
sensors

Article

A Subnano-g Electrostatic Force-Rebalanced Flexure
Accelerometer for Gravity Gradient Instruments

Shitao Yan 1, Yafei Xie 1, Mengqi Zhang 1, Zhongguang Deng 1 and Liangcheng Tu 1,2,* ID

1 MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of
Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology,
Wuhan 430074, China; yanshitao@hust.edu.cn (S.Y.); xieyaphe@hust.edu.cn (Y.X.);
mqzhang@hust.edu.cn (M.Z.); dzg_109@hust.edu.cn (Z.D.)

2 Institute of Geophysics, Huazhong University of Science and Technology, Wuhan 430074, China
* Correspondence: tlc@hust.edu.cn; Tel.: +86-27-8755-8394; Fax: +86-27-8754-2391

Received: 10 October 2017; Accepted: 16 November 2017; Published: 18 November 2017

Abstract: A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating
accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is
supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor
plates. This novel design enables the proof mass to move exactly along the sensitive direction
and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass,
high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer
is lowered down to less than 0.2 ng/

√
Hz with a quality factor of 15 and a natural resonant

frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg.
Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer,
the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/

√
Hz over the

frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer
gravity gradiometer.

Keywords: flexure accelerometer; subnano-g resolution; capacitive displacement transducer;
electrostatic force-rebalanced; rotating accelerometer gravity gradient instrument

1. Introduction

Novel gravity gradiometer is of great importance in geodetic surveys, resource explorations,
and inertial navigations [1–5]. Over the last century, different technologies have been applied
to the developments of gravity gradiometers. In general, these technologies can be divided
into five categories, including torsion balance-based [6], rotating accelerometer-based [7,8],
superconducting [9], cold atomic interferometer-based [10], and MEMS gravity gradiometers [11,12].
Rotating accelerometer gravity gradient instrument (GGI) [7,8] was firstly developed by Bell Aerospace
in the 1970s. To date, it is the only commercially available gravity gradiometer that has accomplished
flight test in terrestrial space with the desired sensitivity. The most critical component of a GGI is
the accelerometer that features a single sensitive axis, extra-low noise over the rotating frequency
range, high rejection ratio at the cross-axis directions, low-temperature coefficient of the scale factor,
and suitable volume for its carrier (e.g., a turntable). For a typical example, the accelerometer that is
employed in the Bell’s GGI was upgraded from Bell model VII electromagnetic accelerometer, having
an improved resolution from 0.6 ng/

√
Hz at 0.0167 Hz to 0.01 ng/

√
Hz at 1 Hz on the null bias

mode [7].
In order to implement a horizontal GGI of 10 E/

√
Hz (1 E = 10−9/s2 ≈ 10−10 g/m) resolution

with a baseline of 0.3 m, an accelerometer with a self-noise lower than 0.3 ng/
√

Hz at the rotating
frequency range of 0.2 to 2 Hz and a measurement range of at least ±1 mg shall be developed.
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Most reported accelerometers with the self-noise of lower than 0.3 ng/
√

Hz are manufactured
by conventional high-precision machining to achieve the large proof mass. This usually results
in a low noise equivalent acceleration (NEA) of the mechanical probe. For example, the STAR
electrostatic accelerometer [13], designed for the CHAllenging Minisatellite Payload (CHAMP) mission,
indicated a measurement range of ±1 mg and a resolution of <1 ng/

√
Hz over the frequency

range of 0.1 mHz to 0.1 Hz. The SuperSTAR electrostatic accelerometer [13], derived from STAR,
was developed for the Gravity Recovery And Climate Experiment (GRACE) mission and had an
improved resolution of 0.01 ng/

√
Hz over the frequency range of 0.1 mHz to 0.1 Hz and a measurement

range of ±5 µg. In addition, designed for the electrostatic gravity gradiometer, the Gravity field and
steady-state Ocean Circulation Explorer (GOCE) accelerometers that were based on electrostatic control
technology demonstrated a resolution of 0.2 pg/

