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Abstract: The increased potential and effectiveness of Real-time Locating Systems (RTLSs)
substantially influence their application spectrum. They are widely used, inter alia, in the
industrial sector, healthcare, home care, and in logistic and security applications. The research
aims to develop an analytical method to customize UWB-based RTLS, in order to improve
their localization performance in terms of accuracy and precision. The analytical uncertainty
model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation
of the customization concept, is established in a working environment. Additionally, a suitable
angular-based 3D localization algorithm is introduced. The paper investigates the following issues:
the influence of the proposed correction vector on the localization accuracy; the impact of the
system’s configuration and LS’s relative deployment on the localization precision distribution map.
The advantages of the method are verified by comparing them with a reference commercial RTLS
localization engine. The results of simulations and physical experiments prove the value of the
proposed customization method. The research confirms that the analytical uncertainty model is the
valid representation of RTLS’ localization uncertainty in terms of accuracy and precision and can be
useful for its performance improvement. The research shows, that the Angle of Arrival localization
in a 3D indoor space applying the simple angular-based localization algorithm and correction vector
improves of localization accuracy and precision in a way that the system challenges the reference
hardware advanced localization engine. Moreover, the research guides the deployment of location
sensors to enhance the localization precision.

Keywords: accuracy and precision; angle of arrival; correction vector; indoor localization systems;
real-time locating systems

1. Introduction

The continuing development of wireless technologies has led to an enhancement of the capabilities
and efficiency of Real-time Locating Systems (RTLSs), which are a particular example of Indoor
Locating Systems (ILSs). RTLSs have the ability to define the position of an item anywhere in a defined
space at a point in time that is, or is close to a real time [1]. Ultra-wideband (UWB) is a short-range and
energy efficient radio technology useful in a high-bandwidth wireless communication. Due to their
functionalities and performances, the use of UWB-based RTLSs as tracking management systems has
gained increasing attention in industrial and logistic applications, for instance container terminals [2],
and warehouses [3]. Besides that, RTLSs have been widely applied in security applications in
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construction sites as a safety system [4,5], in healthcare for precisely monitoring and tracking people
and goods [6–8] and in agriculture for animal behaviour monitoring [9].

The UWB-based indoor RTLSs are able to estimate a target’s location with high accuracy
and precision, which depend, inter alia, on the working environment, system architecture,
and localization algorithm. The estimation process uses ranging techniques, which vary for different
signals such as Received Signal Strength (RSS), Time of Arrival (ToA), Time Difference of Arrival (TDoA)
and Angle of Arrival (AoA) [10]. Some commercial UWB-based RTLSs use hybrid localization methods,
however the performance improvement is mitigated by the system price and complexity.

The AoA-based ranging technique is commonly used in UWB-based RTLSs. This technique uses
direction-sensitive antennas as location sensors to estimate the direction of the RF signal from a tag [11].
The disadvantage of the AoA approach, compared with e.g., the TDoA solution, is its accuracy.
It is counterpoised by the system’s simplicity, which leads to a lower price and simplicity of real
time implementation. The customizations of the AoA-based RTLS for different working environments
help to overcome the accuracy disadvantage by improving the efficiency and localization performance.
The performance assessment and analytical uncertainty model of AoA localization for the given
environmental characteristics and RTLS’s architecture are needed for the customizations.

This paper focuses on an improvement of the system’s performance by applying the analytical
customization method for different working environments. The proposed approach is based on the
RTLS’s performance assessment using the new analytical uncertainty model of AoA localization
in a 3D indoor space. The uncertainty model comprises two localization performance measures:
accuracy and precision. Furthermore, the paper introduces the angular-based 3D localization algorithm
combining the ranging technique and extrapolation method.

An implementation of the proposed customization method of UWB-based RTLS has been verified
and shows an accuracy improvement of 55%. The used analytical model of uncertainty in terms
of precision has been validated and proved the entire matching with the experimental results.
The analytical and experimental evaluation of the performance of the proposed AoA-based
localization algorithm has been applied for different LSs configurations in the given test environment.
The comparison of the AoA-based localization results with the commercial RTLS’s algorithm results
confirms the expediency of the proposed approaches.

2. Survey of Related Works

Due to their localization capabilities and reliability, UWB-based RTLSs, as a kind of
wireless RF-based ILSs, are widely used in the industrial sector, but also in other logistic and
security applications. These systems are able to localize a target with accuracy up to several
centimetres in an indoor space. The performance of these systems highly depends on their architecture,
LSs arrangement, and the location engine [12].

Depending on the application character and system structure, localization platforms apply
a variety of ranging techniques such as RSS, ToA, TDoA, AoA [13], along with different position
estimation algorithms such as trilateration, triangulation, fingerprinting, dead path reckoning,
and some others [11]. The most basic ranging technique is based on the power measure of RF,
called RSS. However, the RSS methods are highly affected by obstacles and multipath fading,
along with environmental interferences [14,15]. Therefore, currently RTLSs use the RSS rather as
a complementary measure, for instance in data filtration [16], and the other measures like ToA/TDoA
and AoA are more commonly used in position determination [13].

Due to their popularity, ToA and TDoA-based estimation algorithms are widely researched. In [17],
the authors discuss the main sources of errors in the ToA-based ranging in the multipath environments.
These include the multipath fading and direct path excess delay, but also blockage, narrowband
and multi-user interferences and clocks drift. The authors of [18] present a quality-enhancing and
novel ToA-based ranging scheme with an improved detection of distorted UWB pulses in dense
environments, such as a residential office or factory. Selimis et al. propose and evaluate in a real
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scenario the ToA-based estimation algorithm consisting of an improved acquisition unit, which detects
and synchronizes UWB pulses. The acquisition unit applies a single peak identification procedure,
which detects the strongest multipath component of the signal using the channel impulse ratio
estimation [19]. Shen et al. focus on ToA technology for range-based localization in UWB sensor
networks [20]. The authors apply the Constant False Alarm Rate adaptive algorithm, which is based on
the detection theory applied to radar systems. They also propose the Maximum Probability Detection
method estimating the ToA by finding the maximum probability of the multipath signal components.

Range-based AoA approaches, also commonly used in RFID and UWB-based RTLSs,
apply direction-sensitive antennas as location sensors to estimate the direction (the angle of arrival)
of the signal from a tag [11]. The performance of AoA-based estimation algorithms are studied
among others in [21–23]. Kim et al. propose an improvement of the AoA-based RTLS designed for
Non-line-of-sight (NLoS) environments. The proposed algorithm, enhancing the estimation of the
target’s position, applies a Dual Indirect Kalman Filter and weight filters [24]. In [25], the authors
suggest a localization algorithm, which utilizes a biased estimation technique to increase the
system performance. Moreover, the authors apply a statistical calibration method to improve the
localization quality. Zampella et al. propose the sensor fusion of UWB RTLS with Inertial Measurement
Unit (IMU) mounted in a mobile phone [26]. They combine the commercial UWB RTLS algorithm
with the dead path reckoning estimation algorithm to carry out the localization both indoor and
outdoor around a building. The performance analysis of AoA-based localization systems is studied
in [27,28]. Using kinds of Fisher Information Matrices, the authors determine the optimal configuration
of sensors to enhance the angle-related information in 3D space. An optimal configuration of sensors
depends inter alia on the intensity of the measured noise, configuration constraints and the probabilistic
distribution that defines the prior uncertainty in the target position.

