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Abstract: This paper presents a theoretical model of the dynamics of liquid flow in an angular
accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic
permeability of the transducer are considered to describe the relation between angular acceleration
and the differential pressure on the transducer. The permeability and streaming potential coupling
coefficient of the transducer are determined in the experiments, and special prototypes are utilized
to validate the theoretical model in both the frequency and time domains. The model is applied to
analyze the influence of structural parameters on the frequency response and the transient response
of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low
frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer
and the cross-section radius of the circular tube can be used to control the transient performance.
The proposed model provides the basic techniques to achieve the optimization of the angular
accelerometer together with the methodology to control the wave speed and the hydrodynamic
resistance of the transducer.

Keywords: angular accelerometer; porous transducer; fluid transients; wave speed; dynamic
permeability; streaming potential; sensor optimization

1. Introduction

Angular acceleration plays a significant role in vibration detection, rotation controlling and
navigation [1,2]. To achieve reliable and accurate direct angular acceleration measurements,
different physical principles and technologies have been used: including superconductivity [3],
floated-fly-wheel [4], MEMS [5], heat transfer [6,7], electromagnetics [8] and fluidics [9–18].
The fluid-based design demonstrates an excellent balance in accuracy, bandwidth, measurement
range, volume and insensitivity to linear acceleration [9–18].

The fluidic channel is the fundamental structure in all fluid-based angular accelerometers,
although different designs have been proposed [9–18]. The angular acceleration input is converted
into differential pressure in the fluidic channel, which is measured precisely by a special transducer.
In [9–18], different transducers have been carefully chosen to implement the pressure measurement.
The molecular electronic transducer (MET) was utilized together with iodine-iodide electrolyte
containing potassium iodide to transform the fluidic pressure into an electrical signal [9–14].
Wolfaardt [15] adopted a special spiral fluidic channel and a diaphragm transducer to measure
angular acceleration. Our recent work reported a porous transducer of sintered glass microspheres
to detect the differential pressure [16–18]. In sum, to design the fluidic channel and transducer to
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improve sensor performance in measurement range, linearity, accuracy and bandwidth is the key
challenge, and sensor optimization requires current use of realistic theoretical models.

In the mathematical model of the sensor, the theoretical analysis of the generation and the
propagation pressure in the fluidic channel, as well as the dynamic flow in the transducer is
of great significance because they influence the sensitivity, measurement range and bandwidth.
Huang et al. [9] regarded the fluid in an MET linear accelerometer as an integral part to deduce
the relation between the acceleration input and the liquid flow. This assumption was also adopted and
tested in our proposed liquid-circular angular accelerometer (LCAA) and was shown to be workable
to derive the steady state pressure, but revealed limitations in the analysis of the dynamic properties
of the fluidic system [16]. Wolfaardt [15] emphasized that compressibility and the pressure wave exert
great effects on the dynamic flow in the fluidic system, further affecting the differential pressure on
the transducer. He established a multi-degree of freedom (MDOF) model to describe the dynamic
fluid in the channel and obtained several significant conclusions [15]. However, to guarantee the
accuracy of the MDOF model, the degrees of freedom have to be large enough, which leads to excessive
computation, and the MDOF model is more suitable to illustrate an angular accelerometer with a
diaphragm transducer rather than a porous transducer. Recently, fluid flow in a circular tube has
been modeled by our group on the basis of the theory of fluid transients for the first time, and a part
of the primary conclusions has been obtained [17]. Regretfully, the model of the wave speed, the
dynamic properties of the porous transducer and the transient response of the fluidic system were not
considered, and these factors will be the main focus in this work.

This paper reports theoretical and experimental research on the fluid dynamics in the LCAA
with a porous transducer. The structure, as well as the principle of the sensor is introduced first.
In addition to the fluid transients in the circular tube [17,19,20], the model of the wave speed and the
permeability of the transducer are discussed extensively. To verify the proposed model, prototypes
are designed to implement experiments, and theoretical results are compared with the previous
conclusions in [15,16]. Moreover, several crucial conclusions are obtained by applying the proposed
model, which are beneficial to the performance improvement of the LCAA both in the frequency and
time domains. Finally, some important indexes of the sensor performance are presented together with
the calibration experiments.

2. Structure and Principle of LCAA

The LCAA is designed as shown Figure 1. The circular tube is glass. The fluid is an organic
liquid, and the porous transducer is sintered glass microspheres. When the circular tube rotates
around the sensitive axis with angular acceleration, there is a relative motion between the fluid mass
and the porous transducer, which consequently results in the generation of a differential pressure
between the two sides of the transducer. The differential pressure forces the fluid mass to flow
through the porous transducer, and the streaming potential emerges owing to the existence of the
electrical double layer on the interface between the transducer and the fluid mass [21]. The organic
liquid and the porous glass are adopted in LCAA because the combination of silicon dioxide and
organic fluid has been discovered to generate easily measureable electrokinetic effect [22], and the
porous material demonstrates satisfactory linearity between the differential pressure and the streaming
potential [23,24]. A pair of metallic electrodes is mounted exactly close to the porous transducer, with
a shape designed to avoid the resistance to the fluid flow. A storage cavity is provided, and a gas
is provided to compensate the volume change of the fluid resulting from the temperature variation.
Generally, the LCAA comprises a fluidic system and an electrical molecular system [16].
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Figure 1. Structure of the liquid-circular angular accelerometer (LCAA). 

