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Abstract: This paper investigated the effect of sensor density and alignment for three-dimensional
shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions,
i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite
Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable
accurate predictions for transverse deflection and through-the-thickness variation of interfacial
displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel
three-node C◦-continuous inverse-shell element, known as i3-RZT. The discrete strain data is
generated numerically through performing a high-fidelity finite element analysis on the wing-shaped
panel. This numerical strain data represents experimental strain readings obtained from surface
patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor
placement configurations with varying density and alignment of strain data were examined and their
corresponding displacement contours were compared with those of reference solutions. The results
indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the
longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses
(deformed shapes) of the panel, including a true zigzag representation of interfacial displacements.
On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially
enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor
placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM
methodology is proven for three-dimensional shape-sensing of future aerospace structures.

Keywords: inverse finite element method (iFEM); refined zigzag theory (RZT); shape-sensing;
sandwich plate; structural health monitoring; aerospace structures

1. Introduction

Structural health monitoring (SHM) has become a critical process for composite structures,
particularly those used in aeronautical, naval and civil applications [1–3]. The implementation of SHM
to composite structures can enable the acquisition of real-time deformation and stress information
by utilizing in situ sensors. This is generally referred to as “shape and stress sensing”, and can be
potentially useful for predicting real-time damage (i.e., unhealthy structural conditions) and even to
evaluate fatigue life. Therefore, the safety and structural integrity of a structure can be maintained at
reduced repair cost.
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Various researchers have utilized an SHM system to investigate different types of failure
phenomena of composites, including delamination [4], face/core debonding [5], and fatigue
responses [6], and failure modes of foam core sandwich composites [7]. Moreover, shape sensing of
a morphing (smart) wing [8] and damage detection of wind turbine blades [9] was demonstrated
by taking advantage of embedded optical-fiber networks, such as fiber Bragg grating (FBG) sensors.
In addition, the feasibility of manufacturing composite laminates with built-in FBG sensors have
been elaborated on [10] for collecting a large amount of strain data. Furthermore, various real-time
monitoring algorithms have been proposed for beam and plate bending. These methods include
modal-based approaches [11–13], curve-fitting and regression algorithms [14–17], Tikhonov’s [18]
regularization techniques [19,20], and least-squares algorithms [21–23]. Nevertheless, the complexity
of boundary conditions and structural topology were not considered by the most of these shape sensing
methods. Therefore, they may not be used as a general-purpose on-site SHM algorithm. We elaborate
on this issue in the following four paragraphs by providing a brief background on these methods.

The modal-based inverse algorithms use vibration mode shapes of the body and experimental
strain measurements (e.g., strain gauge readings) to construct the displacement-strain relationship.
Although the effectiveness of these algorithms was demonstrated for a clamped end beam [11] and
cantilever plates [12,13], the number of estimated mode shapes was only restricted to the number
of strain sensors placed on the structures, thus requiring more sensors to estimate the vibration or
deformed shapes at higher frequency excitations.

The curve-fitting and regression algorithms mainly aim to fit experimentally measured strains
into an a priori set of global and piece-wise continuous basis functions and proper weights. Then,
the displacement field of the beam/plate structure can be evaluated, utilizing strain-displacement
relationships. The example applications of these methods to simple beam structures can be found
in [14–16]. In particular, Ko et al. [17] computed the deflection and cross-section twist of an aircraft
wing, using a load-independent method that approximates the beam curvature with piece-wise
polynomials. However, curve-fitting algorithms may require many trial functions and strain sensors
for the reconstruction of more complicated deformations.

Tikhonov’s [18] regularization can guarantee a confident smoothness degree, to solve the inverse
problem of shape sensing. This type of regularization technique was utilized to solve inverse elastic
problems [19] and to calculate surface tractions on a body, from internal displacements measured at
discrete sensor locations [20]. The spatial regularization technique was also employed concurrently
with a statistical approach, to estimate the errors in the solution of an inverse problem [21]. However,
this methodology requires iterations and may therefore lead to convergence difficulties and high
computational costs, especially for complex three-dimensional structures.

A least-squares formulation [22] was utilized to solve the shape-sensing problem of a cantilever
plate, based on the assumptions of Kirchhoff plate hypotheses. However, this formulation is not general
enough for complex geometries, due to the inherent assumptions made for a simple cantilever plate.
Another shape-reconstruction algorithm [23] proposed, based on a weighted-least-squares functional,
aimed to enforce the compatibility between the analytical and measured bending curvatures of the
Kirchhoff plate theory. Nevertheless, it is difficult to generalize this approach, since the weighting
coefficients in the least-square terms are computed to resolve inherent errors in the strain-sensor data,
by considering the given data-acquisition tool, the load condition, and the test specimen. Furthermore,
an inverse interpolation algorithm, involving least-squares minimization of calculated and measured
strains, was proposed for shape sensing of aerospace structures [24]. However, this methodology
requires the recovery of the applied loading before the solution of displacements, but the loading
conditions may have a non-trivial physical topology in the real environment, thus causing the main
drawback of the proposed formulation.

An original mechanics-based algorithm called the “Inverse Finite Element Method (iFEM)”
was developed by Tessler and Spangler [25,26], for shape sensing of plate and shell structures.
The mathematical foundation is based on minimization of a least-squares functional, defined by
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the summation of squared errors between analytical and experimental strain measures. In comparison
to other shape-sensing methods, iFEM serves an advantage for estimating static and dynamic behavior
of any structural topology with any constraint boundary condition. The second advantage of iFEM is
that no prior knowledge of loading and material is required for shape sensing analysis. Finally, iFEM
has a robust formulation, which makes it suitable for real-time monitoring applications.

The iFEM approach has been studied extensively over the past fifteen years. To give some
pioneering examples, various types of inverse elements have been developed, including a three-node
triangle [27] and a four-node quadrilateral [28] inverse-shell element, and a viable inverse beam/
frame element [29,30]. Other examples include the practical applications of iFEM framework to SHM
of aerospace vehicles [31–33], marine structures [34,35] including chemical tankers [36], containerships [37],
bulk carriers [38], and offshore structures [39]. Also, a US patent was obtained to perform shape
sensing of downhole structures [40]. Recently, Cerracchio et al. [41] developed an iFEM framework,
based on the kinematic assumptions of the Refined Zigzag Theory (RZT) [42], in order to account for
relatively thick sandwich plates. Then, Kefal and co-workers [43] enhanced the iFEM-RZT formulation
and developed a novel three-node C0-continuous inverse-shell element (i3-RZT). This improved
iFEM-RZT formulation with the i3-RZT element [43] is well suited to the real-time displacement and
stress monitoring of thin, moderately thick, and thick composite shell structures that are instrumented
with few strain sensors.

Based on the enhanced iFEM-RZT [43] methodology, this study investigates the effect of sensor
density and alignment on the shape sensing of a tapered wing-shaped sandwich panel, subjected to
membrane, bending, and torsion loads, for the first time in the literature. This paper is structured
as follows: First of all, the theoretical basis of the iFEM-RZT and implementation of the i3-RZT
element is briefly reviewed in the remainder of the paper. Then, a high-fidelity FEM analysis of
the sandwich plate is described, which generated the discrete strain data to represent experimental
strain measurements collected from in situ strain gauges/rosettes and FBG sensors. After that,
the performance of three different sensor placement configurations, including dense, sparse, and very
sparse sensor distributions, which formed on the sandwich panel, and the shape sensing analysis, using
i3-RZT elements, is described. Finally, the most efficient and practical sensor network is determined
for each loading scenario, by comparing iFEM-RZT displacement results with those of FEM analyses.

