arc fusion splicing; Chongqing University’s experimental results showed the
strain sensitivity to be ~4 pm/µε [15]. Shenzhen University reported a high-sensitivity of up to
6.0 pm/µε [16], and then they improved the technique to create a rectangular air bubble based FPI
with a cavity length of about 61 µm; the wavelength of 1550 nm exhibits a high strain sensitivity of
43.0 pm/µε [17].

In view of the above situation, this paper demonstrates an improved simple encapsulation method
for the preparation of a high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure, which
is realized by the method of multiple weak discharges and slow release pressure at the end of the
optical fiber. In the end, a micro bubble wall with a thickness of about 3~8 µm was prepared. The
strain sensitivity analysis uses the FP interference technique. The experimental results show that the
micro bubble has the strain sensitivity of 8.14 pm/µε. Finally, the results which combined with the
ANSYS software and the experiment are explained.

2. Sensor Fabrication

Figure 1 shows that the fabrication process of an ultrathin, hollow fiber micro bubble structure
uses the pressure-assisted arc discharge technology, which involves five steps. In step 1, as shown
in Figure 1a, SMF with an outer diameter D = 125 µm and an inner diameter d = 8 µm, made of
silica material, and a glass tube with an outer diameter D = 125 µm and an inner diameter d = 75 µm,
are placed in the left and right motor of the fusion splicer (Fijikura FSM 60S, Fijikura, Tokyo, Japan).
In step 2, as shown in Figure 1b, the optical fiber and glass tube discharge are welded by the driving
motor. In step 3, as shown in Figure 1c, the left motor is driven so that the position of the splicer’s
electrodes offsets the splice joint by L. In step 4, as shown in Figure 1d, the pressure pump (ConST162,
ConST, Beijing, China) is connected to fill the inner wall of the sealed glass tube with an absolute
pressure of about 120 KPa. The glass tube is separated into two parts by applying pressure to
the glass tube section several times at the moment of arc discharges. The temperature reaches the
softening/melting point of glass at a high discharge current (~20 mA). In step 5, as shown in Figure 1e,
melting discharge is continued in the end of the glass tube to form a bubble structure, which is
shaped by the air trapped in the glass tube during the discharge. The bubble wall is relatively thick at
the beginning; after a few discharges, the micro bubble region will expand again; correspondingly,
the bubble wall also becomes thinner than before. Finally, the thickness of the micro bubble wall can
reach several microns or even micron level, and is relatively uniform.

Figure 2 is the picture of the preparation of the micro bubble structure, under the 20X microscope.
From the microscope images, the micro bubble length and the bubble wall thickness are estimated to be
155 µm and 6 µm respectively. The uniform thickness of the wall is very important for the fabrication
of the ultrathin micro bubble structure by controlling the arc discharge and motion parameters. Here,
we choose the discharge time of 300 ms and the discharge intensity of −5 bit. Because of the uneven
thickness of the bubble structure, it is easy to rupture at the end of the discharge process. In the same
discharge, the thinner area is easier to soften and expand; after reaching a certain limit, the bubble
will burst.

Three reflected waves are found when light is shone into SMF, as shown in Figure 2a; No. 1 is
from the end of the SMF, and No. 2 and No. 3 are from the inner and outer surfaces of the bubble
wall respectively. Figure 3 shows the measured reflection spectrum of the micro bubble sensor shown
in Figure 2a. Since the bubble wall is thin, the edges displayed in Figure 3 may be approximately
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considered as the result of the interference of two-waves; the optical path difference is twice as much
as the cavity length. If a two-wave interference model is used, the fringe spacing ∆λ can be calculated
by ∆λ = λ2/2nd, where n (≈1) is the refractive index of air and d is the cavity length. The bubble,
as shown in Figure 2a, ∆λwas calculated to be ~7.5 nm, which agrees with the value of 7 nm measured
from Figure 3 at wavelength 1550 nm.
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3. Analysis of the Mechanical Properties of Micro Bubbles

How to apply the load to the sensing probe accurately and effectively is the main problem of
the system. According to the existing laboratory conditions, we made polydimethylsiloxane (PDMS)
diaphragms, fixed the optical fiber micro bubble in the middle of the two PDMS diaphragms and
placed them on the electronic balance.