3. Theoretical Model of the Dynamic Fluid in LCAA 
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LCAA, including the fluid transients in the circular tube, the theoretical model of the wave speed and 
the dynamic permeability of the porous transducer. Methods to control the wave speed and the 
permeability are also explained. 

3.1. Fluid Transients  

Although fluid transients in the circular tube have been discussed in our previous work [17], the 
model is briefly illustrated here to keep the content of this paper easily understood and make the 
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where ܽ is the wave speed in the fluid, ܭ௕ is the bulk modulus and ݌ = ,ݔሺ݌  ሻ denotes the localݐ
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where ߩ଴ is the static density of the fluid. The volumetric fluid flow through the transducer is: 
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Figure 1. Structure of the liquid-circular angular accelerometer (LCAA).

3. Theoretical Model of the Dynamic Fluid in LCAA

This section is concerned with the three parts of the theoretical model of the dynamic fluid in
LCAA, including the fluid transients in the circular tube, the theoretical model of the wave speed
and the dynamic permeability of the porous transducer. Methods to control the wave speed and the
permeability are also explained.

3.1. Fluid Transients

Although fluid transients in the circular tube have been discussed in our previous work [17],
the model is briefly illustrated here to keep the content of this paper easily understood and make
the relation among the model of fluid transients, the wave speed and the permeability of transducer
more distinct.

Fluid flow in the circular tube is assumed to be a one-dimensional and time dependent [19,20].
The x-axis is along the circular tube with x = 0 at one surface of the porous transducer and x = 2πR
at the other side, where R denotes the radius of the circular tube. The transducer, whose thickness
is neglected, is regarded as a porous jump. The density ρ and the velocity u of the fluid are time
dependent. The equations of wave speed continuity and momentum are:

a2 =
Kb
ρ

=
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∂ρ

(1)
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where a is the wave speed in the fluid, Kb is the bulk modulus and p = p(x, t) denotes the local
pressure. The initial conditions are: {

u(x, 0) = 0
ρ(x, 0) = ρ0

(4)

where ρ0 is the static density of the fluid. The volumetric fluid flow through the transducer is:

q(t) = [v(t)− u(0, t)]πr2 (5)

where r is the cross-section radius and v(t) is the transient velocity of the transducer derived from the
angular acceleration input β(t):

v(t) = R
∫ t

0
β(t)dt (6)



Sensors 2017, 17, 416 4 of 20

Then, the definition of the hydrodynamic resistance of the transducer, Rh, is utilized to figure out
the differential pressure on the transducer in Equation (7).

∆p(t) = p(0, t)− p(2πR, t) = q(t)Rh (7)

Under the assumption that the flow on the two sides of the transducer are equal, the boundary
conditions could be obtained:

u(0, t) = u(2πR, t) = v(t)− ∆p(t)
Rhπr2 (8)

3.2. Wave Speed

The wave speed in the circular tube exerts a vital influence on the dynamic performance of
the LCAA since the natural frequency, fn, of angular accelerometer is determined by the wave
speed [15,17]:

fn =
a

4πR
(9)

Thus, increasing the wave speed is beneficial to enlarging the bandwidth. The wave speed in a
tube is affected by the material of the tube, the thickness of the wall and the gas in the tube [19,20],

a =

√
Keq

ρ
[
1 +

(
KeqD/Ee

)
ψ
] (10)

ψ =
2e
D
(1 + υ) +

D
(
1− υ2)

D + e
(11)

Keq =
Kliq

1 +
(
Vg/V

)(
Kliq/Kg − 1

) (12)

where E is Young’s modulus of the material of the tube, Ψ is a non-dimensional parameter that depends
on the elastic properties of the tube, υ is the Poisson ratio, D and e are the internal diameter and the
wall thickness of the circular tube, respectively, Vg is the volume of gas in the tube, V denotes the total
volume of the fluid in the tube, Kliq and Kg are the bulk moduli of the liquid and the gas, respectively,
and Keq is the equivalent bulk modulus of the fluid.

Additionally, the dispersion of the wave speed is known to occur when the tube wall is either
rough or there is a porous medium in the tube [25]. In the situation where dispersion is relevant, the
wave speed can be assumed to follow a normal distribution a ∼ N(µa, σa) rather than a single value.
As can be seen from Equations (10)–(12), several parameters could be utilized to increase the wave
speed, which include the ratio of the internal diameter to the wall thickness of the circular tube, the
material of the liquid and the tube, as well as the volume of the gas in the circular tube. The influence
of the structural parameters of the tube and the gas in the tube will be simulated in the experiments
discussed below.