2. The Enhanced iFEM-RZT Formulation

2.1. The i3-RZT Inverse-Shell Element

The three-node triangular inverse-shell element, i3-RZT, developed by Kefal et al. [43] will be
briefly reviewed, to demonstrate iFEM-RZT formulation. To define the displacement and strain fields
of the element, an orthogonal local coordinate system (x1, x2, z) is chosen and its origin (0, 0, 0) is
positioned at the centroid of the mid-plane triangle, as shown in Figure 1a. Note that, the coordinates
x ≡ (x1, x2) are in-plane coordinates and z ∈ [−h,+h] defines the thickness coordinate. The element
has nine displacement degrees-of-freedom (DOF) at each corner node, as depicted in Figure 1b.
These nodal DOF consist of positive x1, x2, z translations ui, vi, wi, positive counter clockwise classical
rotations around the x1- and x2-axes, θxi and θyi, positive counter clockwise zigzag rotations around the
x1- and x2-axes, ψxi and ψyi, drilling rotations θzi, and artificial zigzag rotations ψzi. When modelling
built-up or curved shell structures use the i3-RZT element, the element can simply avoid singular
solutions as a result of the presence of θzi and ψzi.

The membrane displacements along the x1 and x2 directions, u(x) and v(x), can be defined in
terms of the nodal DOF of ui, vi and θzi as

u(x) ≡ u =
3

∑
i=1

(Ni ui + Li θzi) (1a)
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v(x) ≡ v =
3

∑
i=1

(Ni vi + Mi θzi) (1b)
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Figure 1. (a) The three-node triangular inverse-shell element (i3-RZT) element, depicted with its local 
coordinate system; (b) nodal degrees-of-freedom in the local coordinate system. 

The membrane displacements along the 1x  and 2x  directions, ( )u x  and ( )v x , can be defined 

in terms of the nodal DOF of iu , iv  and zi  as 




  
3

1
( ) ( )i i i zi

i
u u N u Lx  (1a) 




  
3

1
( ) ( )i i i zi

i
v v N v Mx  (1b) 

In addition, the transverse deflection ( )w x , bending and zigzag rotations around the positive 

2x  and negative 1x  directions, 1( )x  and 2( )x    ( , ) , can be expressed by the nodal DOF of 

iw ,  i  and  i   ( , )x y  as 

   


     
3

1
( ) [ ( ) ( )]i i i xi xi i yi yi

i
w w N w L Mx  (2a) 

     


  
3

1 1
1

( ) ( , )i yi
i

Nx  (2b) 

     


   
3

2 2
1

( ) ( , )i xi
i

Nx  (2c) 

where iN  is the linear area-parametric coordinates of the triangle and iL  and iM  are the 
anisoparametric interpolation functions that are explicitly given in Appendix A. Note that these 
shape functions are obtained by applying Tessler–Dong’s constant shear edge constraint conditions 
[44,45] and they were originally used in [46]. 

For a laminate with N  perfectly bonded laminae, RZT establishes in-plane displacement 
components   ( ) ( , ) ( 1,2)ku zx  of any material point as functions of constant, linear, and zigzag 
variations of the thickness coordinate as [42]: 

     ( ) ( ) ( )
1 1 1 1 1( , )k k ku z u u zx  (3a) 

     ( ) ( ) ( )
2 2 2 2 2( , )k k ku z u v zx  (3b) 

and constant transverse displacement through the thickness of the laminate as: 

 ( , )z zu z u wx  (3c) 

As described in Figure 2a, the superscript (k) used in Equation (3a,b) indicates the k-th lamina, 
whereas the subscript (k) defines the interface between the k-th and (k + 1)-th laminae. Moreover, as 
depicted in Figure 2b, the functions  ( ) ( )

1 1 ( )k k z  and  ( ) ( )
2 2 ( )k k z  denote through-the-thickness 

piecewise-linear zigzag functions that can be expressed as [42]: 

Figure 1. (a) The three-node triangular inverse-shell element (i3-RZT) element, depicted with its local
coordinate system; (b) nodal degrees-of-freedom in the local coordinate system.

In addition, the transverse deflection w(x), bending and zigzag rotations around the positive x2

and negative x1 directions, χ1(x) and χ2(x) (χ = θ, ψ), can be expressed by the nodal DOF of wi, θαi
and ψαi (α = x, y) as

w(x) ≡ w =
3

∑
i=1

[Ni wi − Li(θxi − ψxi)−Mi(θyi − ψyi)] (2a)

χ1(x) ≡ χ1 =
3

∑
i=1

Ni χyi (χ = θ, ψ) (2b)

χ2(x) ≡ χ2 = −
3

∑
i=1

Ni χxi (χ = θ, ψ) (2c)

where Ni is the linear area-parametric coordinates of the triangle and Li and Mi are the anisoparametric
interpolation functions that are explicitly given in Appendix A. Note that these shape functions are
obtained by applying Tessler–Dong’s constant shear edge constraint conditions [44,45] and they were
originally used in [46].

For a laminate with N perfectly bonded laminae, RZT establishes in-plane displacement
components u(k)

α (x, z) (α = 1, 2) of any material point as functions of constant, linear, and zigzag
variations of the thickness coordinate as [42]:

u(k)
1 (x, z) ≡ u(k)

1 = u + zθ1 + φ
(k)
1 ψ1 (3a)

u(k)
2 (x, z) ≡ u(k)

2 = v + zθ2 + φ
(k)
2 ψ2 (3b)

and constant transverse displacement through the thickness of the laminate as:

uz(x, z) ≡ uz = w (3c)

As described in Figure 2a, the superscript (k) used in Equation (3a,b) indicates the k-th lamina,
whereas the subscript (k) defines the interface between the k-th and (k + 1)-th laminae. Moreover,
as depicted in Figure 2b, the functions φ

(k)
1 ≡ φ

(k)
1 (z) and φ

(k)
2 ≡ φ

(k)
2 (z) denote through-the-thickness

piecewise-linear zigzag functions that can be expressed as [42]:

φ
(k)
1 ≡ 1

2
(1− ξ(k)) u(k−1) +

1
2
(1 + ξ(k)) u(k) (4a)
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φ
(k)
2 ≡ 1

2
(1− ξ(k)) v(k−1) +

1
2
(1 + ξ(k)) v(k) (4b)

with

ξ(k) =

[ z− z(k−1)

h(k)
− 1
]
∈ [−1,+1] (k = 1, 2, . . . , N) (4c)

where the first lamina, beginning at z(0) = −h, the last (N-th) lamina ending at z(N) = +h, and the
k-th lamina, ending at z(k) = z(k−1) + 2h(k), where 2h(k) denotes the thickness of the k-th lamina.
Calculating the zigzag functions at the lamina interfaces, z = z(k) and z = z(k−1), gives rise to the
definition of interfacial displacements as (see Figure 2b):

u(k) = φ
(k)
1 (ξ(k) = +1), v(k) = φ

(k)
2 (ξ(k) = +1) (z = z(k))

u(k−1) = φ
(k)
1 (ξ(k) = −1), v(k−1) = φ

(k)
2 (ξ(k) = −1) (z = z(k−1))

(5a)
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According to RZT [42], the zigzag functions at the bottom (z = z(0) = −h) and top (z = z(N) = +h)
plate surfaces vanish identically; thus, interfacial displacements at these bounding surfaces can be
calculated, in accordance with the Equation (5a) as:

u(0) = u(N) = v(0) = v(N) = 0 (5b)