The performance assessment of RTLSs can apply different physical measures depending on
the type of RTLS and application. In [4], the authors investigate the performance in terms of
accuracy, precision and reliability of an UWB-based RTLS tracking of multiple tags simultaneously.
Furthermore, they analyse the impact of a number of receivers on localization performance under
common conditions of construction sites i.e., occurrences of metal surfaces. Silva et al. evaluate
the UWB-based Symmetrical Double Sided Two-way Ranging RTLS, which does not require
synchronization [29]. They assess the indoor localization performance in terms of precision, accuracy,
refresh rate and reliability in Line of Sight (LoS) and NLoS scenarios.

The measurement uncertainty of AoA may be evaluated using the measure of accuracy
and precision, and the quality of the localization estimates of AoA measurements is an issue of
several papers. It is proved that a type and characteristic of antenna [30], their deployment [31] and
also a type of indoor environment significantly affect the measurement precision [12]. To reduce
impacts of these factors, Crespo et al. perform the experimental study of different types of RTLS
antennas in different indoor environments and find out the matching conditions [32].

The precision of AoA measurement uncertainty is related with the concept of Dilution of
Precision (DoP), originally used in satellite navigation systems. Among others, Dempster et al.
apply the DoP measure to characterize the quality of AoA-based positioning systems [33]. Arafa et al.
investigate an effect of DoP on the localization performance of the optical wireless ILS [34]. In [12],
the authors propose an analytical DoP-based uncertainty model of precision and apply it with the
fingerprinting method to customize the RTLS aimed in an improvement of its performance in terms of
localization precision.

The localization uncertainty in terms of accuracy can be characterized as a systematic error whose
influence may be mitigated by an appropriate identification and compensation. Junhuai et al. in [35]
propose a localization algorithm based on region divisions and error compensation to enhance the
localization accuracy. Their algorithm divides the localization area into many sub-regions and a specific
propagation model is defined for each sub-region. In [36], the authors show the influence of the
calibration tag’s placement on AoA measurement uncertainty. They propose a suboptimal criterion how
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to allocate the calibration emitter in relation to sensors’ positions in an indoor space. Ghazaany et al.
in [37] investigate how a mutual coupling compensation matrix influences the performance of the
AoA-based small size uniform circular array. The authors propose a complex compensation matrix
corresponding to the coupling effect between antennas’ elements. Myong et al. show an impact of
signal interferences on the location accuracy of RFID-based RTLS in multipath environments [38].
The authors consider direct and indirect path components with time and phase delay differences.

3. Problem Statement and Main Contribution

From the review of related works, one can notice that localization methods for RTLSs
perform differently. The accuracy, precision, processing time, cost and simplicity are the main measures
of the system performance. Then, the challenge is to find out trade-offs of various aspects of the
system’s performance for different methods. Furthermore, there are many factors influencing the
performance of an indoor 3D localization, inter alia the system architecture, working environment,
possible interferences etc. Most of the localization algorithms estimating the tag’s position in the indoor
environment use ranging techniques, which are based on different measurement signals such as RSS,
TDoA, AoA. Among these solutions, the angle-based (AoA ranging technique) localization algorithms
show a big potential of performance improvement, especially in 3D applications. Therefore, one of the
possible enhancement approaches is to develop a measurement analytical model, which can facilitate
the customization of the AoA ranging technique in different 3D environments.

The main objective of this paper is to develop and then to implement in a simulation
environment the geometrical (analytical) uncertainty model of AoA localization in a 3D indoor space,
while considering the localization uncertainty in terms of accuracy and precision, which extends
and enhances the uncertainty model proposed in [12]. The goal of modelling is to determine the
efficient system configuration. Furthermore, the proposed model facilitates the system customization
by defining and implementing the correction vectors for different working environments in order
to improve the system’s performance in terms of its accuracy. Additionally, the angular-based 3D
localization algorithm, which estimates the tag’s position in 3D from interfered measurement signals
of azimuth and elevation angles, is introduced.

The main contribution of this paper is an improvement method of system’s performance by
applying the analytical customization for different working environments. The method is based on
a new holistic approach to localization uncertainty in terms of precision and accuracy, and defining
a geometrical model of the AoA localization method in 3D. The model facilitates an uncertainty
analysis of the AoA ranging technique. The analytical model is implemented in Matlab and used to
show how different the system’s features influence its performance. The measurement precision model
is verified by analysing the matching ratio of the simulated and experimental results. To show the
accuracy enhancement, by applying the correction vector, the proposed customization of the system
for a given working environment is validated by physical experiment. The reference RTLS localization
algorithm is applied to verify that the customization of AoA ranging techniques can challenge the
advances in hardware of the UWB-based RTLS technology.

4. RTLS’s Performance Assessment

The assessment of RTLS’s performance is necessary to find trade-offs among different technologies
and methods. In general, the assessment needs to be considered separately for static and dynamic
localization modes [4,39]. In the static mode, it can be evaluated using different measures inter alia
localization uncertainty, sensitivity [9] and response time. In the dynamic mode, these measures are
affected by the speed of a tag, a number of tags, and the complexity of their paths.

The simplified interpretation of 3D localization uncertainty in terms of accuracy and precision
measures at the true tag’s position Pi in coordinates (xi, yi, zi,) is illustrated in Figure 1.
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4.1. Accuracy 

The accuracy property expresses the capability to obtain the true value of a measurand [40]. The 
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Figure 1. Illustration of 3D localization accuracy and precision for i-th tag’s position.

The accuracy measure ∆i represents the distance between the true position Pi and the location
estimate P̂i obtained from the RTLS, whereas, the precision is illustrated by the sphere with an estimate’s
standard error σi as a radius. The sphere is centered in the estimated position P̂i and includes
respectively 68% of N measured localization samples. Both localization uncertainty measures: accuracy
and precision characterized dispersion of measured results from the tag’s true position. In the following
sections, the localization performance is modelled in a static mode using the two measures: accuracy
and precision [40].