3.3. Dynamic Permeability Model of the Porous Transducer

Permeability is the most significant parameter of the porous transducer, since it affects fluid flow
and the electrokinetic phenomenon [22–27]. The correlation between the hydrodynamic resistance of
the porous transducer and permeability is defined by Darcy’s law [23],

Rh =
∆p
q

=
ηH
kA

(13)

where η is the dynamic viscosity, H and A are the thickness and the cross-section area of the
transducer, respectively, and k is the permeability. The hydrodynamic resistance of the transducer, Rh,
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is inversely proportion to the permeability and further affects the differential pressure and velocity
(Equations (7) and (8)). The streaming potential coupling coefficient Csp (the ratio of the streaming
potential, Es, to the differential pressure, ∆p), which could be used to serve as the model of the electrical
molecular system, is influenced by permeability [26–29], and one model [29] gives:

Csp =
Es

∆p
=

ε0εrς

η
(

σ0 + Σs
√

c/
√

kF
) (14)

where ε0 and εr are the permittivity of vacuum and the relative permittivity of the fluid respectively,
ς is the zeta potential at the fluid-solid interface, σ0 is the bulk conductivity of the fluid, Σs denotes
the surface conductance of the fluid-solid interface, c is a constant parameter determined by the pore
shape and F = φ−m is the formation factor of the porous medium, where φ is the bulk porosity and m
is the cementation exponent of the porous transducer and assumed to be m = 1.5 for spherical packing
media [27]. As a result, the dynamic characteristics of the permeability can produce marked effects on
the dynamic performance of the fluidic system, as well as the electrical molecular system of the sensor.
Johnson et al. [30] has proposed a model of the dynamic permeability in porous material via analysis
of permeability in the complex frequency domain, as:

k( f ) =
k0{

1− 4iα2
∞k2

0ρ f
ηΛ2 ϕ2

} 1
2
− iα∞k0ρ f

ηφ

(15)

where i is the imaginary unit, f is the operating frequency, α∞ = Fφ is the tortuosity (defined to be
the ratio of the actual length of the flow path in porous medium to the thickness of the medium along
the pressure gradient) and Λ is a characteristic length scale in the transducer, which can be calculated
from the average diameters of the microspheres, dp [27],

Λ =
dp

3(F− 1)
(16)

and k0 is the permeability of the transducer in the steady flow determined by the Blake–Kozeny
equation [24],

k0 =
φ3d

2
p

150(1− φ)2 (17)

Combining the abovementioned models, the fluid dynamic model in LCAA is established.
The model of fluid transients serves as the basic model when the wave speed in Equation (3)
is calculated from Equations (10)–(12), and the hydrodynamic resistance of the transducer in
Equation (8) is obtained from Equations (13)–(17). Analogous to [17], the method of characteristics
can also be utilized with appropriate modification to solve these equations, which is not discussed in
this work.

4. Experiments

In this section, we investigate experimentally several theoretical factors discussed above
pertaining to wave speed and the entire system model for the transducer. The fabrication and
experiments on the porous transducer are introduced first, followed by the simulation of the wave
speed. Accordingly, the proposed model is applied to acquire the frequency response and transient
response of the fluidic system, which are further verified experimentally in prototype systems.
Moreover, the validity of the model makes it possible to analyze the influence of the structural
parameters on the sensor.
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4.1. Porous Transducer

4.1.1. Fabrication and Permeability Measurement

Glass microspheres with three types of particle size distributions (PSD) were prepared first
(Types 1–3), which are believed to follow the lognormal distribution [31,32]. Then, six types of
microspheres (Types 4–9) were produced by selecting and mixing two types of microspheres in
Types 1–3. The mixture proportions and parameters are shown in Table 1, where d(α) means that
the total weight of the microspheres whose diameters are less than d(α) is α times the total weight of
all microspheres. For example, d(0.5) = 34.39 µm denotes that the total weight of the microspheres
whose diameters are less than 34.39 µm is 50% of the total weight of the all microspheres. The average
diameter, dp, of every mixture type is also presented, which is defined by the Sauter mean diameter [33].

All parameters of the microspheres were measured by a laser particle size analyzer
(Mastersizer 2000), to specify the PSD since the basic PSD statistics, such as the origin moment
and the Trask sorting coefficient [32], can be calculated from them. The porous transducers, depicted
in Figure 2, were fabricated in molds by sintering the microspheres and mixtures in a furnace.
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Figure 3 shows the laboratory set up for the measurement of permeability. Transducers are 
mounted between the two measuring heads and placed in ring made of silica gel to avoid the wall 
effect [31]. The flow is controlled by the valves and syringes automatically, and the differential 
pressure on the transducer and the flow rate are measured at the same time to calculate the 
permeability by Equation (13). The measuring range of the differential pressure is ±100 kPa with the 
precision of ±(0.2% + 50 Pa). The flow rate can reach 300 mL/min. 

Figure 2. Transducers and the microstructure. (a) Appearance of the transducers; (b) microstructure of
the transducer of Type 1.

Table 1. Parameters of the glass microspheres and mixture types.