Besides, the u(k) and v(k), the interfacial values of the zigzag functions can be expressed in terms

of piecewise constant slope functions β
(k)
α (α = 1, 2 ; k = 1, 2, . . . , N) as [42]:{

u(k)
v(k)

}
= 2h(k)

{
β
(k)
1

β
(k)
2

}
+

{
u(k−1)
v(k−1)

}
(k = 1, 2, . . . , N) (6a)

where the β
(k)
α (α = 1, 2) slope of the zigzag functions, i.e., ∂φ

(k)
α /∂z (α = 1, 2), can be explicitly

defined for the k-th layer as:{
β
(k)
1

β
(k)
2

}
=

{
G1/Q(k)

11 − 1

G2/Q(k)
22 − 1

}
(k = 1, 2, . . . , N) (6b)

with the weighted-average transverse-shear stiffness coefficients, G1 and G2, that can be defined in
terms of their respective lamina-level coefficients, Q(k)

11 and Q(k)
22 as:

{
G1

G2

}
=


(

1
h

N
∑

i=1

h(i)

Q(i)
11

)−1

(
1
h

N
∑

i=1

h(i)

Q(i)
22

)−1

 (6c)
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From calculating relevant derivatives of Equation (3), the linear strain-displacement relations give
rise to the in-plane and transverse-shear strain components, defined as:

ε
(k)
11

ε
(k)
22

γ
(k)
12

 =


u(k)

1,1

u(k)
2,2

u(k)
1,2 + u(k)

2,1

 ≡ e(ue) + zκ(ue) + µ(k)(ue) (7a)

and {
γ
(k)
1z

γ
(k)
2z

}
≡
{

u(k)
1,z + uz,1

u(k)
2,z + uz,2

}
= H(k)

β

{
γ(ue)

η(ue)

}
(7b)

with

H(k)
β =

[
1 + β

(k)
1 0 −β

(k)
1 0

0 1 + β
(k)
2 0 −β

(k)
2

]
(7c)

where the symbols, (·),α ≡
∂(·)
∂xα

and (·),z ≡
∂(·)
∂z , signify a partial derivative, with respect to the

in-plane coordinates, xα (α = 1, 2), and thickness coordinate, z, respectively. In Equation (7a),
the vectors e(ue), κ(ue) and µ(k)(ue) indicate the membrane strain measures, bending curvatures,
and zigzag strain measures, respectively. On the other hand, the vectors, γ(ue) and η(ue), defined in
Equation (7b), represent the first (average) and second transverse-shear strain measures, respectively.
After introducing Equations (1) and (2) into Equation (7a,b), these strain measures can be explicitly
defined in terms of nodal displacement vector of i3-RZT, ue, as

e(ue) =
[

u,1 v,2 u,2 + v,1

]T
= Beue (8a)

κ(ue) =
[

θ1,1 θ2,2 θ1,2 + θ2,1

]T
= Bκue (8b)

µ(k)(ue) =
[

φ
(k)
1 ψ1,1 φ

(k)
2 ψ2,2 φ

(k)
1 ψ1,2 + φ

(k)
2 ψ2,1

]T
= H(k)

φ Bµue (8c)

γ(ue) ≡
[

γ1 γ2

]T
≡
[

w,1 + θ1 w,2 + θ2

]T
= Bγue (8d)

η(ue) ≡
[

γ1 − ψ1 γ2 − ψ2

]T
= Bηue (8e)

with

H(k)
φ =

 φ
(k)
1 0 0 0

0 φ
(k)
2 0 0

0 0 φ
(k)
1 φ

(k)
2

 (8f)

and
ue =

[
ue

1 ue
2 ue

3

]T
(8g)

ue
i =

[
ui vi wi θxi θyi θzi ψxi ψyi ψzi

]T
(i = 1, 2, 3) (8h)

where the matrices Bα (α = e, κ, µ, γ, η) contain derivatives of the shape functions (refer to
Appendix A).

2.2. In Situ Section Strains

As shown in Figure 3, three different conventional strain gauges and/or embedded FBG sensors
can be stacked together to form a strain rosette for gathering onboard triaxial strain measurements.
Based on the iFEM-RZT methodology, three different strain rosettes (ε+i , ε−i , ε

j
i) should be located

along the thickness direction of each particular location (xi, z) (i = 1, 2, . . . , n), where ‘n’ indicates the
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total number of discrete sensor locations. For example, conventional strain rosettes can be pathed on
the bounding surface of the laminate, while FBG strain rosettes can be embedded inside the laminate,
as depicted in Figure 3.
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The strain readings of these rosettes can be expressed as:

ε+i = [ ε+11 ε+22 γ+
12 ]

T
i (9a)

ε−i = [ ε−11 ε−22 γ−12 ]
T
i (9b)

ε
j
i = [ ε

j
11 ε

j
22 γ

j
12 ]

T

i
(9c)

where the strain measurements with subscripts (11), (22) and (12) refer to as normal strains along x1 and
x2 directions and shear strain in the x1x2 plane, respectively. Note that, also, the superscripts ‘+’, ‘−’ and
‘j’ denote the strain rosettes located on the top, bottom, and j-th interface of the laminate, respectively.

Since the zigzag functions on the top and bottom surfaces disappear, in situ membrane strains
and bending curvatures can be computed utilizing the original iFEM plate formulation [26] as:

Ei =
1
2
(
ε+i + ε−i

)
(i = 1, 2, . . . , n) (10a)

Ki =
1

2h
(
ε+i − ε−i

)
(i = 1, 2, . . . , n) (10b)

where in situ section strains, Ei and Ki, correspond to their analytic counterparts, e(ue) and κ(ue), given
by Equation (7a), respectively. Also, at a particular discrete location (xi, zi = z(j)), the experimental
zigzag strains can be calculated in accordance with Cerracchio et al. [41] as:

Mj
i = ε

j
i − Ei − z(j)Ki (i = 1, 2, . . . , n) (11)

Note that it is necessary to compute the analytic counterpart µ(k)(ue) of in situ section strains Mj
i

at exactly the same j-th interface. In contrast to experimental in-plane section strains, experimental
counterparts of γ(ue) and η(ue) (i.e., the in situ first and second transverse-shear strains Γi and Hi)
cannot be directly calculated using surface strain readings (ε+i , ε−i , ε

j
i). Kefal et al. [43] established

a computational procedure to predict these in situ strain measures, by using smoothing element
analysis (SEA) [47,48] and governing (equilibrium) equations of RZT. This computational tool can
be useful for treating problems exhibiting larger transverse-shear strains, such as thick composite
plates/shells. For thin composite plates/shells, nevertheless, the in-plane strain components contribute
to the deformation much more than transverse-shear strain components. Thus, the Γi and Hi contributions
can be safely neglected during an iFEM analysis of thin shells.
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2.3. The Weighted-Least-Squares Functional

For an individual i3-RZT element, the analytical and experimental strains associated with
the membrane, bending, zigzag, and transverse-shear deformations can be interrelated based on
a weighted-least-squares functional Φe(ue) as [43]

Φe(ue) = we‖e(ue)− E‖2 + wκ‖κ(ue)−K‖2 + wµ‖µ(k)(ue)−Mj‖2

+wγ‖γ(ue)− Γ‖2 + wη‖η(ue)−H‖2 (12)

where the squared norms can be defined by the Euclidean norms as

‖e(ue)− E‖2 ≡ 1
n

x

Ae

n

∑
i=1

[e(ue)i − Ei]
2dxdy (13a)

