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Abstract: RGB-D (Red Green Blue and Depth) sensors are devices that can provide color and depth
information from a scene at the same time. Recently, they have been widely used in many solutions
due to their commercial growth from the entertainment market to many diverse areas (e.g., robotics,
CAD, etc.). In the research community, these devices have had good uptake due to their acceptable
level of accuracy for many applications and their low cost, but in some cases, they work at the limit of
their sensitivity, near to the minimum feature size that can be perceived. For this reason, calibration
processes are critical in order to increase their accuracy and enable them to meet the requirements
of such kinds of applications. To the best of our knowledge, there is not a comparative study of
calibration algorithms evaluating its results in multiple RGB-D sensors. Specifically, in this paper, a
comparison of the three most used calibration methods have been applied to three different RGB-D
sensors based on structured light and time-of-flight. The comparison of methods has been carried
out by a set of experiments to evaluate the accuracy of depth measurements. Additionally, an object
reconstruction application has been used as example of an application for which the sensor works at
the limit of its sensitivity. The obtained results of reconstruction have been evaluated through visual
inspection and quantitative measurements.

Keywords: camera calibration; RGB-D; accuracy; Kinect; depth sensor

1. Introduction

Broadly, in a 3D vision system, three main stages can be identified: acquisition, data processing
and analysis. All of these stages are constrained by the application requirements. In the analysis
stage, useful measures of the data are obtained depending on the requirements of the final application.
The data processing stage modifies the data in order to align the acquired views. In the first stage,
the data is acquired by the sensor, therefore it is crucial because its quality affects later stages.

In order to meet the requirements, the acquisition stage is constrained by three parameters [1]:
the scene, the subject of interest and the camera. The light, shadows or the point of view are some factors
of the scene that affect the captured data. For example, most sensors that project a pattern to determine
the depth of the scene are limited to working indoors, because they would not be able to identify the
pattern under intense sunlight. The subject of interest also affects the acquisition, for example, it could
include specular surfaces causing the reflection of the pattern. Finally, the acquisition is affected by the
camera, which is conditioned by its sensitivity, calibration and technology.

Focused on the sensor, the acquisition of 3D data could be performed with different types of
devices, broadly classified into two groups:
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o  Contact devices. They need a direct contact with the subject of interest to provide 3D information.
o  Contactless devices. They are able to provide 3D information from the distance.

This paper is focused on the second group, specifically on optical sensors because they are faster,
more flexible and can provide complementary information about the scene’s colour. Comprehensive
reviews of these sensors for 3D measurement have been presented in several papers [2-5]. Moreover,
different taxonomies have been proposed to classify this kind of sensors as the interesting unifying
framework proposed by Davis et al. [6]. However, this group has been widely classified into passive
and active methods [4,7,8]:

o  Passive methods measure the scene radiance as a function of the object surface and environment
characteristics using (usually) non-controlled ambient light external to the imaging system. Hence,
only visible features of the scene are measured, providing high accuracy for well-defined features,
such as targets and edges. However, unmarked surfaces are hard to measure [9]. In this category,
techniques such as shape-from-X (e.g., shading, defocus, silhouettes, etc.), structure-from-motion
and stereo are included. Stereo vision has received significant attention over the past decade
in order to provide more accurate results and obtain them faster [10]. Usually, the methods
use two or more calibrated RGB cameras to get the depth image by computing the disparity
information from the images that conform to the system [11]. Stereoscopic cameras have been
used for many purposes, including 3D reconstruction [12]. This technology can provide both
colour and depth information, but it is required to be calibrated every time its location is changed,
making its portability more difficult. Besides, they need the presence of texture to obtain the 3D
information. In some devices, the distance between both cameras could be changed to fit the
working range of the system.

o  Active methods use their own light source in the imaging system for the active illumination of
the scene [13]. The sensor is usually focused on known features from this light source. Then,
the illumination and the features are designed to be easily measured in most environments.
Since they have difficulties with varying surface finish or sharp discontinuities such as edges [9],
compared with the passive approach, active visual sensing techniques are in general more accurate
and reliable [14]. Active sensors could be classified into two broad categories [15]: triangulation
and time delay. The former rely on the triangulation principle using the light system, the scene
and the sensor. The main differences between the methods include the nature of the controlled
illumination (laser or incoherent light) and its geometry (beam, sheet, or projected pattern).
Laser triangulators, structured light and moiré methods are examples that fall into this level.
Time delay systems measure the time between emission and detection of light reflected by
the scene (Time-of-flight, ToF) or the phase difference between two waves (Interferometry).
Focusing on the ToF, pulsed-light and continuous wave modulation are the technologies available
nowadays. Pulsed-light sensors directly measure the round-trip time of a light pulse. In order
to obtain a range map, they use either rotating mirrors (LIDAR - Light Detection and Ranging
o Laser Imaging Detection and Ranging) or a light diffuser (Flash LIDAR). LIDAR cameras
usually operate outdoors and their range can be up to a few kilometers. Continuous wave sensors
measure the phase difference between the emitted and received signals and usually operate
indoors. Thier ambiguity-free range is usually fixed from 30 cm to 7 m [16,17]. A extensive
comparison of ToF technologies can be found in [18].

Depending on the application requirements, a specific imaging device is selected according
its characteristics. A comprehensive review including advantages and disadvantages for different
applications of the most important techniques and sensors for the optical 3D measurement of a scene
was presented by Sansoni et al. [5]. One of the conclusive remarks of the study was that most of the
equipment available was significantly expensive, being an obstacle to a much wider distribution of 3D
systems. However, they observed a trend towards a decrease in costs due to the increased competition
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of manufacturers and the technology evolution decreasing costs. One year later, popularized by
Microsoft releasing the first generation of Kinect in November 2010 and focused on the entertainment
market, consumer RGB-D (Red Green Blue and Depth) sensors emerged, which underlines this fact.
As we can see in Figure 1, the introduction of Kinect sensor boosted the number of publications related
to depth cameras and 3D imaging systems in general. Although the RGB-D topic was named in a few
papers before 2011, it is in that year when the technological term was adopted, after the first Kinect
version appeared. Moreover, the number of papers citing the Kinect camera has represented on
average about 77% of the research publications on RGB-D sensors. These sensors combine one of the
previous techniques (Structured Light, Time-of-Flight...) with an RGB camera to provide the colour and
depth images of the scene using a common CMOS sensor for the color image and a different infrared
technology to acquire the depth information.
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Figure 1. Number of publications calculated from Scopus containing 3D imaging, depth cameras,
RGB-D cameras, Microsoft Kinect sensors and other devices (including Asus Xtion, Primesense and
Intel RealSense).