Type Mixture Proportion d(0.1) (µm) d(0.5) (µm) d(0.9) (µm) dp (µm)

1 - 23.94 34.39 49.53 33.08
2 - 36.99 52.62 74.69 50.68
3 - 56.99 80.15 112.32 77.35
4 Type 1:Type 2 = 1:1 30.83 45.61 67.44 43.57
5 Type 1:Type 2 = 1:3 34.92 50.14 71.78 48.19
6 Type 1:Type 2 = 3:1 25.59 38.68 59.03 36.85
7 Type 1:Type 3 = 1:1 33.11 57.91 99.38 52.82
8 Type 1:Type 3 = 1:3 36.15 71.31 123.20 60.43
9 Type 1:Type 3 = 3:1 22.56 40.50 79.64 37.21

Figure 3 shows the laboratory set up for the measurement of permeability. Transducers are
mounted between the two measuring heads and placed in ring made of silica gel to avoid the wall
effect [31]. The flow is controlled by the valves and syringes automatically, and the differential pressure
on the transducer and the flow rate are measured at the same time to calculate the permeability
by Equation (13). The measuring range of the differential pressure is ±100 kPa with the precision
of ±(0.2% + 50 Pa). The flow rate can reach 300 mL/min.
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the streaming potential of the porous transducer. The measurement range is ±2000 mV with an 
accuracy of ±(0.2% + 250 μV). Although the magnitude of the streaming potential coupling coefficient, ܥୱ୮ , shows differences due to the liquid selection, the non-dimensional results would still be 
analogous [25–27]. Therefore, a NaCl solution served as the test fluid in our experiment. For the 

Figure 3. Instrumentation of the permeability measurement (SurPASS, Anton Parr Co., Graz, Austria).

Each mark in Figure 4 compares the measured permeability of one transducer and the
corresponding theoretical value evaluated by Equation (17). In this figure, the permeability of the
transducers of the Types 1–3 coincides with the theoretical results, while the Blake–Kozeny equation
gives an unsatisfactory prediction in Types 4–9. The mixture of glass microspheres of different PSDs
probably results in unpredictable blocking in the micro channels in the transducer, which leads to
the variation in the measured permeability. Furthermore, the transducers of Types 4–9 were more
difficult to fabricate owing to dimensional deformation during manufacturing with an increased failure
rate. Thus, transducers without a mixture of glass microspheres are the better choice for our LCAA
due to their predictable permeability and superior structural quality. Hence, only the transducers of
Types 1–3 were used in our experiments, and the permeability of the transducers used in this work is
mainly 5 × 10−13 m2 < k < 9 × 10−12 m2.

Sensors 2017, 17, 416 7 of 20 

 

 
Figure 3. Instrumentation of the permeability measurement (SurPASS, Anton Parr Co., Graz, 
Austria). 

Each mark in Figure 4 compares the measured permeability of one transducer and the 
corresponding theoretical value evaluated by Equation (17). In this figure, the permeability of the 
transducers of the Types 1–3 coincides with the theoretical results, while the Blake–Kozeny equation 
gives an unsatisfactory prediction in Types 4–9. The mixture of glass microspheres of different PSDs 
probably results in unpredictable blocking in the micro channels in the transducer, which leads to 
the variation in the measured permeability. Furthermore, the transducers of Types 4–9 were more 
difficult to fabricate owing to dimensional deformation during manufacturing with an increased 
failure rate. Thus, transducers without a mixture of glass microspheres are the better choice for our 
LCAA due to their predictable permeability and superior structural quality. Hence, only the 
transducers of Types 1–3 were used in our experiments, and the permeability of the transducers used 
in this work is mainly 5 × 10−13 m2 < k < 9 × 10−12 m2. 

 
Figure 4. Experimental results of the permeability. 

4.1.2. Experiments on the Streaming Potential  

In addition to the permeability measurement, the SurPASS apparatus was also used to measure 
the streaming potential of the porous transducer. The measurement range is ±2000 mV with an 
accuracy of ±(0.2% + 250 μV). Although the magnitude of the streaming potential coupling coefficient, ܥୱ୮ , shows differences due to the liquid selection, the non-dimensional results would still be 
analogous [25–27]. Therefore, a NaCl solution served as the test fluid in our experiment. For the 

Figure 4. Experimental results of the permeability.

4.1.2. Experiments on the Streaming Potential

In addition to the permeability measurement, the SurPASS apparatus was also used to measure the
streaming potential of the porous transducer. The measurement range is ±2000 mV with an accuracy
of ±(0.2% + 250 µV). Although the magnitude of the streaming potential coupling coefficient,
Csp, shows differences due to the liquid selection, the non-dimensional results would still be
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analogous [25–27]. Therefore, a NaCl solution served as the test fluid in our experiment. For the reason
that the streaming potential is influenced by the conductivity and pH of the liquid, the conductivity
was held at 115 mS/m and pH = 6.2 in all of the experiments.