‖κ(ue)−K‖2 ≡ (2h)2

n

x

Ae

n

∑
i=1

[κ(ue)i −Ki]
2dxdy (13b)

‖µ(k)(ue)−Mj‖
2
≡ 1

n

x

Ae

n

∑
i=1

[
µ(k)(ue)i −Mj

i

]2
dxdy (13c)

‖γ(ue)− Γ‖2 ≡ 1
n

x

Ae

n

∑
i=1

[γ(ue)i − Γi]
2dxdy (13d)

‖η(ue)−H‖2 ≡ 1
n

x

Ae

n

∑
i=1

[η(ue)i −Hi]
2dxdy (13e)

where the location of the embedded sensors (i.e., j-th interface, see Equation (13c)), can be any
interface through the thickness coordinate of the laminate, such as j = k or (k− 1), where 1 < k < N.
In Equation (12), the symbol wα (α = e, κ, µ, γ, η) represents the vector of weighting constants
corresponding to each individual section strain. Their usage is important for those problems involving
few strain sensors. In the case of every analytic section, strain has a comparable experimental value;
they can be set to unit vectors as:

wα =
[

1 1 1
]

(α = e, κ, µ), wβ =
[

1 1
]

(β = γ, η) (14)

On the other hand, if an experimental strain component is not available, the corresponding
weighting constant can be set to a smaller number compared to unity, such as λ = 10−5, and the
corresponding squared norm can be redefined by its reduced form as:

‖χ(ue)‖2 ≡
x

Ae

[χ(ue)]2dxdy (χ = e,γ,η) (15a)

‖κ(ue)‖2 ≡ (2h)2
x

Ae

[κ(ue)]2dxdy (15b)

‖µ(k)(ue)‖
2
≡

x

Ae

[
µ(k)(ue)

]2
dxdy (15c)

More information regarding the usage and importance of the weighting coefficients can be found
in [43]. Note that all integrations in Equations (13) and (15) should be performed over the mid-plane
area of an individual i3-RZT element, Ae. Finally, minimizing the Φe(ue) functional with respect to the
ue nodal DOF reveals that
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∂Φe(ue)

∂ue = keue − εe = 0 ⇒ keue = εe (16)

where the right-hand-side vector εe is a function of the experimental strain values and can be defined as:

εe = 1
n
s

Ae

n
∑

i=1

(
we(Be)TEi + (2h)2wκ(Bκ)TKi + wµ(Bµ)T(H(k)

φ )
T

Mj
i

+wγ(Bγ)T
Γi + wη(Bη)THi

)
dxdy

(17a)

and where the element left-hand-side matrix ke is independent of the in situ strain data and can be
defined as:

ke =
s

Ae

(
we(Be)TBe + (2h)2wκ(Bκ)TBκ + wµ(Bµ)T(H(k)

φ )
T

H(k)
φ Bµ

+wγ(Bγ)TBγ + wη(Bη)TBη
)

dxdy
(17b)

An artificial contribution matrix, kψ, must be added to the ke matrix by providing the artificial
stiffness terms associated with the drilling DOF of the zigzag amplitudes ψzi (i = 1, 2, 3). The kψ

matrix can be simply constructed as a diagonal form

kψ =

 k1
ψz 0 0
0 k2

ψz 0
0 0 k3

ψz

 (18a)

with
ki

ψz = 10−5 ×min(ki
ψx, ki

ψy)(i = 1, 2, 3) (18b)

where the coefficients ki
ψx, ki

ψy (i = 1, 2, 3) are diagonal terms of the ke matrix, corresponding to the
zigzag-amplitude DOF, (ψxi, ψyi) (i = 1, 2, 3). Then, the element equations defined in Equation (16)
can be rewritten in the following final form as:[

kv 0
0 kψ

][
v
ψz

]
=

[
εv

0

]
(18c)

where the ψz vector denotes the drilling DOF of the zigzag amplitudes, the v vector represents all
other DOFs of the i3-RZT element; the kv matrix and εv vector are the sub-elements associated with
the v vector.

Utilizing suitable transformation matrices, the element equations Equation (18c) can be
transformed into global equations that can be subsequently assembled into the global system of
matrix equations of the discretized structure. To disable rigid body modes of the discretized structure,
the constraint boundary conditions need to be applied in accordance with standard FEM procedures.
Finally, the solution of the global system of matrix equations will provide the total deformation
(structural shape) of the structure at any real time.

3. Numerical Examples

In the remainder of this section, a tapered wing-shaped plate (sandwich laminate), depicted
in Figure 4a, is considered to be analyzed based on the iFEM-RZT methodology. For the sake of
consistency with an aircraft wing, the plate dimensions are scaled appropriately and fitted to the
wing of NASA’s Ikhana aircraft, as shown in Figure 4b. The laminate has a uniform thickness of
2h = 100 mm and span-to-thickness ratio of L1/2h = 10, thus representing a moderately thick
plate. The laminate is seven-layer, quasi-isotropic sandwich laminate with carbon-epoxy (orthotropic
material) face sheets and a thick closed cell polyvinyl chloride (PVC) core (isotropic material). As listed
in Tables 1 and 2, the mechanical properties of the carbon-epoxy and PVC are chosen as same as
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those given in [43] and the total stacking sequence is symmetric, with respect to the mid-plane of
the laminate.
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Figure 4. (a) Tapered wing-shaped sandwich plate; (b) dimensions [mm] of the plate, scaled in
accordance with wing of NASA’s Ikhana vehicle [49].

Table 1. Mechanical properties of orthotropic and isotropic materials.

Lamina Material Young’s Modulus [GPa] Poisson’s Ratio Shear Modulus [GPa]

C Carbon-epoxy unidirectional composite

E(k)
1 = 157.9

E(k)
2 = 9.584

E(k)
3 = 9.584

υ
(k)
12 = 0.32

υ
(k)
13 = 0.32

υ
(k)
23 = 0.49

G(k)
12 = 5.930

G(k)
13 = 5.930

G(k)
23 = 3.227

P PVC core E(k) = 0.104 υ(k) = 0.3 G(k) = 0.04

Table 2. Laminate stacking sequence in the positive z direction.

Laminate Normalized Lamina
Thickness, h(k)/h Lamina Materials Lamina Orientation [◦]

Quasi-isotropic sandwich (0.1/0.1/0.1/0.4/0.1/0.1/0.1) (C/C/C/P/C/C/C) (60/0/−60/0/−60/0/60)

The yellow edge of the plate is fully clamped, as shown in Figure 4a, whereas the green edge
is the loading edge, where surface tractions are applied in various directions to perform three main
deformation states of the laminate, i.e., bending, torsion, and membrane deformations. First of all,
a uniformly distributed force of 200 kN/m is applied in the negative z direction, to activate a bending
state. Note that the bending load also creates some torsional deformations on the laminate, but the
amount of torsional rotations is negligibly small, i.e., approximately one order of magnitude smaller
than bending rotations. Therefore, the main deformation state of the laminate can be referred to as the
bending state. Secondly, the torsion scenario is performed by applying a uniformly distributed moment
(torque) of 40 kNm/m, in the positive x1 axis. Finally, the loading edge is subjected to a uniformly
distributed force of 1000 kN/m, in the positive x2 direction, for triggering the membrane behavior of
the plate.