RGB-D devices are mainly characterized by their low cost [19-21] but also they provide portability,
high framerate, multidimensional perception with good accuracy for a wide range of applications.
Hence, the use of these sensors has grown and been generalized from home entertainment systems
to areas like robotics, medical informatics, etc. [22,23]. However, in some applications a calibration
process could be needed in order to increase their accuracy, because they work in the limit of its
sensitivity and some characteristics of the subject of interest might not be perceptible.

Khoshelham and Elberink [20] carried out a study into the accuracy of the Microsoft Kinect sensor.
Some works propose algorithms and applications using RGB-D sensors. Han et al. [24] carried out
a review focused on the Microsoft Kinect, but a more general review could be found in [25]. In [26],
the authors performed a comparative of registration methods for RGB-D sensors. Weiss et al. [27] used
a Microsoft Kinect to obtain a 3D model of a subject from multiple views around the body, avoiding the
use of expensive devices. In [28], the authors were able to obtain a 3D model of a foot from multiple
images around it using a PrimeSnese Carmine 1.09 and augmented reality markers. Jedvert [29] also
used a Microsoft Kinect to obtain a 3D model of the head with hight quality textures. The work of
Paier [30] aims to obtain a 3D model of a face for subject identification in security systems. In [31],
the authors demonstrated that default parameters used by a Microsoft Kinect are not good enough for
many applications.

To increase the accuracy of the data provided by these sensors, some works perform a calibration
process. In [32], the authors propose an algorithm to calibrate the intrinsic parameters of both cameras,
providing the necessary information to convert the disparity to meters. Zhang and Zhang [33] extend
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this work looking for correspondences between colour and depth images of a calibration pattern.
Burrus [34] performed the calibration of a Kinect sensor based on the OpenCV calibration to obtain
the intrinsic and extrinsic parameters. In [31], the authors noticed residual errors in depth images
after calibration, estimating a fixed error for each pixel and calculating a correction pattern. Later,
Daniel Herrera et al. [35] proposed a distortion correction on disparity images, taking into account
that the magnitude of this error decreases as the distance from the subject increases. Subsequently,
Raposo et al. [36] improved that proposal using fewer images for the input of the calibration process.
Recently, Staranowicz et al. [37] proposed a method to estimate the parameters of a depth camera from
images of a spheric object, using the Hough transform and performing a non linear minimization to
obtain the results.

From the study of the state-of-the-art practice, it can be demonstrated that RGB-D sensors are
useful for many applications, but their sensitivity is not suitable for problems in which higher accuracy
of the data is required. To the best of our knowledge, there exist works carrying out a comparative
of calibration methods for RGB-D sensors. For example, Staranowicz and Mariottini [38] made
a comparison of three calibration methods [32,33,37] and, recently, Xiang et al. [39] did the same
for others [34,35,40]. Meanwhile, Lachat et al. [13] made a comparison of the provided raw data,
a calibration method and photogrammetry. Also, it is important to highlight the work carried out by
Staranowicz et al. [41] in which they propose a comparative of different calibration methods using
different known objects: checkerboard and spheres. However, all of them performed the evaluation of
the methods and sensors using only a single consumer RGB-D sensor, the Microsoft Kinect v1 or v2.
Analysing the technologies used by RGB-D sensors and the available calibration algorithms to improve
their accuracy are very important topics that could be addressed simultaneously (i.e., quantifying the
result of each algorithm in different technologies). In order to do so, in this paper, a comparative study
of calibration algorithms applied to RGB-D sensors is presented in order to analyse the accuracy limits
of this sensors.

The rest of the paper is structured as follows: in Section 2 the common technologies used by
these sensors are explained and so are the three most common calibration methods. Section 3 shows
the calibration results for each sensor and the developed experiments to test the accuracy for each
one. An example of object reconstruction is used in order to evaluate the accuracy of the results
in an application wherein the sensor works at the limit of its sensitivity. Finally, in Section 4 the
conclusions of this work are shown.

2. Materials and Methods

In this section, a description of the RGB-D cameras and the calibration methods used in the
quantitative comparison are presented.

2.1. RGB-D Cameras

Popularized by Microsoft, releasing the first generation of Kinect in November 2010 focused on
the entertainment market, RGB-D sensors have been improved by different companies. Nowadays,
many sensors could be found to provide depth. Table 1 shows the technical specifications of different
low cost RGB-D cameras (price is less than 200 euros). Generally, consumer RGB-D cameras are mainly
based on Structured light and ToF:

e  Structured Light (SL) based sensors are composed of a near-infrared emitter and an infrared
(IR) camera. The infrared emitter projects a known pattern over the scene, simultaneously the
IR camera gets the pattern and computes the disparity between the known and the observed
pattern [42—44]. Usually, the infrared is chosen as the bandwidth of the projected pattern to
avoid interfering with visible light in the scene. Nevertheless, a drawback of this technology
is the impossibility of working in places where the illumination hinders the perception of the
pattern [45]. More information about this technology can be found in [20]. For example, consumer
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RGB-D as Microsoft Kinect, Asux Xtion Pro or PrimeSense Carmine use structured light by
projecting a speckle pattern over the scene (see Figure 2).

o  Time-of-Flight (ToF). As has previously been stated, ToF sensors obtain the distance to a subject of
interest by measuring the time between the emission of a signal and its reflection from the subject.
Consumer cameras that use this technology are based on a continuous wave sensor combined with
a calibrated and internally synchronized RGB camera. A near-infrared emitter emits incoherent
light, which is a modulated signal with a frequency w. This light incises in the scene, producing
a reflected signal with a phase shift ¢ with respect to the emitted signal (see Figure 3). Hence,
the distance is given by the Equation (1), where c is the speed of light [46]. Microsoft Kinect V2 is
the best representative example of this kind of cameras, achieving one of the best image resolutions
among ToF cameras commercially available and an excellent compromise between depth accuracy
and phase-wrapping ambiguity [18].