In Figure 5, the streaming potential coupling coefficients of the transducers are normalized by
the largest experimental value, Csp = −2.6× 10−7 V/Pa. The normalized values, C∗sp, are positively
correlated with permeability. A similar correlation has also been noticed with other combinations of
porous material and liquid [22]. Thus, increasing the permeability of the porous transducer contributes
to the enlargement of the electrical signal on the electrodes.
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4.1.3. Simulation of the Dynamic Permeability Model

The dynamic permeability model of Equation (15) was next evaluated with the knowledge of the
permeability range of the transducer. The simulation was conducted with the actual parameters of the
transducers, which had either the largest or the least permeability. The permeability was analyzed in
the complex frequency domain, and the frequency characteristics are displayed in Figure 6.
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It can be concluded that the dynamic permeability model is similar to a first-order system that
has a low-frequency gain and a corner frequency. The transducer with the larger permeability exhibits
a smaller bandwidth since the corner frequency of the transducer with the largest permeability is near
1 kHz while the corner frequency of the other one approaches 100 kHz. Fortunately, the bandwidth of
the transducer permeability is much larger than the bandwidth of the common fluid-based angular
accelerometer (100 Hz) [9,11,14–18], as well as the best one (200 Hz) [34]. In most cases, it is not difficult
to control the permeability of the transducer to maintain the bandwidth of the permeability apparently
superior to the bandwidth of LCAA. Nevertheless, in some situations, if a porous transducer with large
permeability or small hydrodynamic resistance is required to be applied in the sensor, the dynamic
permeability would demonstrate great influence.

4.2. Simulation of the Wave Speed

The ideal wave speed is believed to be larger than 1000 m/s in water or some organic
liquids [19,20]. However, the wave speed in the fluid-based angular accelerometer has been found
much smaller than the ideal value, even less than 100 m/s [15,17]. The models in Section 3.2
were evaluated to analyze the impact of wave speed in the water flow in a glass circular tube.
The relationships of the gas volume and tube wall thickness versus the wave speed are shown
in Figure 7, and the parameters used in the simulation are listed in Table 2 [19,35]. It is evident that a
little gas in the tube would lead to a great decay of the wave speed. When the gas volume is 5% of the
total volume of the fluid, the wave speed in the liquid declines to 60 m/s. In Figure 7b, a thicker tube
wall results in increased wave speed, although the influence is limited for e > 5 mm.
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Table 2. Parameters in the simulation of wave speed model.

Material Young’s
Modulus (GPa) Poisson Ratio Density (kg/m3) Bulk Modulus

(GPa)
Viscosity
(mPa·s)

Glass 46 0.24 2500 - -
ABS Plastic 1.7 0.33 1050 k - -

Water - - 998 2.19 1.01

4.3. Simulation of the Frequency Response of the Fluidic System

The proposed model, which contains the fluid transients, together with the theoretical and
experimental conclusions about the porous transducer and the wave speed, is used to obtain a
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typical frequency response of the fluidic system for R = 25 mm, D = 8 mm, k0 = 1.27× 10−12 m2,
H = 2 mm, A = 25π mm2 and Rh = 2× 1010 Ns/m5. The value of the wave speed does not influence
the analysis because it mainly affects the natural frequency, which means a larger wave speed just
makes a shift of the relation. To maintain consistency between simulation and experiment, the wave
speed is set to be a = 20 m/s to make the theoretical natural frequency close to the actual value
of the LCAA or the prototype. Furthermore, the theoretical natural frequency can be known from
Equation (9) as fn = 63.67 Hz, and the numerical result of the frequency response is plotted in Figure 8.
In this figure, the first peak of the system gain is found to be located at the theoretical natural frequency,
fn, and there is a peak or a valley at each frequency that is the odd or even times fn, respectively.
In solid vibration systems [36,37], the i-th peak is called i-th order resonance, while the j-th valley
is called j-th order anti-resonance, and they correspond to the different system modes. Considering
the similarity seen here, the names of resonance and anti-resonance are also adopted to illustrate the
frequency response of the fluidic system. The heights of the peaks in Figure 8 are found to be less than
the heights in Wolfaardt’s work [15] because the dynamic permeability of the porous transducer is
believed to bring non-negligible damping to the fluidic system. Thus, the quantity of the resonance
is limited, which is different from that seen in [15]. Moreover, the phase of the system changes
rapidly at every resonance of anti-resonance, although the phase beyond the fourth resonance tends to
remain invariant.
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4.4. Experiments of the Frequency Response of the Fluidic System

Prototypes were manufactured in ABS plastic to measure the output of the fluidic system,
whose structure has been illustrated in [16,17], and additional prototypes have been produced in
this work (Table 3). For the reason that this work focuses on the fluid dynamics in the circular
tube and the transducer, the influence of the electrical molecular system is avoided. Therefore, the
electrodes for streaming potential measurement are replaced by a pressure sensor that measures the
differential pressure on the transducer. All of the transducers used in the prototypes have H = 2 mm,
A = 25π mm2, and their permeability can be calculated from their hydrodynamic resistance.
In these experiments, prototypes were produced to demonstrate the influence of R. For this purpose,
the influence of the other parameters is suppressed; r is fixed; and the range of Rh is maintained in a
narrow range (1.0× 1010 Ns/m5 − 3.2× 1010 Ns/m5) to avoid unexpected effects of the different Rh
on the fluidic system.