Prior to the shape sensing analysis of the tapered plate, we performed a series of RZT-based
finite element analyses (convergence study), utilizing a three-node triangular plate element, known as
an RZT constrained anisoparametric plate element [50], having seven DOF per node. The high-fidelity
discretization, shown in Figure 5, provides sufficiently accurate (convergent) displacements and
rotations that can be used as reference solutions for the loading cases mentioned above. These FEM
analyses are also utilized to generate the discrete strain-sensor data that simulates experimental strain
readings obtained from surface patched strain gauges and embedded FBG sensors.

Three different sensor placement configurations, depicted in Figures 6–8, are considered in the
following shape sensing analysis. The exact in-plane coordinates of each strain sensor location are
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listed in Table 3. Regarding the through-the-thickness coordinates of these sensors, they are located
at three different interfaces of the laminate: the top surface (z = +h), the bottom surface (z = −h),
and the first interface among those of the bottom face sheets (z = −0.8h). The density (total number)
of strain data sampling is different for each sensor network; thus, we distinguish these configurations
from each other by referring to them as “Dense (D)”, “Sparse (S)” and “Very Sparse (VS)”, respectively
(Figures 6–8). Triaxial strains are measured by 40 × 3 and 23 × 3 strain rosettes for the D and S
networks, respectively, whereas uniaxial strain measurements are made by 23× 3 FBG sensors for the
VS network. Therefore, the total number of strain data sampling for the D, S and VS sensor placement
configurations count as 120× 3 = 360, 69× 3 = 207, and 69× 1 = 69, respectively. Thanks to triaxial
strain measurements, experimental section strains at each specific in situ location can be computed
independently from the direction (orientation) of the sensors for both D and S configurations. However,
the alignment of sensors plays an important role for the VS configuration, since the uniaxial strain
measurements allow us to compute only one experimental section strain, which is along the FBG sensor
direction. For each sensor placement configuration, the smoothing element analysis is employed,
utilizing a smoothing domain, composed of eleven triangular elements whose dimensions are clearly
shown in Figure 9. In this regard, discretely measured surface strains are computed as C1-continuous
polynomial functions of in-plane axes, xα (α = 1, 2). Therefore, the iFEM analysis, corresponding
to each sensor placement model, can be performed using any fine i3-RZT mesh. Although it is not
a limitation, for simplicity, we chose to use the high-fidelity discretization, depicted in Figure 5 as the
fine i3-RZT mesh, in the following iFEM-RZT analysis.
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Table 3. In-plane coordinates of sensor locations.

Sensors x1 [mm] x2 [mm] Sensors x1 [mm] x2 [mm]

1 22.71 127.94 21 381.15 96.59
2 22.76 89.56 22 411.57 169.35
3 22.81 51.18 23 414.34 80.35
4 48.63 142.31 24 445.47 127.79
5 48.96 28.91 25 485.03 117.29
6 100.46 151.57 26 509.37 161.16
7 101.14 41.66 27 556.86 120.15
8 139.66 118.03 28 587.23 166.48
9 140.13 64.38 29 635.01 128.37

10 191.20 156.76 30 665.10 171.80
11 192.49 52.95 31 711.05 167.24
12 224.03 130.38 32 739.77 131.86
13 224.70 85.21 33 788.97 173.13
14 268.98 161.20 34 817.98 140.66
15 270.79 62.62 35 866.89 179.03
16 301.84 141.63 36 896.20 149.46
17 302.85 93.43 37 933.22 171.91
18 346.76 165.65 38 956.02 200.46
19 349.09 72.29 39 962.45 148.07
20 379.88 142.17 40 984.88 179.43
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During the iFEM-RZT analysis, the weighting constants associated with the membrane, bending,
and zigzag strain measures are adjusted to unity for configurations D and S as:

wα =
[

1 1 1
]

(α = e, κ, µ) (19a)

On the other hand, each strain gauge/FBG sensor depicted in Figure 8 is aligned with the x1 axis
for the VS configuration. Therefore, while performing the shape sensing analyses with this model,
the weighting coefficients can be adjusted as:
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wα =
[

1 λ λ
]

(α = e, κ, µ) (19b)

where weighting constants corresponding to the strain measures (membrane, bending and zigzag)
along the x2 axes and in the x1x2 plane are set to a small value, λ = 10−3, since the FBG/strain
gauges sensors can provide strain measurements along the x1 direction only. To maintain the
accuracy of rotation predictions, while at the same time increasing the quality of deflection predictions,
the weighting constants associated with the transverse-shear strains are also set to small values for all
sensor placement configurations. It is important to note that the deformation of quasi-isotropic
laminate produces much greater values of first transverse-shear strains (γ(ue)) than those of
second transverse-shear strains (η(ue)). Therefore, the following adjustment of weighting constants
corresponding to transverse-shear strain measures are made for all three models:

wγ =
[

λ1 λ1

]
, wη =

[
λ2 λ2

]
(20)

where λ1 = 10−8 takes on a smaller value than λ2 = 10−4, thus ensuring the necessary strain
compatibility between the first and second transverse-shear measures of the sandwich laminate.

In the first case study, the iFEM analysis was performed by using the discrete strain data
obtained from the bending scenario. The transverse deflection w and bending rotation θ1 variations
obtained from the iFEM analysis were compared with those of reference high-fidelity FEM analysis,
as depicted in Figure 10, respectively. These results demonstrate that all three sensor placement
configurations enable the prediction of accurate bending responses of the sandwich plate. In addition,
the through-the-thickness variation of the interfacial displacements, u(k)

1 and u(k)
2 , at point P2,

are plotted in Figure 11. These variations show that all three models produce a zigzag interfacial
displacement of u(k)

1 that is indistinguishable from their reference values. On the other hand, although

the i3-RZT model, corresponding to the VS configuration, predicts erroneous u(k)
2 displacements,

they will not affect the computation of the three-dimensional deformed shape, as their maximum
values are one order of magnitude lower than those of u(k)

1 displacements. As depicted in Figure 12,
the deformed shape of the sandwich laminate, predicted using the i3-RZT model of VS configuration,
has a perfect match with the one produced by the FEM analysis. Remarkably, iFEM-RZT methodology
can estimate a highly accurate deformed shape for the bending scenario, even if the model containing
the sparsest strain measurements is used in the analysis. Hence, only a very sparse longitudinal
strain data is sufficient for predicting accurate full-field bending deformations, including a true zigzag
representation of interfacial displacements.
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FEM analysis and iFEM analysis of VS configuration.