¢ (1)

- 4w

Table 1. Technical specifications of consumer RGB-D cameras. SL: Structured light, ToF: Time of Flight.

Sensor 1;{4:;;21‘(1:3 Error I—ll:)iglld(]gi;ri:::) C(I){lf)slfrl/lll)ﬁe(;tlh Resoﬁi?otr}: (cm) Technology  FPS
Kinect v1 0.8-3.5 <4 cm 57 x 43 Zig i igg l@2m SL 15/30
Carmine1.08  0.8-35 - 57.5 x 45 gig ' igg 12@2m SL 60
Carmine1.09  0.35-1.4 - 57.5 x 45 gig » igg 0.1@05m SL 60
Xtion Pro 0.83.5 ; 58 x 45 lgig ' }1234 1@2m SL 30/60
Real Sense 0.2-1.2 1% 59 x 46 12i8 ’ iggo ; SL 30/60
Kinect v2 0.54.5  05% 70 x 60 lgig ' }gio 2@2m ToF 15/30
Senz3D 0.2-1.0 - 74 x 41. 6 1;);00;2128 - ToF 30

Figure 2. Projected pattern by Microsoft Kinect.
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Figure 3. Time-of-Flight distance measurement [16].

In this study, Microsoft Kinect, Primesense Carmine 1.09 and Microsoft Kinect v2 have been
selected. Structured light and ToF technologies for RGB-D cameras are represented by these sensors.
Specifically, Kinect sensors have been selected because they are the most used and popular RGB-D
cameras in the research community nowadays. As it was suggested by Figure 1, they represent the most
papers dealing with this kind of sensors. The Microsoft Kinect V2 sensor has significant differences
compared to its previous version. It is based on ToF technology with better resolution of 1920 x 1080
for the colour camera, but keeps the operation range of the depth camera. In case of the Primesense
Carmine 1.09, although it is based on the same principle as Microsoft Kinect vl and ASUS Xtion as
popular cameras (in fact, it is the same Primesense patent [47] and uses the same PS1080 processor
developed by the Primesense company), the operation range is different. The Carmine 1.09 sensor
is a short range sensort, so its depth camera can operate between 0.35 m and 1.4 m, approximately,
while the Microsoft Kinect works between 0.5 m and 4.5 m. The goal to include this sensor is to analyse
the use of a specific short range device compared to the standard measuring range of the popular
kinect devices for applications that require a short range, such as 3D reconstruction, for example.

2.2. Camera Calibration Parameters

Camera calibration is a necessary step in 3D computer vision in order to extract metric information
from images [48]. It enables the determination of the camera geometric and optical characteristics
and/or the relative position and orientation of the camera frame with respect to a world coordinate
system [49]. One of the criteria that has to accomplish the calibration procedure is to be accurate
because it is necessary to infer accurate 3D information from images. In other words, the calibration
goal is to provide the measured data as close as possible to the real value. The more accurate the
calibration model is, the more accurate the data that is provided by the camera system.

The calibration parameters of the cameras could be divided into two groups. One of them refers
to those parameters which are specific to the lens geometry (intrinsic parameters), and those that are
related to the relative position and orientation of the camera frame (extrinsic parameters). We refer to
Hartley and Zisserman [50] for an extensive work of multi-view geometry in computer vision where
the parameters are studied. For the sake of completeness, we briefly introduce the most relevant ones
for this work below.

2.2.1. Intrinsic Parameters

Intrinsic parameters refer to the internal camera geometric and optical characteristics: focal length,
distance between the optical centre of the lens and the photosensitive sensor; the principal point,
represents the displacement of the optical axis, producing a displacement of the projection centre in
the image (see Figure 4); and the distortion coefficients, which is the optical distortion model of a
camera (see Figure 5). The latter refers to the variation of a straight projection due to the aberration of
the lens. It is zero in the principal point, and increases with the distance.
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The 3D point cloud is then calculated using the focal length and the principal point parameters,
along with the depth image. The distortion is corrected to accurately provide the 3D data reducing
the lens shape defects. For further details about the 3D point set estimation and optical parameter
modeling, refer to Appendix A.

The distortion coefficients represent the optical distortion model of a camera. The two most
common are the radial and the tangential ones. This is produced by the imperfect parabolic shape
of the lenses, which are more spherical, producing the misalignment of the rays and resulting in
a distorted image (see Figure 6).

|l 3

Figure 4. Visual representation of the principal point.
(@) (b) (c)

Figure 5. Different models of optical distortions. (a) Barrel [51]; (b) Pincushion [52]; (c) Moustache [53].

focal
point
P C—
F F
[ C—

Figure 6. Difference between spherical lens (left) and parabolical lens (right).

2.2.2. Extrinsic Parameters

Extrinsic parameters refer to the relative position and orientation of the camera frame with respect
to a world coordinate system. Specifically, in a multiple camera system, such as the stereo cameras
or the RGB-D sensors studied here, multiple images are obtained from different coordinate systems.
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In this case, the extrinsic parameters describe the geometric relationship between the cameras that
might be needed. Schulze [54] presented several calibration methods and discussed the accuracy to
calibrate extrinsic parameters for aligning range sensors and colour cameras. For stereo matching,
or RGB and Depth matching, it is necessary to align those images to a common coordinate system.
This matching is carried out using the extrinsic parameters, which define the rotations and translations,
the baseline which is the distance between the sensors, and the orientation of each camera because they
are not perfectly parallel each other. For further information about the extrinsic parameters modeling,
refer to Appendix A.