4.1. Accuracy

The accuracy property expresses the capability to obtain the true value of a measurand [40].
The mean uncertainty component, the localization accuracy, ∆xi of the x coordinate estimated for the
point Pi located in the test environment, can be expressed as:

∆xi = x̂i − xi (1)

where variables of Pi(xi, yi, zi) respectively refer to the true localization coordinates at i-th position
of the tag, whereas variables of P̂i(x̂i, ŷi, ẑi) refer to the mean of N-th times measured localization
coordinates at i-th tag’s position. If the remaining two mean uncertainty components ∆yi, and ∆zi,
of y and z coordinates respectively are specified analogically to Equation (1), then the localization
uncertainty ∆i at i-th tag’s position can be shown as follows:

∆i =
√

∆xi
2 + ∆yi

2 + ∆zi
2 (2)

4.2. Precision

The second uncertainty measure, the localization precision, describes the measurement’s
repeatability and is based on an estimate of the mean standard error σ of the mean
localization uncertainty. A low value of the standard error means high precision and vice versa.
For the i-th tag’s position, which is estimated from N measurements, a standard error of the mean
(SEM) σx of the component x, can be expressed in relation to its variance as:

σxi =

√
σ2

xi

N
, (3)

where σxi and σ2
xi

are SEM and variance respectively of the x component at i-th tag’s position.
The remaining two SEMs σyi and σzi of y and z coordinates respectively can be described analogically.
Then the corresponding SEM σi of the localization estimate of i-th tag’s position can be calculated
as follows:

σi =
√

σxi
2 + σyi

2 + σzi
2 (4)
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5. The AoA-Based Localization Algorithm

The angular-based localization algorithms of RTLSs use angles of arrival of the radio wave,
measured by a pair of LSs. For each measurement cycle, to determine the tag’s location, AoA ranging
and extrapolation procedures are processed one by one. In [12], the simplified 2D AoA localization
algorithm using azimuth angles is presented. In the following subsection, a specific model of ranging
technique using azimuth and elevation angles for the 3D localization is proposed. Moreover, the tag’s
location is estimated based on an extrapolation technique described in the second subsection of
this chapter.

5.1. AoA Ranging Technique

The ranging technique, described in this section, is illustrated by the AB pair of LSs. The initial
installation stage of the ranging technique procedure is performed only once, at the beginning
of measurement process when the workspace and LSs’ coordinates are defined and the system
is calibrated. Then, from the installation data the workspace geometry and the coordinates,
A(xA, yA, zA) and B(xB, yB, zB) of the active LSs’ positions, are established. Moreover, the calibration
procedures for azimuth and elevation angles are performed. The calibration procedure of UWB-based
RTLS for azimuth angles is described in [12] and the calibration procedure for elevation angles looks
similarly. Therefore, after the initial phase, the workspace geometry, LSs’ coordinates, and even the
calibration angles and lines are defined.

The basic stage of the AoA ranging technique is performed in each measurement cycle when the
directions of the arrival paths from the tag to the two LSs are measured. Each LS consisting of antenna
array element measures the direction of the receiving tag’s radio wave as azimuth and elevation
angles of arrival. Radio waves take the form of UWB pulses with very short durations, which are
emitted by the tag. A geometrical interpretation of 3D AoA ranging techniques for a pair of LSs AB is
illustrated in Figure 2. The line lA represents the arrival path, which passes through the tag’s position
T̂ and LSA’s coordinates A(xA, yA, zA). The line is projected perpendicularly onto the XY plane, called
reference plane. The azimuth angle θA is the angle between the line projected on the reference plane
and the axis X. The elevation angle ϕA is the angle between the line lA and the axis Z. Azimuth and
elevation angles measured by the LSB are defined analogically.
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The lines lA and lB can be represented by direction vectors u and v with initial points in A and
B respectively. Both u and v direction vectors are computed from measured azimuth angles θA and θB
and elevation angles ϕA and ϕB respectively. Then the vectors between the LSs placed in A and B and
the tag are depicted as:

λAu = λA

 ux

uy

uz

 = λA

 sin ϕA· cos θA
sin ϕA· sin θA

cos θA

 (5)
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λBv = λB

 vx

vy

vz

 = λB

 sin ϕB· cos θB
sin ϕB· sin θB

cos θB

 (6)

where λA and λB are length parameters of the distance vectors, and ux, uy, uz and vx, vy, vz are
direction vectors’ u and v components respectively. Both direction vectors u and v along with the
length parameters λA and λB and the coordinates of the initial points A and B determine the end-points
TA and TB of distance vectors λAu and λBv respectively. Therefore, resultant points TA and TB,
which estimate the tag’s location are depicted as:

TA = A + λAu−1 (7)

TB = B + λBv−1 (8)

In an ideal case, the tag’s position T̂ is defined by TA = TB, since both points should have the
same coordinates. Using Equations (7) and (8), a set of three separate linear functions is formed and
the coordinates of the tag’s position T̂(xT , yT , zT) along with the two parameters λA and λB can
be calculated.

5.2. AoA Extrapolation Method

In general, due to the uncertainty of AoA measures, the arrival paths represented by the lines lA
and lB for LSA and LSB respectively are askew and there is no intersection point, as shown in Figure 3.
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Then, the lines lA and lB need to be extrapolated to lines mA and mB respectively, which intersect
in the extrapolated tag’s position T̂ [41]. The extrapolated solution can be defined as the middle of the
shortest distance between the lines lA and lB, which can be calculated using formula:

d(lA, lB) = min
TAεlA , TBεlB

d
(

TT
A, TT

B

)
. (9)

The shortest distance between the lines lA and lB can be represented as a vector d with the
initial point’s coordinates TT

A
(

xT
A, yT

A, zT
A
)

and the end point’s coordinates TT
B
(
xT

B , yT
B, zT

B
)
. Vector d

is perpendicular to both direction vectors u and v defined in the previous section. The extrapolated
tag’s position T̂ with coordinates (xT , yT , zT) is calculated as a midpoint of the vector d using the
following formula:

T̂(xT , yT , zT) =

(
xT

A + xT
B

2
,

yT
A + yT

B
2

,
zT

A + zT
B

2

)
(10)

The extrapolated tag’s position T̂ and two extrapolated arrival paths represented by lines mA and
mB intersecting at the tag’s position T̂ are used for the localization uncertainty modelling presented in
the next section.
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6. Modelling of Uncertainty of AoA-Based Localization

An uncertainty model of AoA localization in 3D is needed to customize the RTLS in different
working environments to improve its performance. In [12] the localization uncertainty was represented
by precision, sufficient for the applied enhancement method. However, the AoA localization
uncertainty model might be upgrades with accuracy. For a specified RTLS architecture and working
indoor environment, the model of localization measurement accuracy, defined here as an offset error,
is presented in the first part of this chapter. The localization precision defined using a geometrical
approach is introduced in the second subsection of this chapter.