In the second case study, the iFEM analysis was carried out using i3-RZT models, which contained
the discrete strain measurements obtained from the torsion scenario. The variations of transverse
deflection (w) and the torsion angle (θ2) on the edge (P1–P2) are plotted in Figure 13. These results
clearly illustrate that both i3-RZT models corresponding to D and S sensor placement configurations
can attain accurate deflection results that underestimate their maximum reference values by less
than 5%. Also, they can predict θ2 torsion rotations almost as same as those of FEM analysis. However,
the VS configuration that contains only uniaxial strain measurements could not produce precise
enough results for both w and θ2 torsion variables. In fact, due to the lack of experimental shear strain
measurements, this model aims to predict a bending response rather than a torsion response. This fact
is clearly depicted in Figure 14 by plotting the variations of transverse deflection, w, on the edge, P3–P4.
This deflection should be positive for the torsion scenario, although the i3-RZT model corresponding to
VS configuration predicts negative (erroneous) deflections. Nevertheless, both D and S configurations
produced highly accurate and positive deflections, that correlated very well with the reference solution
of torsion scenario, as depicted in Figure 14. In addition, the in-plane displacements, u(k)

1 and u(k)
2 ,

produced by both D and S models, exhibited a highly zigzagged distribution through the thickness
coordinate, which are well in agreement with their reference solutions, as presented in Figure 15.
In contrast, the VS model produced an inaccurate evaluation of the u(k)

2 displacements, compared to

the reference solution in Figure 15b, although it predicts a sufficiently accurate u(k)
1 displacement in

Figure 15a. Therefore, only a dense or sparse distribution of sensors that measures triaxial strains at
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each particular in situ location, can perform a true reconstruction of the three-dimensional deformed
shapes. For example, the deformed shape, obtained using the S sensor placement configuration,
is virtually indistinguishable from those of the reference deformed shape in Figure 16. Hence, it is
confirmed that a sparse deployment of strain rosettes is sufficient to use in the iFEM-RZT analysis for
performing a highly accurate shape sensing of torsional displacements.
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Figure 16. Three-dimensional shape sensing for torsion scenario: comparison between the high-fidelity
FEM analysis and iFEM analysis of the S configuration.

In the third case study, all three sensor placement configurations were used to perform the shape
sensing of the membrane deformation scenario of the laminate. In contrast to bending and torsion
scenarios, the internal sensors do not necessarily need to be embedded inside the laminate, since the top
and bottom surface strain measurements can be directly used to account for membrane displacements,
based on iFEM methodology. Therefore, for the following analysis, the embedded sensors were
removed and the total number of strain data sampling was reduced to 240, 138 and 46 for the D, S
and VS sensor placement configurations, respectively. The i3-RZT models of each sensor network can
estimate precise variations of u and v membrane displacements, that agree very well with the reference
solutions in Figure 17. Therefore, a sparse distribution of FBG sensors can perform very accurate shape
sensing of a membrane scenario, which is as accurate as those predicted by a dense distribution of
strain rosettes. The deformed shape produced by VS configuration is almost as same as from those with
the reference shape in Figure 18, demonstrating the superior practical capability of iFEM framework for
the membrane scenario. Overall, the potential and versatile applicability of iFEM-RZT methodology
is demonstrated for three-dimensional shape sensing of future aerospace structures which may be
subjected to various loads, including bending, torsion, and membrane conditions.
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4. Conclusions  

Shape sensing of a tapered wing-shaped thick sandwich plate is performed for membrane, 
bending, and torsion loading conditions. Three different sensor placement configurations were 
analyzed, based on an enhanced iFEM-RZT formulation, in order to investigate the effect of varying 
strain data density and sensor alignment on the shape-sensing accuracy corresponding to each 
loading condition. The iFEM-RZT formulation uses only the discretely measured strains and 
minimizes a weighted-least-squares functional, that involves the complete set of strain measures 
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sensors. Therefore, the computational efficiency, high accuracy, and robustness of the i3-RZT element 
is valid and the element formulation is suitable for shape sensing of the membrane-bending coupled 
structural responses, including the torsion phenomenon.  

In particular, it was observed that a sparse distribution of FBG sensors aligned with only the 
longitudinal direction is capable of predicting accurate full-field bending and membrane 
deformations. However, the same sparse model with uniaxial strains was not able to reconstruct true 
torsional displacements, since the experimental shear strain measurements have a significant 
contribution to torsion deformations. Thus, usage of strain rosettes (triaxial strains) is necessary and 
it was demonstrated that only a sparse deployment of rosettes is sufficient to capture highly accurate 
three-dimensional torsional shapes. Note that the shape sensing of membrane deformations does not 
require the embedding of sensors inside the composite/sandwich structure, while it is necessary for 
the shape sensing of bending and torsion deformations, especially for modeling precise zigzag 
distribution of interfacial displacements. Finally, it can be concluded that the present iFEM-RZT 
analysis of the sandwich plate contributes to a potential sensor placement model for shape sensing 
and real-time structural health monitoring of future aerospace vehicles. 
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4. Conclusions

Shape sensing of a tapered wing-shaped thick sandwich plate is performed for membrane, bending,
and torsion loading conditions. Three different sensor placement configurations were analyzed,
based on an enhanced iFEM-RZT formulation, in order to investigate the effect of varying strain
data density and sensor alignment on the shape-sensing accuracy corresponding to each loading
condition. The iFEM-RZT formulation uses only the discretely measured strains and minimizes
a weighted-least-squares functional, that involves the complete set of strain measures consistent with
a state-of-the-art RZT plate theory. Thus, it presents the following advantages: (1) the requirement of
only few strain sensors; (2) suitability to develop C◦-continuous inverse-shell elements (e.g., i3-RZT);
and (3) accurate modelling of interfacial displacement variations through thickness. The iFEM analysis
of the wing-shaped plate demonstrated that the i3-RZT model of a sparse sensor placement configuration
can predict bending, torsion, and membrane deformed shapes, with an accuracy level that is very similar
to those of predicted by a dense distribution of sensors. Therefore, the computational efficiency, high
accuracy, and robustness of the i3-RZT element is valid and the element formulation is suitable for shape
sensing of the membrane-bending coupled structural responses, including the torsion phenomenon.

In particular, it was observed that a sparse distribution of FBG sensors aligned with only the
longitudinal direction is capable of predicting accurate full-field bending and membrane deformations.
However, the same sparse model with uniaxial strains was not able to reconstruct true torsional
displacements, since the experimental shear strain measurements have a significant contribution
to torsion deformations. Thus, usage of strain rosettes (triaxial strains) is necessary and it was
demonstrated that only a sparse deployment of rosettes is sufficient to capture highly accurate
three-dimensional torsional shapes. Note that the shape sensing of membrane deformations does not
require the embedding of sensors inside the composite/sandwich structure, while it is necessary for the
shape sensing of bending and torsion deformations, especially for modeling precise zigzag distribution
of interfacial displacements. Finally, it can be concluded that the present iFEM-RZT analysis of the
sandwich plate contributes to a potential sensor placement model for shape sensing and real-time
structural health monitoring of future aerospace vehicles.
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Appendix A

The shape functions, Ni, Mi and Li, that defined both membrane and bending capability of i3-RZT
element as given in Equations (1) and (2), can be respectively defined as:

Ni =
bix1 + aix2 + ci

2Ae
(A1)

Mi =
Ni
2
(ak Nj − ajNk) (A2)
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Li =
Ni
2
(bk Nj − bjNk) (A3)

with
ai = xk

1 − xj
1 (A4)

bi = xj
2 − xk

2 (A5)

ci = xj
1xk

2 − xk
1xj

2 (A6)

where the symbol, xi
α (α = 1, 2), denotes the local coordinates of element nodes and the subscripts/

superscripts vary as j = 2, 3, 1 and k = 3, 1, 2 for node numbers i = 1, 2, 3.
Moreover, the matrix of shape function derivatives, Bα (α = e, κ, µ, γ, η), given in Equation (8a–e)

can be expressed as:
Bα =

[
Bα

1 Bα
2 Bα

3

]
(α = e, κ, µ, γ, η) (A7)

with

Be
i =

 Ni,1 0 0 0 0 Li,1 0 0 0
0 Ni,2 0 0 0 Mi,2 0 0 0

Ni,2 Ni,1 0 0 0 Mi,1 + Li,2 0 0 0

 (A8)

Bκ
i =

 0 0 0 0 Ni,1 0 0 0 0
0 0 0 −Ni,2 0 0 0 0 0
0 0 0 −Ni,1 Ni,2 0 0 0 0

 (A9)

Bµ
i =


0 0 0 0 0 0 0 Ni,1 0
0 0 0 0 0 0 −Ni,2 0 0
0 0 0 0 0 0 0 Ni,2 0
0 0 0 0 0 0 −Ni,1 0 0

 (A10)

Bγ
i =

[
0 0 Ni,1 −Li,1 Ni −Mi,1 0 Li,1 Mi,1 0
0 0 Ni,2 −Li,2 − Ni −Mi,2 0 Li,2 Mi,2 0

]
(A11)

Bη
i =

[
0 0 Ni,1 −Li,1 Ni −Mi,1 0 Li,1 Mi,1 − Ni 0
0 0 Ni,2 −Li,2 − Ni −Mi,2 0 Li,2 + Ni Mi,2 0

]
(A12)

where the subscripts vary as i = 1, 2, 3.