2.3. Calibration Methods

There are several methods to calibrate 3D sensors, most of them can be applied to RGB-D
cameras. A comprehensive overview of the current approaches adopted for camera calibration in
close-range photogrammetry and computer vision could be found in [55]. According to Xiang et al. [39],
these methods can be classified in supervised and unsupervised calibration. The first ones perform
the process acquiring images of targets with a particular shape or size, while unsupervised methods
use the environment. This paper is focused in the first group, supervised calibration, due to the
performance of unsupervised methods usually being lower. Besides, the methods can be distinguished
between classical and those that are focused on 3D cameras of different technologies, ToF, SL,
stereoscopic, etc. Usually, 3D cameras have two independent lenses and employ a technology to
compute the depth. Classical methods calibrate cameras with one lens. Tt could be applied to calibrate
each lens independently obtaining the intrinsic parameters, but they do not provide the extrinsic ones.
Moreover, some calibration methods for RGB-D sensors are able to calibrate the parameters tat are
employed to compute the depth information, which is specific to this technology.

A classification of calibration methods can be found in [41] including supervised and
non-supervised calibration methods. This paper is focused on the most common supervised methods
to calibrate 3D sensors (see Table 2). Usually, they use a set of images of a pattern composed of squares,
known as chessboard or checkerboard. The corners of the chessboard are easily detected by a corner
detector algorithm, but other kinds of patterns could be used. The methods have been evaluated
according to a set of characteristics: the year of publication; the number of citations obtained; if the
method performs a joint calibration, which is the calibration of both cameras simultaneously; the input
data required by the algorithm; the type of target employed in the images; if the target is known by the
algorithm or not; the number of images required to calibrate the sensor and the availability of the code.

The results obtained by Xiang et al. [39] showed that the best results where obtained with
the methods of Daniel Herrera et al. [35] and Burrus [34]. In this paper, these two methods have
been selected for the comparative. Moreover, the method of Bouguet [56] has been included in the
comparative, due to it having been widely used in the literature and, in contrast to the other methods,
the calibration of the infrared camera has to be performed with the infrared images only.
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Table 2. Common supervised calibration methods (I = IR, D = Disparity, Z = Depth, C = Color).

Number of

Method Year Citations ].omt. Input Type of Known Images Available
Calibration Data Target Target Code
(Approx.)
Daniel
Herrera 2012 223 Y D,C Chessboard Y 20 Y [57]
etal. [35]
Zhang and
Zhang [33] 2011 107 Y z.C Chessboard Y 12 Y [58]
Burrus [34] 2011 37 Y 1,Z,C Chessboard Y 30 Y [34]
Bouguet [56] 2004 2721 N IC Chessboard Y 20 Y [56]
Raposo
etal. [36] 2013 30 Y D,C Chessboard Y 10 Y [59]
Staranowicz
etal. [37] 2014 13 Y Z.C Spheres N - Y [60]
. Flat surface
Tsai [49] 1987 7113 N C . Y 1-8 Y [58]
with squares
Fuchs and Chessboard +
Hirzinger [46] 2008 150 N z robotic arm Y 50 N
Rectangular
Lichti [61] 2008 452 N Z targets of N - N
different sizes
Jigjie Zhu 53¢ 251 N z Chessboard Y - N
etal. [62]
Lindnerand 7 76 N z Chessboard Y 68 N

Kolb [63]

2.3.1. Bouguet Method

Bouguet [56] published a generic method for camera calibration based on the work of Zhang [64],
Zhang [48] and Tsai [49]. The algorithm proposed by Zhang [64] only requires images of a planar
pattern at different orientations. Later, this algorithm was adapted to work with 3D cameras [48],
while Tsai [49] proposed a tow stage technique also for 3D camera calibration. The Bouguet method
also includes an add-on to calibrate stereoscopic systems that allows us to calibrate both colour and
depth cameras of an RGB-D sensor. Smisek et al. [31] used this method to calibrate a Microsoft Kinect,
while Van Den Bergh and Van Gool [65] did the calibration of a ToF sensor with a colour camera coupled
to it. The input to the calibration algorithm are the colour and infrared images obtained simultaneously.

Due to the IR emitter, the obtained infrared images are very noisy (see Figure 7a) and the corners
of the calibration pattern can not be detected properly. In the images obtained without the IR emitter
(Figure 7b) the chessboard is not perceptible because the image is very dark. In order to get images that
could be used in the calibration process, a light bulb focused to the chessboard is needed (see Figure 7c).

(a) (b)

Figure 7. Infrared (IR) images of the chessboard. (a) Infrared image of the pattern; (b) Infrared image
of the pattern without IR emitter; (c) Infrared image of the pattern without IR emitter and using a
light bulb.
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2.3.2. Burrus Method

RGB Demo [34] is a set of tools and libraries to work with the data provided by a Microsoft Kinect
sensor, but also could be used with devices supporting the same driver. One of the included tools is for
calibrating this device using the calibration algorithm implemented in OpenCV based on Bouguet [56]
and Hartley [66]. The calibration process is performed as if it were a stereoscopic system. Firstly,
RGB, infrared and disparity images are obtained to calibrate the intrinsic parameters of both cameras
individually. Then, a stereoscopic calibration process is done to get the extrinsic parameters.

2.3.3. Herrera Method

The method proposed by Daniel Herrera et al. [35] to calibrate colour cameras and a depth camera
simultaneously have been developed with the objective of being accurate, practical and applicable to
multiple sensors. The algorithm implements the intrinsic error model of the Microsoft Kinect depth
camera, but it could be replaced to work with similar devices.

The intrinsic error model allows us to correct the distortion of the depth camera in the disparity
image, and is based on the constant error in depth measurements that appear in this kind of sensors.
Besides, this error decreases when the distances to the sensor increase.