Sensors 2017, 17, 416 11 of 20

Table 3. Parameters of different prototypes.

Prototype R (mm) r (mm)

A 15 4
B 25 4
C 35 4

The precise calibration of the angular accelerometer, which means that the relative error of the
calibration process is lower than 0.5% and the bandwidth is larger than 500 Hz, is a challenging
task in the world for several reasons. Firstly, it is not easy to define either the standard angular
acceleration or to generate a constant angular acceleration. Secondly, the calibration requires the
calibration platform to have enough bandwidth, as well as outstanding dynamic performance [2],
which is affected by the error of measurement and control. Thirdly, it is difficult to determine the error
of the calibration platform, and this error can only be estimated from the error of the measurement
and control indirectly. Moreover, some researchers have presented the calibration process of their
angular accelerometer, but did not discuss the performance of the platform [8,12,15], and some seemed
to be bandwidth limited [12,15]. To date, the most accurate method is calibrating the sensor on an
angle-vibration table equipped with either a grating scale or laser interferometer. Compared with
the angle-vibration tables used in our previous work [16,17], a better one has been equipped in our
laboratory recently, which is able to operate over 0.001–1000 Hz at several determined frequency
points for both magnitude-frequency characteristic (MFC) and phase-frequency characteristic (PFC)
measurements with relative accuracy of 0.5%. The calibration apparatus is shown in Figure 9. The
prototype was fixed on the table, and the table generated sinusoidal angle vibration with accurate
magnitude and frequency. The real-time output of the prototype was compared to the acceleration of
the table, which was measured by the aforementioned optical method to obtain the gain and phase
lag of the sensor. At every frequency, the prototype was tested with several angular acceleration
inputs within the range 50–200 rad/s2 to examine the linearity of the gain, and it was found that
the gain of the prototype with different angular acceleration inputs at the determined frequency
maintained unchanged.
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The frequency characteristics of the three prototypes are shown in Figure 10. It is not difficult to
find the first resonance of every prototype in MFC and corresponding rapid changes near the natural
frequency in PFC. The frequency characteristics of the fluidic system are thus apparently dependent
on the radius of the tube, R. The prototype with the smaller radius exhibits a larger natural frequency,
but smaller low-frequency gain, which is consistent with Equation (9) and the theory in [14–17].
However, when the operating frequency is larger than 100 Hz, the gain diminishes quickly, and the
phase lag increases obviously. This unexpected phenomenon mainly results from the differential
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pressure measurement method in the prototypes, which transmit the pressure from the tube to the
pressure sensor through holes and tubes. As a result, damping of the pressure magnitude and phase
lag may be introduced into the whole prototype. For this reason, it becomes difficult to observe more
resonances of the fluidic system, except the first one, although sometimes, they can be recognized in
the experiments [17]. Fortunately, the performance of the fluidic system primarily depends on the first
resonance, and the other resonances make a minor difference in the system.

The theoretical frequency responses of the three prototypes are shown in Figure 11. All of
the structural parameters of the prototypes are utilized in the simulation to specify the theoretical
model, and dispersion of the wave speed is included and assumed to follow a normal distribution as
a ∼ N (µa = 15 m/s, σa = 10 m/s) to get the best fit between the theory and experiment. Although
the curves in Figure 11 are smoother than the measured curves, similar conclusions can also be
obtained from Figure 11. Theoretically, the prototype with smaller R also performs with larger natural
frequency, but smaller low-frequency gain. When the frequency is lower than the frequency of the first
anti-resonance response in Figure 11, the changes of the PFCs coincide with the experimental results in
Figure 10. The locations of the first resonance of the theoretical results are also consistent with those of
the experimental data.
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Without loss of generality, the experimental frequency responses of Prototype B are selected for
comparison with the proposed model of this paper and the previous model without fluid dynamic
consideration [16]. In Figure 12, the two theoretical models show favorable consistency with the
measurements in the low frequency range (f < 30 Hz). However, when f > 30 Hz, the model without
dynamic fluid consideration is not convincing, because the location and the peak of resonance in
MFC and the phase change in PFC cannot be predicted. On the contrary, the model in this work is
almost able to predict the variation of the frequency response of the fluidic system when f < 100 Hz.
As for the f > 100 Hz, the pressure loss and phase lag resulting from the pressure measurement may
have an unexpected influence on the results, which is difficult to predict with the given measurement
technique. Because of the pressure loss, the low-frequency gains of the experiments are slightly
lower than the theoretical values. Hence, a loss factor is defined by the ratio of the theoretical low
frequency gain, Kth, of a prototype to the experimental low-frequency gain, Kex. The low frequency gain,
Kth = 2πρR2, is known from [16], and the same value of Kth can be obtained by the proposed model
in this work as shown in Figure 12. The average gain at the lowest three frequency points of each
prototype is regarded as Kex. The results are shown in Table 4. The loss factor of each prototype varies
in the range of 1.1–1.3, and the average loss factor is 1.2.
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Table 4. Determination of the loss factor.