√
Hz over the frequency range of 5 mHz to 0.1 Hz,

with only ±0.65 µg measurement range [13]. Unfortunately, these electrostatic accelerometers are
specially designed to work in outer space and offer a small measurement range. Other commercial
seismometers, such as Nanometrics’ Trillium compact HP, Guralp’s CMG-3T, and Streckeisen’s STS-2
have bandwidths of 8 mHz to 100 Hz, 8 mHz to 50 Hz and 8 mHz to >50 Hz, and self-noises of
0.3 ng/

√
Hz, 0.03 ng/

√
Hz, and 0.01 ng/

√
Hz [14–17], respectively. But, they are hardly used in GGI

due to their large volumes and limited measurement ranges. More importantly, the electromagnetic
actuators consist of high-temperature-coefficient permanent magnets for operation, making their scale
factor more sensitive to temperatures than the electrostatic accelerometers.

In this paper, we demonstrate a single-axis force-rebalanced flexure accelerometer that can have
practical applications in GGIs. This accelerometer is designed based on high precision capacitive
sensing and electrostatic control technology. Self-noise of the accelerometer is measured to be less than
0.3 ng/

√
Hz in the frequency range from 0.2 to 2 Hz. The key improvement of this design is to use

two pairs of symmetrical parallel leaf springs to inversely support the large proof mass, and a very
high rejection ratio is successfully achieved at the cross-axis direction. The accelerometer meets the
requirement for GGIs and we foresee that this accelerometer will be useful to the development of GGIs
and other high-end sensors in the near future.

2. Structure Design and Noise Analysis of the Electrostatic Accelerometer

2.1. Working Principle of the Electrostatic Accelerometer

A block diagram of the electrostatic accelerometer system is shown in Figure 1. The electrostatic
accelerometer consists of a mechanical probe, a high precision capacitive displacement transducer,
an analog proportional-integral-differential (PID) controller, and a high-performance electrostatic
actuator. Here, Hm, Hd, Hc, Ha represent the transfer functions of these four stages, respectively.
The mechanical probe of this electrostatic accelerometer is derived from a typical spring-mass structure.
The rectangular proof mass is inversely supported by a set of leaf springs. Two fixed capacitor plates,
together with the proof mass, form two gap-varying differential capacitors, which can transfer the
external acceleration into a differential output of the capacitors, namely C1 and C2. The capacitive
displacement transducer consists of four parts: a charge amplifier, a band-pass filter, a lock-in amplifier,
and a low-pass filter [18,19]. The driving voltage applied to the proof mass is composed of an AC
pumping voltage vp and a DC bias voltage Vb. The analog PID controller and the electrostatic actuator
together constitute an electrostatic closed-loop feedback. Taking the output of the low-pass filter as the
input of the PID controller, an appropriate voltage is produced by the PID controller and is then sent
to the electrostatic actuator for further amplification. Finally, two opposite feedback voltages ±Vf are
obtained and are then applied to the two fixed capacitor plates to generate two opposite electrostatic
forces. The applied Vf is sampled by a 24-bits Analog to Digital Converter (ADC), which is the output
voltage Vout of the accelerometer.
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Figure 1. Schematic of the electrostatic accelerometer system. 𝑎𝑖𝑛 is the external input acceleration. 

𝑑0 is the gap of the balanced capacitor 𝐶0 and 𝑥 is the displacement of the proof mass. 𝐶1 and 𝐶2 

are the differential detecting capacitors. 𝐿1  and 𝐿2  are the inductances of the transformer’s 

primary windings, while 𝐿 is that of the secondary. 𝐻𝑚 , 𝐻𝑑 , 𝐻𝑐 , and 𝐻𝑎  denote the transfer 

functions of the mechanical probe, the capacitive displacement transducer, the analog 

proportional-integral-differential (PID) controller and the electrostatic actuator, respectively.  
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Figure 1. Schematic of the electrostatic accelerometer system. ain is the external input acceleration.
d0 is the gap of the balanced capacitor C0 and x is the displacement of the proof mass. C1 and C2

are the differential detecting capacitors. L1 and L2 are the inductances of the transformer’s primary
windings, while L is that of the secondary. Hm, Hd, Hc, and Ha denote the transfer functions of the
mechanical probe, the capacitive displacement transducer, the analog proportional-integral-differential
(PID) controller and the electrostatic actuator, respectively.