The result of the algorithm provides a spatial distortion pattern D,, which is a matrix of the same
size of the depth image; the values ag, a1 that represent the decadence of the distortion effect with the
distance, and the values cy, ¢y to convert the disparity to meters. Then, the disparity for a given pixel
(u,v) of the depth image can be corrected with Equation (2).

dk =d+ Da(u, 'U) . Exp(DC() - oqd) (2)

Where d is the disparity in the pixel (1, v) and dy is the corrected value of the disparity in that
pixel. Once the disparity has been corrected, the distance in meters Z; for that pixel could be computed
by Equation (3).

1
4= c1-dg+co

®)

3. Experimentation

In order to comparatively analyse the performance of the Bouguet, Burrus and Herrera calibration
methods, three different sensors have been used as was stated in Section 2: Microsoft Kinect,
Primesense Carmine 1.09 and Microsoft Kinect V2. For each sensor, different images of a chessboard
pattern varying its position and orientation from the camera have been acquired (see Figure 8).
This pattern is composed of 7 x 11 squares of 0.034 m of size. A subset of 60 images for each camera
have been selected, which have been used for the calibration methods.

Figure 8. Some images of the chessboard used in the calibration process of Microsoft Kinect.

3.1. Calibration Results

The results obtained with each calibration method for Microsoft Kinect and Primesense
Carmine 1.09 are shown in Tables 3 and 4, respectively. The results for Microsoft Kinect V2 are
in Table 5. Note that the values for the principal point (cy, cy) for the RGB camera obtained with the
Burrus method for this sensor are not correct, it should be located near the center of the image with
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resolution 1920 x 1080, but the obtained coordinates are (345.85,251.59) due to the assumption of
a fixed standard resolution. Additionally, the Microsoft Kinect V2 could not be calibrated using the
method of Herrera because this camera can not provide the disparity images used by the method.

Table 3. Calibration results for Microsoft Kinect.

Burrus Bouguet Herrera
RGB Camera IR Camera RGB Camera IR Camera RGB Camera IR Camera
fx 523.24 595.99 523.16 + 1.40 588.18 +1.58 522.55+0.25 586.80 + 0.45
fy 521.68 592.44 521.32+1.35 586.00 + 1.52 520.24 £ 0.25 577.70 + 0.59
Cx 328.65 314.43 330.14 +1.04 315.83 +1.21 329.76 £ 0.33 318.92+0.35
cy 257.03 227.05 257.01+1.14 24520+ 1.25 257.59 + 0.37 231.46 £0.37
ky 0.0215 —0.1567 0.1475 + 0.00609 —0.0724 £+ 0.0052 0.1930 + 0.0024 0
ko —0.6927 0.6467 —0.2735 £ 0.0116 0.1306 + 0.01 —0.5651 +0.012 0
k3 0.7170 —0.8859 0 0 0.4843 + 0.0176 0
12} —0.0007 0.0012 —0.0014 + 0.00082 0.0009 £ 0.0007 —0.0006 £+ —0.0004 0
P2 —0.0005 0.0004 0 —0.0013 £0.00071  —0.0003 + 0.0002 0
co — - - — — 3.0946 £+ 0.0035
€1 - - - - - —0.0028 =+ 3.7100 x 10°
a _ _ — — - 1.2521 £+ 0.0510
aq - - - - - 0.0022 4 7.4073 x 1072
0.9995 0.0082  —0.0052 —0.0076 0.0012 1 —0.0077 —0.0047 6.9160 x 104
R —0.0081  0.9988 0.0125 —0.0031| £ |0.0016 0.0077  0.9999 —0.0084| + |5.9122 x 10~*
0.0053 —0.0125 0.9999 0.0078 0.0004 0.0048  0.0084 1 3.4263 x 107*
—0.0255 0.0250 0.0001 0.0269 3.9870 x 10~*
T 0.0026 0.0004 | £+ | 0.0001 —0.0026 | + [4.5291 x 10~*
0.0068 —0.0003 0.0004] —0.0024 6.1674 x 10~*
Table 4. Calibration results for Primesense Carmine 1.09.
Burrus Bouguet Herrera
RGB Camera IR Camera RGB Camera IR Camera RGB Camera IR Camera
fx 540.84 580.04 540.58 + 0.64 575.46 + 0.68 541.67 £ 0.16 57498 +£0.23
fy 539.48 576.45 538.95 + 0.62 573.98 + 0.65 539.48 +0.16 570.58 4 0.31
Cx 318.38 307 318.62 +0.99 318.79 £1.05 316.87 +£0.27 323.97 +£0.23
cy 237.82 232.75 238.32 +0.86 245.13 +0.90 23548 +0.24 227.71+0.2
ky 0.0512 —0.0687 0.0232 £ 0.0023 —0.0401 £+ 0.0029 0.0578 £ 0.0015 0
ko —0.2236 0.2196 —0.0939 + 0.0059 0.0304 + 0.0061 —0.2610 + 0.0069 0
k3 0.1785 —0.4167 0 0 0.2430 £+ 0.0098 0
421 0.0010 —0.0007 0.0012 £ 0.00045 0.00011 £ 0.00044 0.0003 £ 0.0001 0
P2 —0.0009 —0.004 —0.00064 + 0.00055 —0.00014 + 0.00054 —0.0017 £ 0.0001 0
co - - - - - 4.0054 =+ 0.0021
1 - - — - - —0.0029 +1.68 x 10~©
ag - - - — — 1.6229 + 0.0304
ay - - — - - 0.0021 £ 4.06 x 10°
0.9999  0.0049  0.0089 —0.00214 0.00089 1 —0.0040 0.0086 43043 x 1074
R —0.005 9.9992 —0.005 0.00201 | + {0.00121 0.0042  0.9998 —0.0169| + |4.6892 x 10~
—0.0089 —0.0112 0.9989 0.00429 0.0001 —0.0086 0.0169  0.9998 21396 x 1074
—0.0257 0.0262 0.00005 0.0265 1.7632 x 1074
T 0.0005 0.0001 | £ | 0.00005 —0.0007 | + |1.3328 x 10*
|: 0.0037 } {—0.0002} |:0‘00021]} {—0.0030} {2.0493 X 104}
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Table 5. Calibration results for Microsoft Kinect V2.