6.1. Modelling of Offset Error and Correction Vector

For a specified UWB-based RTLS architecture used in a given working indoor environment,
the uncertainty model of an offset error can be established heuristically. The offset error for a single
measured position is systematic. However, for the given working environment consisting of a set
of measured positions, the offset error consists of two components: random and systematic.
Among others, the systematic component, which is constant for the whole environment, can be
caused by the uncertainty of an initial calibration procedure when the calibration axes are defined in
relation to the LSs’ positions. Whereas, the random component, varying at different localizations can
be an effect of environmental characteristics specific at a given position. Another cause of the offset
error can be heterogeneity of tags’ characteristics.

An effect of the localization offset error can be reduced by a correction vector, which depends on
the system’s architecture and test environment, and is to be estimated heuristically. It may include the
following sources:

• AoA LSs deployment measurement [30],
• AoA sensors array [42],
• tags’ characteristics,
• calibration process.

In a given environment, the correction vector for a certain pair of LSs, may be estimated based
on measurements from k tags each sampled N times at M locations. For these numbers of tags,
locations and samples, the x component of the correction vector, kvx, may be calculated from:

kvx =
1

K·M·N
M

∑
m=1

N

∑
n=1

K

∑
k=1

∆xk,n,m (11)

where ∆xk,m,n is the difference between the true localization and the n-th measurement at m-th
localization of k-th tag. The remaining two correction vector components kvy and kvz, of y and z
coordinates respectively can be calculated analogically to Equation (11). Then the correction vector kv
specified for the localization system in the test environment can be expressed as:

kv =

 kvx

kvy

kvz

 (12)

6.2. Modelling of the Precision of 3D Localisation Based on AoA Technique

The precision model applied to the AoA ranging technique in 2D is described in [12].
The presented geometrical model is based on the azimuth component of AoAs. Since it was shown,
that the pairs located on the shorter sides of the workspace ensure the most precise AoA-based
localization [12], therefore, the following description concerns the pair LSA and LSB placed in the
fixed positions A(xA, yA, zA) and B(xB, yB, zB) on the shorter side of the workspace. The specified
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tag T is located at the position Ti(xi, yi, zi). However, the selected configuration does not limit the
model’s versatility.

For the LSs pair AB, each tag’s position on the workspace is defined by a set of two azimuth
angles and a set of two elevation angles. The first set consists of vectors AoAθA and AoAθB of azimuth
angles of arrival θAi and θBi measured by LSs A and B respectively. Analogically, elevation angles
of arrival ϕAi and ϕBi, measured by LSs A and B respectively, are represented by vectors AoAϕA and
AoAϕB , which constitute the second set.

Each measurement is repeated N times and using the ranging and extrapolation techniques,
then N samples of i-th tag position Ti are estimated as intersections (10) of lines mA and mB
corresponding to the extrapolated paths of arrival. Based on experimental data, we assume that
the distribution functions of azimuth and elevation measurements are normal. Then, at confidence
level of 68.3%, the azimuth angles θAi and θBi are within the ranges θAi ∈

(
θA − σθ

A, θA + σθ
A

)
and θBi ∈

(
θB − σθ

B, θB + σθ
B

)
respectively, where the mean values θA and θB represent the best

estimate of azimuth angles and ±σθ
A and ±σθ

B depict the SEMs of the azimuth AoA for LSA and
LSB respectively. These ranges define the precision of the azimuth angle measurement called azimuth
Angle of Precision, (AoP). Per analogy, the elevation angles ϕAi and ϕBi are within the ranges
ϕAi ∈

(
ϕA − σ

ϕ
A, ϕA + σ

ϕ
A

)
and ϕBi ∈

(
ϕB − σ

ϕ
B, ϕB + σ

ϕ
B

)
respectively, which define the precision

of the elevation angles measurement. The mean values ϕA and ϕB represent the best estimate of
elevation angles, which are used to calculate the best estimate of the tag’s position T̂. SEMs of the
elevation AoA for both LSA and LSB are represented by ±σ

ϕ
A and ±σ

ϕ
B, respectively. Thus, the normal

distributions of the azimuth and elevation AoA of N samples for location sensor LSA can be defined
as N θ

A

(
θA, σθ

A

)
and N ϕ

A

(
ϕA, σ

ϕ
A

)
respectively [27]. The probability distributions of the azimuth

and elevation AoA of the set of N samples for location sensor LSB can be described analogically as
N θ

B

(
θB, σθ

B

)
and N ϕ

B

(
ϕB, σ

ϕ
B

)
respectively.

The LSA is characterized by the elevation and azimuth AoPs, which can be used to form an elliptic
cone representing the measurement precision in 3D, as shown in Figure 4. The cone’s vertex is placed
at the LS’s position, A(xA, yA, zA) and its axis refers to the mean path of arrival lA, and its base at the
estimated tag’s position is an ellipse with the axes defined by rθ

A and rϕ
A as follows:

rθ
A = 2·

√
(xi − xA)

2 + (yi − yA)
2 + (zi − zA)

2· tan−1 σθ
A, (13)

rϕ
A = 2·

√
(xi − xA)

2 + (yi − yA)
2 + (zi − zA)

2· tan−1 σ
ϕ
A. (14)

From the equations, one can see that the size of the elliptic base depends on SEM of azimuth
σθ

A and elevation σ
ϕ
A angles measurements and the distance from the active LS’s position to tag’s

position Ti. Therefore, since the distribution functions of the measurement precision of azimuth and
elevation AoAs are normal distribution functions, representing the dispersion of the path of arrival of
N samples, then the surface area of the elliptic cone’s base at a given distance from the LS represents
the bivariate SEM. The true localization occurs there with the confidence level of 68.2%.

Per analogy, the uncertainty of LSB is characterized by an elliptic cone with the vertex in LS’s
position B(xB, yB, zB) and the axis refers to the mean path of arrival lB. The cone’s base at the estimated
tag’s position is an ellipse, with the axes defined by rθ

B and rϕ
B , respectively.

The two elliptical cones with vertices at the active LSs’ positions A(xA, yA, zA) and B(xB, yB, zB)

represent the precision of tag’s AoA measurements. The cones cross each other and their common part
forms the solid where the tag is truly located with the 46.5% probability corresponding to the product
of two SDs probabilities, see Figure 5. The volume of the solid depends on the:

• precision of azimuth AoA measurements represented by SEM of σθ
A and σθ

B for LSA and
LSB respectively,
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• precision of elevation AoA measurements represented by SEM σ
ϕ
A and σ

ϕ
B for LSA and

LSB respectively,
• distances from LSs positions A(xA, yA, zA) and B(xB, yB, zB) to the estimated tag’s position T̂.Sensors 2017, 17, 227  10 of 26 
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Figure 5. Illustration of uncertainty cones and the solid—common part of the two cones.