Prototype Kth (Pa/rad/s2) Kex (Pa/rad/s2) Loss Factor (Kth/Kex)

A 1.41 1.16 1.22
B 3.93 3.56 1.10
C 7.70 5.97 1.29

Average - - 1.20

4.5. Experiment of the Transient Response of the Fluidic System

For the purpose of validating the output of the proposed model responding to the transient input,
Prototype B was fixed to an arbitrarily rotating platform. The angular acceleration generated by this
platform could be seen as a non-sinusoidal angular acceleration input to the prototype. The angular
acceleration of the platform was detected by a fluid-based angular accelerometer, which is produced by
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the Beijing Automation Control Equipment Institute. It has good performance with a relative accuracy
of 1%, a measurement range of −500~500 rad/s2, an output range is −12.5~12.5 V, a zero offset lower
than 17◦/s2 and bandwidth of 0.1–120 Hz. The signal detected by this accelerometer was regarded as
the reference input signal and the output of the prototype was simultaneously recorded. To examine
the transient performance of the proposed model, the reference input signal was inserted into the
proposed model, in which the actual parameters of prototype were used with the ratio of the gas
in the tube assumed to be 5%. Since the loss factor has been determined in Table 4, the differential
pressure measured by the prototype was corrected by multiplying the average loss factor of 1.20.
The transient theoretical output of the fluidic system is compared with the output of the prototype
in Figure 13. It is noticed that the outputs of the theoretical model are consistent with the signal of
the prototype with 1.4% relative error, and the details in the angular acceleration variation can be
reflected by the theoretical model. In other words, the transient response of the fluidic system reacting
to non-sinusoidal input can be predicted by the proposed model.
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e = 2 mm, k0 = 1.98× 10−12 m2.

4.6. Influence of Structural Parameters

The proposed theoretical model of the fluidic system, which contains the fluid transients,
the influence of the wave speed and the dynamic permeability of the transducer, has been shown
to be valid. In the following, the theoretical model is applied to analyze the influence of structural
parameters. Four indexes are considered to quantify the impact of the structure parameters on the
fluidic system.

• Low frequency gain: the system gain at low frequency, which has an effect on the magnitude of
the output signal of the system. Small low frequency gain would lead to the low signal-noise ratio
of the sensor.

• Bode magnitude −3-dB bandwidth: the standard bandwidth of the system, which influences the
operating frequency range of the sensor.

• Step response overshoot: relative height of the peak in step response, which mainly depends on
the damping of the system.

• Step response transient time: transient time of the system changing into the 2% range of the new
stable state in the step response.
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4.6.1. Influence of Hydrodynamic Resistance

Figure 14 shows the influence of the hydrodynamic resistance on the four indexes. The size of
the transducer is also set to be H = 2 mm, A = 25π mm2, and Rh is determined when water is the
fluid. The low frequency gain of the fluidic system is unchanged until the hydrodynamic resistance
decreases to less than 1010 Ns/m5. When compared with the slight variation of the low frequency gain,
the bandwidth exhibits greater change when Rh ≤ 1011 Ns/m5. The largest bandwidth is obtained
with Rh = 2.5× 109 Ns/m5, although the system bandwidth decays quickly with lower hydrodynamic
resistance. Furthermore, the overshoot and the transient time of the step response demonstrates
analogous correlation with Rh. If Rh ≤ 1011 Ns/m5, less overshoot and transient time result from
the reduced hydrodynamic resistance, which means that the fluidic system reacts to the step input
more quickly.
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The peak height of the system gain at the natural frequency is believed to impact the transient
performance of the fluidic system. As shown in Figure 15a, with the reduction of Rh, the height
of the first resonance of the fluidic system decreases and even disappears. Meanwhile, the fluidic
system responds to the step input faster, and less oscillation emerges together with diminishing
overshoot in the step response in Figure 15b. As a result, Rh becomes a crucial parameter to optimize
the dynamic performance of the fluidic system and the LCAA, and it is also convenient to control
this parameter in the fabrication with the knowledge of Equations (13) and (17). Although it seems
like it is a wise choice to increase the permeability to get a smaller Rh, as well as a better transient
response of the fluidic system, the permeability is supposed to be controlled under 9 × 10−12 m2,
since too large a permeability may result in the narrow bandwidth of the dynamic permeability,
which has been explained in Section 4.1. Hence, the permeability, the hydrodynamic resistance
and the size of the transducer should be designed together to achieve a good balance among the
bandwidth of the permeability, the transient response performance, as well as the streaming potential
coupling coefficient.
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4.6.2. Influence of the Wave Speed