Burrus Bouguet
RGB Camera IR Camera RGB Camera IR Camera
fx 1669.54 364.92 1057.58 £ 1.83 369.15 £ 0.66
fy 1588.27 364.29 1055.33 £1.77 368.01 £ 0.64
Cx 345.85 256.67 971.26 £1.71 260.68 £ 0.53
cy 251.59 205.33 538.00 £ 1.68 205.92 £ 0.60
k1 —0.0343 0.0934 0.0413 + 0.0023 0.0631 + 0.0034
k> 0.0697 —0.2748 —0.0389 + 0.0019 —0.1758 + 0.0044
k3 —0.0257 0.0963 0 0
P1 —0.0209 —0.0004 —0.00107 £ 0.00044 —0.00096 =+ 0.00037
P2 —0.0518 0.00004 0.00001 £ 0.00049  —0.00062 + 0.00032
09261 —0.0471 —0.3740 0.00156 0.00087
R —0.0258 09818 —0.1879 0.00402 | £+ {0.00112
0.3761 0.1837 0.9081 —0.00691 0.00013
—0.0468 0.05211 0.00011
T 0.0080 —0.00061 | £+ |0.00011
—0.3432 —0.00319 0.00040

3.2. Experimental Results

We have carried out three experiments to evaluate the results of each calibration method.
The plane fitting test was used by Khoshelham and Elberink [20] to evaluate the error in the
distance, while with the measurements of the height and the markers, the accuracy of each method in
combination with each camera is evaluated.

3.2.1. Plane Fitting Test

We have obtained different images of a wall at various distances (0.7 m, 0.8 m, 0.9 m, 1 m, 1.1 m,
1.2 m and 1.3 m) with each sensor, applying the corrections and computing the point cloud with the
parameters provided by each calibration method. Also, images without any correction have been
used to compare the accuracy obtained with the default parameters, which are unknown. Due to
the difficultly of placing the sensor perfectly parallel to a wall, a square of 100 x 100 pixels from the
center of the image has been extracted (blue points in Figure 9) computing the best plane that fits those
points (green plane in Figure 9) using RANSAC [67] (Random Sample Consensus). Then, the outliers
have been removed and the point-to-plane orthogonal distances with the remaining points have been
computed. The error has been computed as the distance d from a point P = (xo, o, 20) to a plane
= Ax + By + Cz + D = 0. This distance corresponds to the perpendicular line from the point to the
plane and its given by Equation (4).

Fd }

;

Figure 9. Plane fitting test, visual procedure. (Blue) 3D points of a wall. (Green) plane computed

I ll

with RANSAC that best fit with the acquired points. The augmented part shows the point to plane
orthogonal distances used to carry out this test.
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Figure 10 shows the arithmetic mean error of each calibration method. As it can been seen,
all methods improve the results obtained with the default parameters which gives an error of 12.18 mm.
In particular, the method of Herrera provided the smallest error (7.67 mm), while the error for the
Bouguet and Burrus methods were very close each other, 9.36 mm and 10.28 mm, respectively.

d(P, )

Arithmetic mean error in mm
=
o N » (e} 00 o
, .

Bouguet Burrus Herrera Default

Figure 10. Plane fitting test error for each calibration method for all cameras.

Analysing the standard deviation error for each sensor, it is possible to observe that the method
of Herrera provides the best result in general terms for Microsoft Kinect (see Figure 11), with an std
error of 5.73 mm, and Primesense Carmine 1.09 (see Figure 12), with an std error of 9.61 mm due to
the distortion correction for the depth camera that provides this method. However, in the case of
Primesense Carmine 1.09, the lowest average error is obtained with the Burrus method (9.044 mm).
In case of Microsoft Kinect V2 (see Figure 13) there is not much difference between the default results
and the calibrated ones, but in most cases the smallest error has been obtained with the default
parameters. This is because the error in the depth is evaluated in this test, but only the calibration of
the internal parameters of the infrared camera is performed. The calibration of the depth computation
in a ToF sensor is complex due to it being difficult to calculate the frequency of the modulated signal
and the phase shift of the reflected one. For this reason, there is not much difference between the
calibrated and the raw results. Nevertheless, the lowest error for the Bouguet method has been obtained
with this sensor (5.20 mm) which is based on ToF.

L
B Bouguet
€ Burrus
£ 35
5 Herrera
2 30 Jrocmeememeeseee e -
5] B Default
§ 25 -
B
'S 20 [
[
©
B 15 e
©
B0 =TT L e
it

0 T T -

0.7m 0.8m 0.9m Im 1.1m 1.2m 1.3m

Figure 11. Plane fitting test error of each calibration method for Microsoft Kinect.
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Standard deviation error in mm

0.7m . 0.9m im 1.1m 1.2m 1.3m

Figure 12. Plane fitting test error of each calibration method for Primesense Carmine 1.09.

12 MHHHH o W

0

Standard deviation error in mm

Figure 13. Plane fitting test error of each calibration method for Microsoft Kinect V2.

3.2.2. Measurement Error

The accuracy of the measurements of planar targets of size 10 cm x 20 cm have been compared.
The targets have been acquired at two different distances from the camera, 1.5 m and 2 m, distributed
among the image space (see Figure 14). Then, the obtained images have been corrected with the
parameters provided by the calibration methods, and the height and width of the markers have been
measured, analysing the error with the real size. Then, the arithmetic mean for each sensor and method
has been calculated.

Figure 14. Color (left) and depth (right) images of the markers distributed in the image.

Figure 15a shows the arithmetic mean error group by method obtained in the corrected data in
comparison with that obtained with the default parameters. The smallest error is provided by the
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data corrected with the parameters of the method of Herrera (with a mean error of 0.26 cm), while the
default parameters provide the higher error (0.69 cm). The difference between the Bouguet and Burrus
method is bigger than in the previous experiment, with values of 0.41 cm and 0.67, respectively.