The volume of the solid is a measure of the uncertainty-precision of 3D AoA ranging technique.
Its shape depends on the tag’s location in the test environment. The result of the cones’ penetration
is presented in Figure 5. This is a particular symmetrical case when both cones have the same shape
since azimuth and elevation AoP values are equal, i.e., elevation angles ϕA, ϕB and azimuth angles θA
and θB are equal.

The volume of the solid is calculated numerically using the 3D Delaunay triangulation computing
method called Delaunay tetrahedralization [43]. The algorithm calculates the volume of the solid based
on the sum of each individual tetrahedral volume. The boundaries of the 3D Delaunay triangulation
represent the convex hull of the points set as shown on Figure 6. The shape of the convex hull matches
the theoretical solid shape presented in Figure 5.
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7. Precision Model Evaluation

The implementation of the proposed 3D model is done in Matlab 2014b with the Signal Processing,
Optimization and Computational Geometry toolboxes. Then the implemented solution is evaluated
using a simulated cuboidal test environment of 11.00 m × 7.50 m × 4.00 m size. The space is sampled
with a constant step of 50.00 cm in three directions resulting in a test grid of samples. The sampling
coordinates located on the border of the workspace, which physically would be placed on the walls,
are excluded from the sampling grid.

The RTLS consists of four LSs, two located in the workspace corners on height 4 m and two
located on height 3 m, see Table 1. The origin of the coordinate system is arbitrarily located on the
floor at the workspace corner under LSA. The calibration point is located approximately in the centre
of the workspace, explicitly at 5.60 m × 4.00 m × 1.00 m.

The model is applied to estimate the map of location uncertainty in terms of precision for two pairs
of LSs, AB and AD, located on the longer and shorter walls of the test room respectively. For each
sampling point, the location precision expressed as a volume is calculated from the azimuth and
elevation AoPs. The SEM of azimuth and elevation AoAs for the tested workspace were heuristically
determined from results of tests performed on 36 arbitrary selected location points of workspace for
all LSs. The heuristically estimated mean SEM values of both azimuth and elevation AoAs’ standard
deviations were 0.45◦. Therefore, the measurement uncertainty in terms of precision of each LS is
represented by a cone with vertices in LSs’ positions, the axes are defined as the arrival path (Section 5.2)
and the circular base with the radius calculated using Equation (13) or (14). The modelled localization
precision was determined by using the common volume of two cones, whose axes intersect at the
sample location. The localization precision was calculated using the 3D Delaunay triangulation
computing method (Section 6.2).

The distribution map of the modelled AoA localization precision for an AD pair is presented in
Figure 7. The LSA and LSD are located at slightly different heights of the shorter wall of the workspace,
as shown in Table 1. The slices represent orthogonal planes through the volume of the workspace,
and the colours correspond to precision levels.

The distinct cross-sections of the AoA measurement precision distribution maps for the AD pair
are presented in Figures 8–10. Red dots represent the positions of active LSs and black dots show
locations of inactive LSs. From the maps, it can be seen that the precision significantly depends on
the distance from LSs. For the AD pair, located on the shorter room wall, the uncertainty increases
along with the distance from LSs. At the bottom corners of the workspace, on the opposite side to
the active sensors, the uncertainty is the highest, see Figures 8 and 9. The best precision is identified
near the active LSs, which is depicted in Table 2. The precision range is from 150 cm3 to 6900 cm3.
The effect of the LSs’ deployment on different heights is noticeable in Figure 8c, which illustrates the
precision distribution at a distance 1 m from the wall where the active sensors are located. Figure 8c
shows that the uncertainty level near the floor (z = 0.5 m) is lower around the LSD of approximately
170 cm3, compared to the area around the LSA where the uncertainty reaches 270 cm3.
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Table 1. Sensors’ arrangement in simulation and physical experiment.

LS Simulation (x, y, z) (m) Physical Experiment (x, y, z) (m)

LSA (11.00, 7.50, 4.00) (11.03, 7.42, 3.88)
LSB (0.00, 7.50, 4.00) (0.17, 7.38, 3.89)
LSC (0.00, 0.00, 3.00) (0.17, 0.17, 3.01)
LSD (11.00, 0.00, 3.00) (11.00, 0.17, 2.92)

Table 2. Simulated extreme uncertainty values for AB and AD pairs.

Pair of LSs
Best Precision Worst Precision

Value (cm3) Location Value (cm3) Location

AB 20
corner of the LSA 2650

ground corner below LSC
corner of the LSB ground corner below LSD

AD 150
corner of the LSA 6900 ground corner below LSBcorner of the LSD

For the AB pair, located at the same height of the longer room wall, see Table 2, evaluated AoA
precision distribution map, is presented in Figure 11.
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The specific cross-sections of the localization precision distribution map for the AB pair are
presented in Figures 12–14. As for the LS’s pair AD, also for the AB pair, the localization precision
increases along with the distance from LSs, see Figures 12 and 14. The worst precision of 2650 cm3 is
depicted at the bottom corners most distant from the active LS’s AB pair. The best precision equals
20 cm3, which is noticed at (10.5, 7, 3.5) and (0.5, 7, 3.5) coordinates near the active LSs, see Figure 14a
and Table 2. At the top along the wall between LSA and LSB, the level of precision is relatively
higher, because the cones’ axes referring to the arrival path could be even parallel, which is shown in
Figure 12b.
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8. The Test Systems

The real system was implemented on the Ubisense Real Time Location System Series 7000.
The used UWB-based RTLS consists of four LSs in a master-slave configuration, see Figure 15a.
One of the LSs is assigned as a master, which has two-way communication with a tag in the 2.4 GHz
telemetry channel. All LSs, both master and slaves, are able to receive localization pulses on UWB
channel 6 GHz–8 GHz from the tag as shown in Figure 15b. Also all the LSs communicate by timing
and Ethernet connections. Timing connections are used to synchronize the slaves with the master
for TDoA measurement. Via Ethernet, the collected raw data is transmitted between the LSs and
the switch. It is also used to provide power supply for the LSs according to PoE standards. The switch
is connected with the PC consisting of the location estimation platform Ubisense Location Platform 2.1.
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Figure 15. Photos of (a) RTLS sensor; (b) RTLS tags.

The used tags are Ubisense Compact Tags with a maximum tag update rate of 33.75 Hz. The tags
attached to the targets communicate with the master on the telemetry channel 2.4 GHz, and send UWB
chirps to all LSs. An exemplary structure of UWB-based RTLS is presented in [4]. Each tag sends
UWB pulses to all LSs with a defined update rate, which depends on the number of tags in the system.
Localization pulses received by each LS are analysed in terms of:

• time difference of arrival to the LSs i.e., TDoA;
• angles at which the signals are received by the LSs in terms of azimuth and elevation AoAs.