With different weight put on the PDMS diaphragms, the stress applied to the micro bubble can be
decomposed into σr, σθ and σs—three directions in the coordinate system. The simple σs is the role
of axial stress; σr and σθ are transverse stress; the three existing simultaneously show the effect of
body stress.

The general form of Hooke’s theorem can be expressed by the following formula:

σi = Cijε j(i, j = 1, 2, 3, 4, 5, 6) (1)

where σi is the stress tensor; Cij is the elastic modulus; ε is the strain tensor.
For isotropic media, the Cij can be simplified because of the symmetry of the material; the constants

λ and µ are used to represent the elastic modulus:
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The Lame constants λ and µ, which can be expressed by the material elastic modulus E and
Poisson’s ratio ν:

λ =
νE

(1 + ν)(1 − 2ν)
(3)

µ =
E

2(1 + ν)
(4)

This formula is the general form of Hooke’s theorem in homogeneous medium.
Here, the fiber micro bubble is mainly affected by the transverse stress; the uniform transverse

stress P is applied to the optical fiber along each of the radial directions; the corresponding internal
stress state of the optical fiber is σrr = σθθ = −P; and there is no shear strain in σss = 0, based on the
generalized Hooke theorem in the context of the fiber strain tensor:

 σrr

σθθ

σss

 =


−(1 − ν)

P
E

−(1 − ν)
P
E

2ν
P
E

 (5)

The schematic diagram of the experimental test system is shown in Figure 4.
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Figure 4. Setup for measuring the reflection spectrum of the micro bubble strain sensor.

When the demodulation has an inner light source, and provides an effective wavelength range
of 1525 nm to 1570 nm, then the reflection spectrum was displayed on the computer. The strain
characteristics of the sensing head were fixed in the middle of the two PDMS diaphragms and tested
under a constant temperature (~18 ◦C), then they were placed on an electronic balance. The reflection
spectrum of the sensor was recorded without the weight. In our experiment, Figure 5a shows that a
linear fitting to the experimental data gives a wavelength–strain sensitivity of 8.14 pm/µε, and a high
coefficient of determination value of R2 (0.98); R2 demonstrates that the linearity of the spectrum dip
strain response is excellent. Figure 5b shows that the measured transmission spectra were applied to
strains of 0 µε to 800 µε in steps of 100 µε. When the applied transverse stress was gradually increased,
the interference spectrum shifted to the short wave direction, and a red-shift of the reflection spectrum
was observed since the micro-cavity elongates laterally. It was found that the reflection spectrum is no
longer moving when the stress reaches a certain value.

Figure 5. Strain sensitivity characteristics of proposed microbubble. (a) Wavelength shift of the
interference fringe around 1555 nm as a function of tensile strain applied to the micro bubble;
(b) Calculated sensitivity.

4. Numerical Analysis

In order to study the stress deformation and the deformation of optical fiber micro bubbles under
an applied tensile strain, simulation models were established by use of ANSYS software, and the
measured size of the air bubble was illustrated in Figure 2a. The Young’s modulus and Poisson’s ratio
of optical fiber and PDMS are 73 GPa, 0.17 and 1.2 GPa, 0.48, respectively. Figure 6a is a model of the
optical fiber micro bubble, and Figure 6b shows that a micro bubble is fixed in the middle of the two
PDMS diaphragms. Figure 7a illustrates the two-dimensional stress contours of the micro bubble with
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a tensile strain of 100 µε, which indicates the calculated stress distribution in different parts of the
micro bubble. While the applied tensile strain increases, as shown in Figure 7b, the top of the micro
bubble is subjected to the maximum stress—the calculated stress at the micro bubbles—linearly, with a
slope of 6.63 MPa/µε.
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5. Conclusions

This paper summarizes the existing fiber micro bubbles technology. We demonstrate a method
with multiple, pressure-assisted arc discharges for preparing a high-sensitivity, low-cost, ultrathin,
hollow fiber micro bubble structure; after optimization of the related parameters, the thickness of
the micro bubble wall can reach 3~8 microns, achieve good uniformity, and the thickness of the wall
could be controlled. Such an in-fiber micro bubble can be used to develop a high-sensitivity strain
sensor based on FP interference. The sensitivity of the strain sensor is up to 8.14 pm/µε. Finally,
the experimental results are explained by the simulation of ANSYS software.
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