0.8

0.7

3
€07
£ E
= 0.6 506
5 5
5 05 e 0.5
S 3
3 04 £ 04
£ £
v
£ 03 g 03
Q =
£ €02
= 02 <
< 01 0.1
’ 0
0 Default Herrera Burrus Bouguet
Default Herrera Burrus Bouguet Kinect PrimeSense Kinect 2
(a) (b)

Figure 15. Accuracy of the measurements. (a) Error of each method; (b) Error of each sensor group
by method.

Looking at this arithmetic mean error according to various sensors in Figure 15b, the best result
is obtained with the Primesense Carmine 1.09 calibrated with the method of Herrera. However,
the results of Microsoft Kinect with the same method are very close. It is important to highlight the
results obtained for each camera with the calibration method of Bouguet, in which the sensor based on
ToF gets better results than those based on structured light.

3.2.3. Object Registration

Additionally, since one of the most common applications for RGB-D sensor is 3D reconstruction,
it has been used as example to compare the accuracy of each calibration method. This application is
an example in which the sensor works at the limit of its sensitivity.In order to do that, the y-MAR
method [68] has been used, which performs a 3D reconstruction of an object from different views based
on 3D markers (Figure 16a) to properly compute the transformation to align the views. Concretely,
#-MAR models the markers to reduce the effects of noise and register the scene with these models.
This application is an example in which the sensor works at the limit of its sensitivity. The data have
been acquired in a controlled environment (showed in Figure 17) including a set of 79 images for each
object shown in Figure 16. The objects studied here are an 8 cm side cube (Figure 16a), that is one of
the markers; Figure 16b is a 20-cm high Taz toy; a 5-cm Bom-omb toy shown in Figure 16c. The reason
for using a marker as an object to analyze is because its registration quality is direct applied to the
objects’ registration result, since the -MAR registration is based on the markers. The data from the
acquisition has been corrected using the parameters from different methods, and then registered.

In order to evaluate the registration, visual inspection and a quantitative analysis have been
performed. Regarding the visual inspection, we are going to pay attention to some details of the
shapes to compare calibration methods. Concretely, the easiest shape is the cube. A section of the
registered cube is presented to easily appreciate the quality of registration. Moreover, for the other
objects, the arms of the Taz and the eyes of the Bob-omb are the regions that will be used to perceive
the registration accuracy.
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(a) (b) (©)

Figure 16. Registered objects. (a) Object 1 (Cube); (b) Object 2 (Taz); (c) Object 3 (Bob-omb).

Figure 17. Controlled environment.

The first experimentation presented is the cube object for the Microsoft Kinect v1. The registration
results are presented in the first row of Figure 18. The different views are well aligned when they
are perfectly overlapped. On the other hand, if there is an error in the registration, it is possible
to see how a single view is displaced from the rest. The default calibration (Figure 18a is clearly
the worst registered result since many views are wrongly registered. Bouguet, shown in Figure 18c,
has some error, like the left side of the cube, where a view is not accurately registered. Burrus achieves
good results but has some views on the top and left side, which are not adequately registered (a slim
gap can be seen between views). Herrera achieves the best result providing the most compact and
accurate registration presented in Figure 18d. The second row of Figure 18 shows the results for the
data acquired using the Primesense. In this case, despite the result being better than in the Kinect
v1, the default calibration (Figure 18e) is the worst in terms of registration result. For the rest of the
calibration methods, the registration result has some errors (areas where cube sides are misaligned)
with the Herrera being the best in general terms since the average shape is more square-like.

After the study of the cube, which shows in a simple view the main accuracy of the registration
with data from different calibrations, the experimentation with the second and third objects
(Figure 16¢,d) are studied.

The registration results using the Primesense Carmine 1.09 are presented in Figure 19. The data
from Herrera (Figure 19d) achieves the best registration, confirming the previous experimentation.
The Taz arms in this method are more compact and the Bob-omb eyes are better defined.
Bouguet method Figure 19¢) provides adequate data, but slightly worse (Bob-omb eyes and the
spherical shape is distorted). Observing the original data, registration is clearly the worst in the
four results, as is clear by looking at the poorly registered arms of the Taz.
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i —— s

o

(8)

Figure 18. Section of the cube acquired with Kinect v1 in the first row and the Primesense in the

second row. The section shows the cube seen from the top. (a,e) Default; (b,f) Burrus; (c,g) Bouguet;
(d,h) Herrera.

(a) (b)

(c) (d)

Figure 19. Frontal view of the reconstruction obtained with Primesense Carmine 1.09. (a) Default;
(b) Burrus; (c) Bouguet; (d) Herrera.

Similar results are obtained with the Microsoft Kinect v1, showed in Figure 20. Figures 21 and 22
show a side view of Taz and frontal of Bob-omb, for the registration results. As before, the arm
registration could be used as a visual feature to visually evaluate the performance of Taz and the
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eyes of Bob-omb. Again, the data provided by Herrera (Figures 21d and 22d) calibration achieves the
best registration.

(b)

() (d)

Figure 20. Perspective view of the registration obtained with Microsoft Kinect v1. (a) Default;
(b) Burrus; (c) Bouguet; (d) Herrera.

(b)

Figure 21. Side view of the reconstruction of the Object 1 obtained using different calibration methods

(e)

with Microsoft Kinect v1. (a) Original; (b) Burrus; (c) Bouguet; (d) Herrera; (e) Real.

(d)

Figure 22. Frontal view of the reconstruction of the Object 2 obtained using different calibration
methods with Microsoft Kinect v1. (a) Original; (b) Burrus; (c) Bouguet; (d) Herrera; (e) Real.
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The Microsoft Kinect V2 RGB-D sensor has a particular noise distribution, presented in Figure 23.
Due to this noise, the markers used by the  — M AR registration method cannot be accurately modeled,
and hence, the registration cannot be done. Since the cubes are formed by planar surfaces, the model is
obtained as a set of planes with ninety degrees between each other, located by fitting the points of each
face in the point cloud. However, as it is possible to see in Figure 23a,b that the faces of the cube are
prolonged in a non planar direction (e.g., the top face leans downwards). This makes it impossible to
fit a planar model in a face and hence the method algorithm does not provide satisfactory results.