The power of signal, RSS, is used by the system for data filtration. The location estimation platform
provides various static and dynamic filters, which improve estimation quality. However, in the
following physical experiment, the proposed AoA-based localization algorithm operates on AoA
raw measurements without filtration. The Ubisense algorithm is a part of the location estimation
platform and it was used in validation. The Ubisense hybrid algorithm estimates the tag location based
on AoA and TDoA measurements with static filtering.

The physical experiment was performed in a lecture hall with a size of 11.0 m × 10.0 m × 7.0 m
located in the over 100 year old building of Faculty of Electrical and Control Engineering in Gdansk
University of Technology, illustrated in Figure 16. However, due to the hall’s shape, the RTLS’s
workspace does not cover the whole hall’s space. To cover the whole workspace, two additional LSs
would be needed. Therefore, the effective size of the workspace is only 11.0 m × 7.0 m × 4.0 m.
In the workspace, two environments can be specified, the stage with the lecture hall rostrum, and the
tiered seating with 6 rows of desks along with 12 seats.
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Figure 16. Photo of the indoor environment with mounted LSs and the coordinate system origin.

In the workspace, nine reference points on three desks were established using an electronic tachymeter.
Two reference points were defined at the edges and one in the middle of each desk row. The calibration
point located approximately in the centre of the workspace at coordinate (5.59, 3.96, 1.06), in the middle of
the second desk row, was also one of the reference points.

The LSs CD, presented in Figure 16, were installed in the corners of the lecture hall on height 3 m.
The two other LSs, A and B, were placed in the middle of sidewall, on height 3.9 m, see Table 1.
All LSs were directed to the calibration point. The LSs positions were established using an electronic
tachymeter South NTS-372 RC.

Four different tags, as shown in Figure 15b, were successively mounted on a tripod at
four adjustable heights of 0 cm, 30 cm, 60 cm, and 90 cm. The measurements were performed
on surfaces of the first, third and fifth desk rows, where each desk row has a different height relative
to the floor. The tripod was placed successively at all reference points, at nine XY coordinates at
four heights. In total, there were 36 spatial location samples with 200 samples at each location of the
azimuth and elevation AoAs.

9. Experimental Verification

The suitability of the proposed systematic approach to the uncertainty, in terms of accuracy
and precision of the AoA-based 3D localization, was verified by physical experiments for AD and
AB LS pairs. The presented localization precision model was verified by evaluating how the model
matches the real measurements for these LS pairs. Likewise, the suggested localization offset error
model and effects of the correction vector were verified heuristically. Finally, the performance of the
AoA-based 3D localization method, including its enhancement, was compared with the reference
RTLS’s commercial algorithm results, where the reference localization technique combines the AoA
and TDoA localization methods using all LSs.

9.1. Precision Model Verification

To verify the localization precision model, the simulation results of the proposed geometrical
model of AoA localization in a 3D indoor space were compared with the results of physical experiments.
The matching ratio, as a percentage of the experimental location estimates occurring inside the
theoretical solid from the model, is used as a quantitative measure of how the precision model fits
the reality. The matching ratio was determined at each of the 36 spatial location samples in the
workspace, and an example is shown in Figure 17.
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9.2. Validation of Localization Offset Error Approach 

The validation of the proposed localization offset error approach is based on an analysis of the 
tags’ locations estimated using the AoA-based localization algorithm at the 36 spatial location 
samples in the test environment for the AB and AD LSs pairs. At each spatial location sample with 
known coordinates, each tag’s location was estimated from 200 samples. Then, the average offset 
error of x, y and z components and the resultant average offset error of the location system in the 
tested environment were computed using Equations (1) and (2) and are shown in Tables 3 and 4 for 
AB and AD pairs, respectively. The estimated average offset error of the x, y and z components 
defined a correction vector expressed by Equation (12) and calculated using Equation (11). The 
correction vector was applied to each of the 36 spatial location samples, by subtracting the vector’s 
coordinates from the estimated average x, y and z localization coordinates. As result of applying the 
correction vector, the mean offset error components for these 36 spatial location samples were reset 
to zero, see Tables 3 and 4. 

To judge the correction effect, the new estimated localizations were compared with the 
reference RTLS’s localization results as shown in Tables 3 and 4 for AB and AD LSs pairs 
respectively. The reference results were obtained using the commercial hybrid algorithm provided 
by Ubisense, which estimated the tag’s location based on TDoA measurements from four LSs [4]. 
  

Figure 17. The example of theoretical solid with a number of experimental location estimates outside
the solid (red dots).

Cumulative distribution functions of matching ratios at 36 spatial location samples for LSs AB
and AD are presented in Figure 18. The matching ratio for the pair AB, varies from 55% to 94% and
the average value of matching ratio for these 36 spatial location samples is 74.6%. The cumulative
distribution function for the pair AD located on the shorter side of the workspace shows that the
matching ratio varies from 41% to 91%, and the average value of matching ratio for the 36 spatial
location samples is 68.4%. The AB pair of LSs placed on the longer side of the workspace shows better
performance and even better fitting of the model to the real measurements. Moreover, for the 50%
test points, the matching ratio was bigger than 68% for the AD pair and bigger than 75% for the AB
pair of LSs. The cumulative distribution functions shown in Figure 18 verify that the results of the
theoretical model and experiments are consistent.
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9.2. Validation of Localization Offset Error Approach

The validation of the proposed localization offset error approach is based on an analysis of the
tags’ locations estimated using the AoA-based localization algorithm at the 36 spatial location samples
in the test environment for the AB and AD LSs pairs. At each spatial location sample with known
coordinates, each tag’s location was estimated from 200 samples. Then, the average offset error of
x, y and z components and the resultant average offset error of the location system in the tested
environment were computed using Equations (1) and (2) and are shown in Tables 3 and 4 for AB
and AD pairs, respectively. The estimated average offset error of the x, y and z components defined
a correction vector expressed by Equation (12) and calculated using Equation (11). The correction
vector was applied to each of the 36 spatial location samples, by subtracting the vector’s coordinates
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from the estimated average x, y and z localization coordinates. As result of applying the correction
vector, the mean offset error components for these 36 spatial location samples were reset to zero,
see Tables 3 and 4.

Table 3. Characteristics of the experimental results of the offset error for the 36 spatial location samples
for the AoA-based localization algorithm before and after correction and the reference algorithm for
LS’s AB pair.