As mentioned in previous sections, the wave speed imposes a prominent effect on the fluid flow
in LCAA, and its influences are delineated in Figure 16.
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The most evident conclusion is that despite the negligible deduction of low frequency gain,
the increase of the wave speed contributes to the optimization in all of the other three indexes. It is the
most efficient method to optimize the sensor by improving the wave speed, although great difficulties
would be encountered within this process since both the roughness of the tube wall and the existence
of the transducer limit the wave speed. As can be seen in Section 4.2, an effective technique to enlarge
the wave speed at present is reducing the gas in the circular tube. Additionally, one thing should also
be noticed, that the gas in the storage cavity might have a negative effect on the performance of the
sensor. As a result, it is necessary to design a better structure in the future, which can not only deal
with the volume variation of the liquid mass, but also avoid gas existence in the circular tube.
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4.6.3. Influence of the Radius of the Circular Tube

Since the natural frequency of the fluidic system relies on both the wave speed, as well as the
radius of the circular tube, the influence of R is discussed in this section. In Figure 17, the low
frequency gain and the bandwidth reveal contradiction with each other by changing R. Increasing the
radius leads to the enlargement of the low frequency gain, but narrower bandwidth in the meantime.
This phenomenon can also be found in the aforementioned results as Figures 10 and 11. In engineering
applications, a proper radius is supposed to be determined to obtain a good balance between the low
frequency gain and the bandwidth. Besides, the overshoot is unrelated to R, while the transient time
increases along with the radius.
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Figure 17. Relationship of the fluidic system indexes versus the radius of the circular tube,
where Rh = 2 × 1010 Ns/m5, a = 20 m/s, r = 4 mm. (a) Variation of the low frequency gain
and the bandwidth; (b) variation of the step response overshoot and the transient time.

4.6.4. Influence of the Cross-Section Radius

As can be known from the Equation (8), the impact of the cross-section radius of the circular tube
r on the fluidic system is probably similar to the influence of Rh. The only difference is that the range
of r is narrow due to the limit in the tube size. In the simulation, the largest bandwidth is found in
Figure 18 when r = 2 mm, and the low frequency gain is nearly invariant when r ≥ 2 mm. Besides,
the overshoot and the transient time manifest a positive correlation to the cross-section radius of the
circular tube.
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4.7. Performance of the LCAA

LCAA was also calibrated on the angle-vibration table, and this experiment was repeated and
even conducted on some other calibration platforms to guarantee the reproducibility of the result.
The frequency response of LCAA is drawn in Figure 19. As known from the discussion of Figure 15,
the decreasing of the first resonance of the fluidic system is beneficial to the reduction of the overshoot
and the transient time of the fluidic system, which can be controlled by the structure parameters of the
sensor. Hence, with the knowledge in Section 4.6, appropriate structure parameters were selected to
produce the sensor and the first resonance of the sensor disappears in Figure 19, which improves the
transient performance of the sensor. Moreover, for the reason that the whole sensor is the combination
of the fluidic system, the molecular electronic system, as well as the circuits, its frequency response
differs from the fluidic system, but some features of the fluidic system could also be noticed if observed
carefully. The first resonance always emerges before the first decay in MFC, which means the location
of the natural frequency of the sensor lies in 70~100 Hz. A rapid change of PFC appears near the
natural frequency and then becomes flat.
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Figure 19. Frequency response of LCAA.

The fundamental indexes of LCAA are shown in Table 5. Compared with other types of angular
accelerometer, this sensor performs with good balance in bandwidth, measure range, accuracy and
environmental adaptation. According to the previous theoretical conclusions, it is also possible to
enlarge the bandwidth by improving the wave speed or changing the radius of the circular tube,
which would contribute to a more extensive application of LCAA.

Table 5. Indexes of LCAA.

Index Value

Bandwidth 0.5~120 Hz
Measurement Range −25,000◦/s2~+25,000◦/s2

Scale Factor 0.5 mVs2/◦

Dead Band 1◦/s2

Relative Error 1%
Power Supply ±15 V

Temperature Range −40~+60 ◦C
External Size Φ75 mm × 41 mm

5. Conclusions

The theoretical model of the dynamic fluid in LCAA has been presented in this paper,
which mainly includes the model of fluid transients in the circular tube, the model of the wave
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speed and the dynamic permeability model of the porous transducer. This model can be applied to
predict several characteristics of the fluidic system, such as the natural frequency, the locations of the
resonances, as well as the anti-resonances, the low frequency gain and the transient response. On the
basis of this mathematical model, the performance optimization techniques of LCAA could be further
implemented. The gas in the tube, the wave speed and the radius of the circular tube can be better
designed to control the low frequency gain and the bandwidth of the sensor while the hydrodynamic
resistance, as well as the permeability of the porous transducer and the cross-section radius of the
circular tube chiefly implement effects on the performance of the transient response.

The theoretical conclusions have been proven by the experiments, from which some other
fundamental results have also been concluded. The microspheres of Types 1–3 are more suitable
for transducer production, and the average diameter of microspheres could be used to identify the
permeability of the transducer, which can further control the dynamic range of the permeability,
the streaming potential and the hydrodynamic resistance of the transducer.
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