(b)

Figure 23. Noise distribution obtained with Kinect V2 in the acquisition of the cubes. (a) Perspective
view; (b) Side view.

Finally, regarding the quantitative analysis, the study has been carried out using the cubes because
the mathematical model of the shape to be reconstructed is known and can be used as the ground
truth. Specifically, the euclidean distance from a point to the corresponding plane of the face of
the cube has been used as a measure of the registration error. Figure 24 shows the average mean
of distances for all points to the corresponding planes of the cube. The conclusions reached using
visual inspection, related to the effect of calibration methods in the registration quality, are coherent
with the measure of the error calculated by means of the mean point to plane distance. The highest
registration error corresponds to the default calibration. Bouguet and Burrus have similar error levels.
Finally, Herrera method achieves the lowest error. This conclusions are valid for both Kinect v1 and
Primesense devices.

10.0

8.0

6.0 5.16
4.15
4 3.06 3.52
: : 2.74
2.12 2.36 2.06
2.
1

0.0

o

Arithmetic mean error in mm
o

Default Bouguet Burrus Herrera

B Kinectvl M Primesense

Figure 24. Registration error for different calibration methods in order to reconstruct a cube.

4. Conclusions

In this paper, three calibration algorithms have been compared by applying their results to
three different RGB-D sensors. The obtained parameters for each camera haven been tested in different
situations and the results have been analyzed. In addition, these parameters have been applied in 3D
reconstruction of objects, which is an application for this kind of sensors where they work at the limit
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of their sensitivity. In the experiments, the results obtained through the calibration method of Herrera
were the most accurate. Additionally, the best reconstruction was obtained with the data processed
with this algorithm for Microsoft Kinect. In the reconstruction, the Microsoft Kinect sensor showed
better results than the Primense Carmine 1.09, which is a short range camera. Besides, based on the
quantitative experiments, it is possible to observe that from 1 meter to the structured light cameras,
the error begins to increase. Moreover, the quantitative experiments showed the best results for
Microsoft Kinect V2 applying the Bouguet method. However, it has not been possible to use this
sensor for 3D reconstruction due to the flying pixels problem, which complicates the perception of
the markers. Future works will include the use of other calibration methods, like the one proposed
by Staranowicz et al. [37] and the denoising of the data acquired with Microsoft Kinect V2 so that it
can be used with the 4 — M AR method, and compare the results of both versions of Kinect.

Author Contributions: V. Villena-Martinez, A. Fuster-Guillo, J. Azorin-Lopez and M. Saval-Calvo conceived the
idea of the paper and reviewed the state-of-the-art publications to extract the knowledge from them, designing
the experimentation; J. Mora-Pascual, J. Garcia-Rodriguez and A. Garcia-Garcia, carried out the experiments and
analyzed the data. All the authors participated writing the paper.
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Appendix A

Appendix A.1. Intrinsic Parameters

Intrinsic parameters refer to the internal camera geometric and optical characteristics. Focal length,
principal point, and distortion are the most common parameters that represent the visual capability of
a camera lens.

Usually, the focal length and the principal point are represented in a 3 x 3 matrix which is named
the intrinsic matrix (Equation (A1)) where fy, f, cx and ¢y are the focal length and the principal point,
respectively.

fx 0 ¢y
0 fy ¢y (A1)
0 0 1

For a given pixel (u,0) of the depth image with depth Z;, the coordinates of a point P is
obtained with the Equation (A2), being f.4, fyq the focal length and c,4, ¢,y the principal point of
the infrared camera.

P — (U —cq)Zg
= L Cd)2d
fxd
b _ (v —cya)Za (A2)
=
fyd
P, =27,

The distortion is given by the first terms of the Taylor series, but it could be simplified to the
Equation (A3) for the radial distortion and Equation (A4) for the tangential [69], where (i, ) is the
distorted position of a pixel in the imagg, r is the radius to the principal point and i, j. is the corrected
position. For more information about distortions, see the work of Weng et al. [70].

ic =i (1 + k11’2 + k27’4 + k31’6)

A3
jo=j- (1+kir? +kor* + k3r®) (49

ic =i+ [2p1y + pa(r? +2x?)]

S (A4)
je=j+ [p1(r* +2y%) + 2pa]
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Appendix A.2. Extrinsic Parameters

Extrinsic parameters refer to the relative position and orientation of the camera frame with
respect to a world coordinate system. Specifically, in a multiple camera system, multiple images
are obtained using different coordinate systems. In this case, the extrinsic parameters describe the
geometric relationship between the cameras that might be needed to align the multiple images into
a common coordinate system. Usually, using the extrinsic parameters of each camera (rotation and
translation) and the calculated baseline, and the orientation between cameras, it is possible to correlate
the information from multiple sources

The extrinsic parameters are a 3 x 3 rotation matrix and a translation vector of size 3 x 1. To align
images from RGB-D devices, the point cloud is transformed and is projected on the colour sensor.
Given a three dimensional point P of the point cloud, the transformations are applied through the
Equation (A5).

PP=R+«P+T (A5)
where R and T are the rotation and translation matrices, respectively, and P’ is the transformed

3D point of the point cloud. Next, the data is re-projected on the colour sensor using its intrinsic
parameters (Equation (A6)).

. P x- f b
1= ( p/.zxrg ) + Cxrgb

. Py g
]= (T;rg) +Cyrgb

(A6)

where firop, fyrghs Cxrgp and cy,qp are the focal length and principal point of the RGB camera.
Applying these equations the bidimensional coordinates (7,]) in the colour image corresponding
to that 3D point (P) of the point cloud are obtained.
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