Component

Offset Error for the AoA-Based Localization Algorithm Offset Error for the
Reference MethodBefore Correction After Correction

Mean
(cm)

SD *
(cm)

Range
(cm)

Mean
(cm)

SD *
(cm)

Range
(cm)

Mean
(cm)

SD *
(cm)

Range
(cm)

x −15.9 23.4 −72.0–38.8 0 23.4 −56.2–54.7 −11.4 6.1 −26.4–1.34
y −29.0 20.9 −67.6–21.7 0 20.9 −38.6–50.7 −12.0 15.9 −39.2–43.4
z −32.7 13.4 −59.1–4.2 0 13.4 −26.4–36.9 20.7 14.5 −12.6–52.5

Resultant 55.5 15.6 25.6–87.9 31.2 13.9 6.3–61.8 32.8 12.2 8.3–66.8

* SD of the mean offset error of 36 spatial location samples.

Table 4. Characteristics of the experimental results of the offset error for the 36 spatial location samples
for the AoA-based localization algorithm before and after correction, and the reference algorithm for
LS’s AD pair.

Component

Offset Error for the AoA-Based Localization Algorithm Offset Error for the
Reference MethodBefore Correction After Correction

Mean
(cm)

SD *
(cm)

Range
(cm)

Mean
(cm)

SD *
(cm)

Range
(cm)

Mean
(cm)

SD *
(cm)

Range
(cm)

x −31.8 13.4 −58.3–5.0 0 13.4 −26.4–36.9 −11.4 6.1 −26.4–1.34
y −24.7 23.9 −51.1–42.1 0 23.9 −26.4–66.8 −12.0 15.9 −39.2–43.4
z −38.1 18.6 −66.1–29.6 0 18.6 −28.1–67.7 20.7 14.5 −12.6–52.5

Resultant 64.0 8.9 43.2–78.3 28.4 17.1 3.5–70.7 32.8 12.2 8.3–66.8

* SD of the mean offset error of 36 spatial location samples.

To judge the correction effect, the new estimated localizations were compared with the reference
RTLS’s localization results as shown in Tables 3 and 4 for AB and AD LSs pairs respectively.
The reference results were obtained using the commercial hybrid algorithm provided by Ubisense,
which estimated the tag’s location based on TDoA measurements from four LSs [4].

9.2.1. AB Pair Case Study

The exemplary z offset error component, before and after applying the correction vector in each
spatial location sample, is compared with the corresponding component from the reference system,
see Figure 19. The resultant location offset errors, which are the modules of the relevant offset error
vector are shown in Figure 20. After applying the correction vector, the mean resultant offset error for
the AoA-based localization algorithm is reduced 43.8% from 55.5 cm with SD of 15.6 cm to 31.2 cm
with SD of 13.9 cm see Table 3. For a comparison, the mean resultant offset error determined by the
reference algorithm was 32.8 cm with SD of 12.2 cm. Moreover, the correction vector significantly
reduces the minimum and maximum values of the resultant offset error by 19.3 cm and 26.1 cm
respectively, which means 75.4% and 29.7% respectively. For a comparison, the range of resultant
offset error determined by the reference algorithm was from 8.3 cm to 66.8 cm.

The presented data for the AB pair shows that for both localization algorithms, the z component
of the offset error was biggest compared to x and y components, see Table 3. For the AoA-based
localization algorithm without correction vector, z component’s mean value was−32.7 cm and standard
deviation, SD, 13.4 cm, when for the reference algorithm z component’s mean value and SD were
20.7 cm and 14.5 cm respectively. For this LSs pair, the x component has the least impact on the
resultant offset error. For both algorithms, the mean offset error x component was almost a half of
z component.
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localization method before and after correction along with the reference method are presented in 
Figure 21. The presented plots show how the correction vector influences the average offset error. In 
a case the AoA-based localization algorithm without correction, the range of the error is from 25 cm 
to 87 cm and the median of the average offset error is 55 cm. The correction vector significantly shifts 
the distribution function to the left to the range from 6.3 cm to 61.8 cm with a median of 30 cm. For 
80% of test locations, the average offset error, after applying the correction vector, is less than 40 cm. 
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9.2.2. AD Pair Case Study 

The z offset error components before and after applying the correction vector at each spatial 
location sample are compared in Figure 22, and the resultant location offset errors are shown in 
Figure 23. It shows that the correction vector reduced the location offset errors at most of the 
examined positions, and the average offset error of these 36 locations is reduced 55.6% from 64.0 cm 
to 28.4 cm, see Table 3. However, the SD of mean offset error increased from 8.9 cm to 17.1 cm. For a 
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The cumulative distribution functions of average offset errors from tests of AoA-based localization
method before and after correction along with the reference method are presented in Figure 21.
The presented plots show how the correction vector influences the average offset error. In a case the
AoA-based localization algorithm without correction, the range of the error is from 25 cm to 87 cm
and the median of the average offset error is 55 cm. The correction vector significantly shifts the
distribution function to the left to the range from 6.3 cm to 61.8 cm with a median of 30 cm. For 80% of
test locations, the average offset error, after applying the correction vector, is less than 40 cm.
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9.2.2. AD Pair Case Study

The z offset error components before and after applying the correction vector at each spatial
location sample are compared in Figure 22, and the resultant location offset errors are shown in
Figure 23. It shows that the correction vector reduced the location offset errors at most of the examined
positions, and the average offset error of these 36 locations is reduced 55.6% from 64.0 cm to 28.4 cm,
see Table 3. However, the SD of mean offset error increased from 8.9 cm to 17.1 cm. For a comparison,
the mean resultant offset error determined by the reference algorithm was 32.8 cm with the SD
of 12.2 cm. Moreover, the correction vector significantly reduces the minimum and maximum values
of the resultant offset error by 39.7 cm and 7.6 cm respectively to the range from 3.5 cm to 70.7 cm,
what means improvement of 91.9% and 9.7% respectively. For a comparison, the range of resultant
offset error determined by the reference algorithm was from 8.3 cm to 66.8 cm.
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The presented data for AD LSs pair show that alike for the AB LSs pair, the z component of
the offset error was the biggest, compared to x and y components. For AoA-based localization
algorithm without the correction vector, z component’s mean value was −38.1 cm with a SD of 18.6 cm.
When for the reference method, z component’s mean value was 20.7 cm with a SD of 14.5 cm. The y
component with the mean value −24.7 cm with a SD of 23.9 cm is the smallest of the three components.
However, the SD of this component is relatively high compared to the x and z components.
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The cumulative distribution functions of the average offset errors of the AoA-based localization
method before and after correction along with the reference method results for the 36 spatial location
samples are presented in Figure 24. The presented distribution functions clearly illustrate how the
correction vector influences the average offset error. For the results from the AoA-based localization
algorithm without the correction vector, the median of the average offset error is 60 cm, whereas the
range of the error is from 42 cm to 82 cm. The correction vector significantly shifts the distribution
function to the left and the median of average offset error is reduced 63.3% to 22 cm. For 80% of the
test locations, the average offset error is less than 40 cm.
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10. Results Discussion

The simulation results for two LS pairs AD and AB shown in Figures 7–14 indicate that the
localization uncertainty, in terms of precision, depends on the LS’s configuration in the workspace.
The precision distribution maps demonstrate how the uncertainty increases along with the distance
from LSs; the uncertainty is worst at the bottom corners of the side opposite to the side with the active
LSs, which is summarized in Table 2.