References

1. Herrmann, A.S.; Zahlen, P.C.; Zuardy, I. Sandwich structures technology in commercial aviation. In Sandwich
Structures 7: Advancing with Sandwich Structures and Materials; Thomsen, O.T., Ed.; Springer: Dordrecht,
The Netherlands, 2005; pp. 13–26.

2. Lolive, E.; Casari, P.; Davies, P. Loading rate effects on foam cores for marine sandwich structures. In Sandwich
Structures 7: Advancing with Sandwich Structures and Materials; Thomsen, O.T., Ed.; Springer: Dordrecht,
The Netherlands, 2005; pp. 895–903.

3. Berggreen, C.; Branner, K.; Jensen, J.F.; Schultz, J.P. Application and analysis of sandwich elements in the
primary structure of large wind turbine blades. J. Sandw. Struct. Mater. 2007, 9, 525–552. [CrossRef]

4. Zou, Y.; Tong, L.P.S.G.; Steven, G.P. Vibration-based model-dependent damage (delamination) identification
and health monitoring for composite structures—A review. J. Sound Vib. 2000, 230, 357–378. [CrossRef]

5. Vadakke, V.; Carlsson, L.A. Experimental investigation of compression failure of sandwich specimens with
face/core debond. Compos. Part B Eng. 2004, 35, 583–590. [CrossRef]

6. Keulen, C.J.; Akay, E.; Melemez, F.F.; Kocaman, E.S.; Deniz, A.; Yilmaz, C.; Boz, T.; Yildiz, M.; Turkmen, H.S.;
Suleman, A. Prediction of fatigue response of composite structures by monitoring the strain energy release
rate with embedded fiber Bragg gratings. J. Intell. Mater. Syst. Struct. 2016, 27, 17–27. [CrossRef]

http://dx.doi.org/10.1177/1099636207069071
http://dx.doi.org/10.1006/jsvi.1999.2624
http://dx.doi.org/10.1016/j.compositesb.2003.10.004
http://dx.doi.org/10.1177/1045389X14560358


Sensors 2017, 17, 2775 19 of 20

7. Kocaman, E.S.; Yilmaz, C.; Deniz, A.; Yildiz, M. The performance of embedded fiber Bragg grating sensors for
monitoring failure modes of foam cored sandwich structures under flexural loads. J. Sandw. Struct. Mater. 2016.
[CrossRef]

8. Yin, W.; Fu, T.; Liu, J.; Leng, J. Structural shape sensing for variable camber wing using FBG sensors. Proc. Int.
Soc. Opt. Eng. 2009, 7292, 72921H.

9. Tian, S.; Yang, Z.; Chen, X.; Xie, Y. Damage detection based on static strain responses using FBG in a wind
turbine blade. Sensors 2015, 15, 19992–20005. [CrossRef] [PubMed]

10. Dawood, T.A.; Shenoi, R.A.; Sahin, M. A procedure to embed fibre Bragg grating strain sensors into GFRP
sandwich structures. Compos. Part A Appl. Sci. Manuf. 2007, 38, 217–226. [CrossRef]

11. Pisoni, A.C.; Santolini, C.; Hauf, D.E.; Dubowsky, S. Displacements in a vibrating body by strain gauge
measurements. In Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, USA,
13–16 February 1995; pp. 119–125.

12. Foss, G.C.; Haugse, E.D. Using modal test results to develop strain to displacement transformations. In Proceedings
of the 13th International Modal Analysis Conference, Nashville, TN, USA, 13–16 February 1995; pp. 112–118.

13. Bogert, P.B.; Haugse, E.D.; Gehrki, R.E. Structural shape identification from experimental strains using
a modal transformation technique. In Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural
Dynamics and Materials Conference, Norfolk, VA, USA, 7–10 April 2003.

14. Todd, M.D.; Vohra, S.T. Shear deformation correction to transverse shape reconstruction from distributed
strain measurements. J. Sound Vib. 1999, 225, 581–594. [CrossRef]

15. Davis, M.A.; Kersey, A.D.; Sirkis, J.; Friebele, E.J. Shape and vibration mode sensing using a fiber optic Bragg
grating array. Smart Mater. Struct. 1996, 5, 759–765. [CrossRef]

16. Kim, N.S.; Cho, N.S. Estimating deflection of a simple beam model using fiber optic Bragg-grating sensors.
Exp. Mech. 2004, 44, 433–439. [CrossRef]

17. Ko, W.L.; Richards, W.L.; Fleischer, V.T. Applications of Ko displacement theory to the deformed shape
predictions of the doubly-tapered Ikhana Wing. In NASA/TP-2009-214652; NASA Dryden Flight Research
Center: Edwards, CA, USA, 2009.

18. Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; Winston and Sons: Washington, DC, USA, 1977.
19. Maniatty, A.M.; Zabaras, N.J.; Stelson, K. Finite element analysis of some inverse elasticity problems. J. Eng. Mech.

1989, 115, 1303–1317. [CrossRef]
20. Schnur, D.S.; Zabaras, N. Finite element solution of two-dimensional inverse elastic problems using spatial

smoothing. Int. J. Numer. Methods Eng. 1990, 30, 57–75. [CrossRef]
21. Maniatty, A.M.; Zabaras, N.J. Investigation of regularization parameters and error estimating in inverse

elasticity problems. Int. J. Numer. Methods Eng. 1994, 37, 1039–1052. [CrossRef]
22. Jones, R.T.; Bellemore, D.G.; Berkoff, T.A.; Sirkis, J.S.; Davis, M.A.; Putnam, M.A.; Kersey, A.D. Determination of

cantilever plate shapes using wavelength division multiplexed fiber Bragg grating sensors and a least-squares
strain-fitting algorithm. Smart Mater. Struct. 1998, 7, 178–188. [CrossRef]

23. Shkarayev, S.; Krashantisa, R.; Tessler, A. An inverse interpolation method utilizing in-flight strain
measurements for determining loads and structural response of aerospace vehicles. In Proceedings of
the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, 12–14 September 2001.

24. Nishio, M.; Mizutani, T.; Takeda, N. Structural shape reconstruction with consideration of the reliability of
distributed strain data from a Brillouin-scattering-based optical fiber sensor. Smart Mater. Struct. 2010, 19, 035011.
[CrossRef]

25. Tessler, A.; Spangler, J.L. A Variational Principal for Reconstruction of Elastic Deformation of Shear Deformable
Plates and Shells; NASA TM-2003-212445; NASA Langley Research Center: Hampton, VA, USA, 2003.