The Table 2 points out that the best precision is identified near the active LSs. The simulation
results indicate also how different deployment heights of active LSs influence the uncertainty maps.
For instance, Figure 8c shows that the location uncertainty near the floor is significantly lower under
the LSD, which is located lower than the LSA. The simulation results of the LSs AB pair placed at the
same height show a relatively high uncertainty at the middle top along the wall between LSA and LSB,
see Figure 12b. The reason for this phenomenon is that in this area, the volume of the common solid
of the two crossing cones is relatively big since their axes referring to the paths of arrival could be
almost coaxial. However, the cones are not coaxial due to the established 50 cm localisation dead zone
near the wall. To overcome a problem of bad uncertainty-precision near the wall, it can be suggested
to arrange the active LSs at different heights.

The simulated uncertainty maps for the AB and AD LS pairs depict the advantage of the AB pair,
which provide the localization precision in a range from 20 cm3 to 2650 cm3 compared to AD pair’s
a range from 150 cm3 to 6900 cm3, see Table 1. The verification of this observation by the experimental
results confirms that the best localization precision is achieved for the LSs AB pair and consequently
for AD pair, the average value of matching ratio for the 36 spatial location samples is 74.6% compared
to 68.4% for the LSs AD pair.

The customization verification proves a positive influence of the correction vector on
localization accuracy. In the given test environment with 36 test points, for LSs AB pair, the correction
vector reduces 55% the mean offset error from 55 cm to 31 cm and from 64 cm to 28 cm for AD pair,
see Tables 3 and 4. Also for the AB pair the ranges of the offset error at these 36 test points have been
diminished of 19.3 cm and 26.1 cm for lower and upper range limits respectively, from 25.6 cm and
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87.9 cm to 6.3 cm and 61.8 cm respectively. The customization results challenges the mean offset error
value of the reference algorithm of 32 cm, and even its range limits of 8.3 cm and 66.8 cm.

To comprehensively assess the correction vector’s effect, the estimated localizations’ accuracy
without and with the applied correction vector are compared with the reference RTLS’s results for
LSs AB and AD pairs, shown in the Figures 21 and 24, respectively. The figures clearly indicate
improvement of the accuracy after applying the correction vector, which vitally moves the cumulative
distribution curves towards the lower value of the offset error. Considering both LS configurations,
after applying the correction vector, a half of the test locations, the offset error is less than 30 cm and
22 cm for AB and AD pairs respectively, compared to 31 cm for the reference algorithm. One can see
that the correction vector improves the accuracy of the AoA method in a way that it challenges the
reference method. Similarities in shape of all cumulative distribution functions, including the reference
one, can indirectly validate the presented approach.

11. Conclusions and Future Work

Due to its applicability and complexity, discovering a trade-off among different features
of indoor localization systems working in a 3D environment is an important research subject.
The proposed approach investigates the performance in terms of the localization uncertainty of
AoA-based UWB-based RTLS’s. The improvement of localization accuracy and precision of the RTLS’s,
without compromising its simplicity and price has been achieved by means of the system customization.
The proposed analytical geometrical uncertainty model of the AoA localization method in a 3D indoor
space is the concept’s foundation of the analytical customization method. The customization is based
on the performance assessment in a given working environment.

A 50% improvement of system localization accuracy is gained by applying a correction vector,
which is heuristically defined from an analysis of the system’s 3D accuracy distribution map of the
given working space. The enhanced performance of the AoA-based UWB-based RTLS challenges
the performance of the reference hybrid TDoA methods supported by AoA technology, whereas the
proposed method excels the reference one in terms of simplicity and price. The experimental results
prove that the correction vector is the suitable customization, which reduces the localization offset
error caused by the variety of the system’s architecture and calibration process, and by the tags’ and
working environments’ heterogeneity.

Another introduced customization approach considers the system’s performance in terms of
precision in respect to the system’s configuration in the given working space. The system’s performance
analysis for different LSs configuration was done for two different LSs pairs and for different LSs’
height placement in the space of the lecture hall. The results show a significant difference in precision,
up to 7.5 times for its lower limit and 2.6 times for its upper limit, for the two considered configurations.
Furthermore, the analysis indicates also a disadvantage of placing the active LSs at the same height.
Moreover, the simulated precision distribution maps define the areas of the best and worst localization
precision, in such a manner that the best performance is noticeably near to the active LSs and the worst
are at the corners hindmost from these LSs.

The angular-based 3D localization algorithm estimating the tag’s location using azimuth and
elevation angle measurements of a pair of LSs is proposed. The extrapolation algorithm allows finding
the localisation estimate even in contaminated environments by using the principle of a distance
between two skewed lines. Simulation and physical experiment results confirm that the proposed
simple extrapolation angular-based 3D localization algorithm ensures a good localization performance
and challenges the advanced UWB-based RTLS algorithms.

The proposed analytical geometrical model of the AoA localization method in a 3D indoor
space was evaluated in the simulation environment of Matlab where the model was implemented.
The proposed solution was verified by comparison of simulation and physical experiment results.
The quantitative verification, in a form of matching ratios confirms that the analytical model matches
the real measurement with a high probability level.
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To further enhance the RTLS performance, the research may consider a region-based correction
vector method, which adjusts the correction vector to the region of workspace. The distance from the
active LSs can be used as an adaptive factor of the correction vector. The artificial intelligent approach,
such as fuzzy logic or machine learning, may be implemented for estimation of regions’ boundaries
and relevant suitable correction vectors. Additionally, the uncertainty analysis of the UWB LS’s array
geometry used in the AoA-based RTLSs may provide guidance on how to enhance the estimation of
the correction vectors.

Moreover, a similar localization uncertainty analysis can be applied to ToA and TDoA-based
localization algorithms used in RTLSs. An analogical uncertainty model, including offset error sources
of RTLS’s architecture, indoor environment and synchronization procedure, can be defined to enhance
the system’s performance.
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The following abbreviations are used in this manuscript:

AoA Angle of Arrival
AoP Angle of Precision
DoP Dilution of Precision
GDoP Geometric Dilution of Precision
ILS Indoor Localization System
IMU Inertial Measurement Unit
LoS Line-of-sight
LS Location Sensor
NLoS Non-line-of-sight
PoE Power over Ethernet
RFID Radio Frequency Identification
RSS Received Signal Strength
RTLS Real-time Locating Systems
SD Standard Deviation
TDoA Time Difference of Arrival
ToA Time of Arrival
UWB Ultra Wideband
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