26. Tessler, A.; Spangler, J.L. A least-squares variational method for full-field reconstruction of elastic deformations
in shear-deformable plates and shells. Comput. Methods Appl. Mech. Eng. 2005, 194, 327–339. [CrossRef]

27. Tessler, A.; Spangler, J.L. Inverse FEM for full-field reconstruction of elastic deformations in shear deformable
plates and shells. In Proceedings of the 2nd European Workshop on Structural Health Monitoring, Munich,
Germany, 7–9 July 2004.

28. Kefal, A.; Oterkus, E.; Tessler, A.; Spangler, J.L. A quadrilateral inverse-shell element with drilling degrees of
freedom for shape sensing and structural health monitoring. Eng. Sci. Technol. Int. J. 2016, 19, 1299–1313. [CrossRef]

29. Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. Shape sensing of 3D frame structures
using an inverse finite element method. Int. J. Solids Struct. 2012, 49, 3100–3112. [CrossRef]

http://dx.doi.org/10.1177/1099636216664777
http://dx.doi.org/10.3390/s150819992
http://www.ncbi.nlm.nih.gov/pubmed/26287200
http://dx.doi.org/10.1016/j.compositesa.2006.01.028
http://dx.doi.org/10.1006/jsvi.1999.2176
http://dx.doi.org/10.1088/0964-1726/5/6/005
http://dx.doi.org/10.1007/BF02428097
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:6(1303)
http://dx.doi.org/10.1002/nme.1620300105
http://dx.doi.org/10.1002/nme.1620370610
http://dx.doi.org/10.1088/0964-1726/7/2/005
http://dx.doi.org/10.1088/0964-1726/19/3/035011
http://dx.doi.org/10.1016/j.cma.2004.03.015
http://dx.doi.org/10.1016/j.jestch.2016.03.006
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.009


Sensors 2017, 17, 2775 20 of 20

30. Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. An inverse finite element method for
beam shape sensing: Theoretical framework and experimental validation. Smart Mater. Struct. 2014, 23, 045027.
[CrossRef]

31. Tessler, A. Structural analysis methods for structural health management of future aerospace vehicles.
Key Eng. Mater. 2007, 347, 57–66. [CrossRef]

32. Cerracchio, P.; Gherlone, M.; Tessler, A. Real-time displacement monitoring of a composite stiffened panel
subjected to mechanical and thermal loads. Meccanica 2015, 50, 2487–2496. [CrossRef]

33. Kefal, A.; Oterkus, E. Shape sensing of aerospace structures by coupling of isogeometric analysis and inverse
finite element method. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Grapevine, TX, USA, 9–13 January 2017.

34. Kefal, A.; Oterkus, E. Structural health monitoring of marine structures by using inverse finite element
method. In Analysis and Design of Marine Structures V; Guedes Soares, C., Shenoi, R.A., Eds.; Taylor and
Francis Group: London, UK, 2015; pp. 341–349.

35. Kefal, A.; Hizir, O.; Oterkus, E. A smart system to determine sensor locations for structural health monitoring
of ship structures. In Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics,
Glasgow, UK, 26–28 August 2015.

36. Kefal, A.; Oterkus, E. Displacement and stress monitoring of a chemical tanker based on inverse finite
element method. Ocean Eng. 2016, 112, 33–46. [CrossRef]

37. Kefal, A.; Oterkus, E. Displacement and stress monitoring of a Panamax containership using inverse finite
element method. Ocean Eng. 2016, 119, 16–29. [CrossRef]

38. Kefal, A.; Mayang, J.B.; Oterkus, E.; Yildiz, M. Three dimensional shape and stress monitoring of bulk
carriers based on iFEM methodology. Ocean Eng. 2018, 147, 256–267. [CrossRef]

39. Kefal, A.; Oterkus, E. Shape and stress sensing of offshore structures by using inverse finite element method.
In Progress in the Analysis and Design of Marine Structures; Guedes Soares, C., Garbatov, Y., Eds.; Taylor and
Francis Group: London, UK, 2017; pp. 141–148.

40. Stoesz, C.W. Method for Analyzing Strain Data. U.S. Patent 8,515,675 B2, 20 August 2013.
41. Cerracchio, P.; Gherlone, M.; Di Sciuva, M.; Tessler, A. A novel approach for displacement and stress

monitoring of sandwich structures based on the inverse finite element method. Compos. Struct. 2015, 127,
69–76. [CrossRef]

42. Tessler, A.; Di Sciuva, M.; Gherlone, M. A consistent refinement of first-order shear deformation theory for
laminated composite and sandwich plates using improved zigzag kinematics. J. Mech. Mater. Struct. 2010, 5,
341–367. [CrossRef]

43. Kefal, A.; Tessler, A.; Oterkus, E. An enhanced inverse finite element method for displacement and stress
monitoring of multilayered composite and sandwich structures. Compos. Struct. 2017, 179, 514–540. [CrossRef]

44. Tessler, A.; Dong, S.B. On a hierarchy of conforming Timoshenko beam elements. Comput. Struct. 1981, 14,
335–344. [CrossRef]

45. Tessler, A. Comparison of interdependent interpolations for membrane and bending kinematics in
shear-deformable shell elements. In Proceedings of the 8th International Conference on Computational
Engineering and Sciences, Los Angeles, CA, USA, 18–24 August 2000.

46. Tessler, A.; Hughes, T.J.R. A three-node Mindlin plate element with improved transverse shear. Comput. Methods
Appl. Mech. Eng. 1985, 50, 71–101. [CrossRef]

47. Tessler, A.; Riggs, H.R.; Freese, C.E.; Cook, G.M. An improved variational method for finite element stress
recovery and a posteriori error estimation. Comput. Methods Appl. Mech. Eng. 1998, 155, 15–30. [CrossRef]

48. Tessler, A.; Riggs, H.R.; Dambach, M. A novel four-node quadrilateral smoothing element for stress
enhancement and error estimation. Int. J. Numer. Methods Eng. 1999, 44, 1527–1541. [CrossRef]

49. Cobleigh, B.R. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions; NASA TM-2007-214614;
NASA Dryden Flight Research Center: Edwards, CA, USA, 2007.

50. Versino, D.; Gherlone, M.; Mattone, M.; Di Sciuva, M.; Tessler, A. C0 triangular elements based on the Refined
Zigzag Theory for multilayer composite and sandwich plates. Compos. Part B Eng. 2013, 44, 218–230. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0964-1726/23/4/045027
http://dx.doi.org/10.4028/www.scientific.net/KEM.347.57
http://dx.doi.org/10.1007/s11012-015-0146-8
http://dx.doi.org/10.1016/j.oceaneng.2015.11.032
http://dx.doi.org/10.1016/j.oceaneng.2016.04.025
http://dx.doi.org/10.1016/j.oceaneng.2017.10.040
http://dx.doi.org/10.1016/j.compstruct.2015.02.081
http://dx.doi.org/10.2140/jomms.2010.5.341
http://dx.doi.org/10.1016/j.compstruct.2017.07.078
http://dx.doi.org/10.1016/0045-7949(81)90017-1
http://dx.doi.org/10.1016/0045-7825(85)90114-8
http://dx.doi.org/10.1016/S0045-7825(97)00135-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990410)44:10&lt;1527::AID-NME497&gt;3.0.CO;2-1
http://dx.doi.org/10.1016/j.compositesb.2012.05.026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Enhanced iFEM-RZT Formulation 
	The i3-RZT Inverse-Shell Element 
	In Situ Section Strains 
	The Weighted-Least-Squares Functional 

	Numerical Examples 
	Conclusions 
	