Once an external acceleration is applied to the input axis direction, there would be a displacement
of the proof mass with respect to the frame that is caused by the input acceleration. Because the proof
mass is sandwiched between the two capacitor plates that are fixed to the frame, this displacement
will introduce variations of the capacitance of the two differential capacitors C1 and C2. This variation
is then sensed by the capacitive displacement transducer. After that, the PID controller obtains the
displacement information and leads the electrostatic actuator to generate two opposite electrostatic
forces, which eventually drive the proof mass back to its null position.

Since the spring-mass structure has a typical spring-mass-damper system, according to Newton’s
second law of motion, the equation of motion of the electrostatic force-rebalanced flexure accelerometer
can be expressed as [18–21]

m
..
x + γ

.
x + k0x = main + Fe, (1)

where m is the mass of the proof mass, γ is the damping coefficient, k0 is the stiffness coefficient of the
spring, ain is the input acceleration, and Fe is the electrostatic feedback force. In the closed-loop mode,
the electrostatic force Fe is equivalent to the input force main acted on the proof mass to keep the proof
mass still and always remain at its null position. The refore, the value of the electrostatic feedback
force will be taken as a measure of the input acceleration, and is noted as the output acceleration aout

of the accelerometer. According to the block diagram, as shown in Figure 1, the relationship between
aout and ain can be written as

aout = ain
Hm HdHc Ha

1 + Hm HdHc Ha
(2)

Because the gain HmHd HcHa is much bigger than 1 within the working bandwidth of the
accelerometer, the output acceleration aout ≈ ain. The refore, the input acceleration ain can be easily
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obtained by collecting the feedback voltage Vf , which is denoted as the output voltage Vout of the
accelerometer:

ain ≈ VoutHa, (3)

where Ha is the voltage-to-acceleration transfer function of the electrostatic actuator.
As shown in Figure 1, a DC bias voltage Vb and an AC pumping voltage vp are applied to the

proof mass, for linearization of the electrostatic feedback actuator and capacitance sensing, respectively.
Furthermore, two opposite feedback voltages ±Vf are applied to the two fixed capacitor plates to
generate a difference of potential between the proof mass and the fixed plates, in order to restore the
proof mass to its null position. Those voltages would contribute to an electrostatic field between the
proof mass and the fixed plates, and yield an electrostatic feedback force on the proof mass [21–24]:

Fe = −
2C0

d0
VbVf +

2C0

d02

(
vp−rms

2 + Vb
2 + Vf

2
)

x, (4)

where vp−rms is the root mean square (RMS) value of the pumping voltage vp. The first item in
Equation (4) is the effective electrostatic feedback force, and hence the output acceleration can be
written as

aout ≈
2C0

md0
VbVf , (5)

Thus, the voltage-to-acceleration transfer function Ha can be written as

Ha =
2C0

md0
Vb. (6)

The reciprocal of Ha is the so-called scale factor K of the accelerometer, namely K = 1/Ha.
The second item in Equation (4) is the so-called back-action force, which pushes the proof mass

away from its null position and hence could be considered as an equivalent electrostatic spring with
a negative stiffness as [18,21]

ke =
2C0

d02

(
vp−rms

2 + Vb
2 + Vf

2
)

. (7)

The spring stiffness of the spring-mass structure in the closed-loop mode is hence reduced to

k′ = k0 − ke. (8)

Equation (8) implies that the effective stiffness of the spring-mass system can be adjusted by
changing the electrostatic negative stiffness in the closed-loop mode, in which the stiffer springs are
used to achieve the same effect as with softer springs in the open-loop mode.

In order to meet the requirements of GGIs on the accelerometer, it is of the utmost importance to
achieve ultra-low noise. The overall NEA of an accelerometer can be generally divided into two parts

δatotal−n =
√
(δam−n2 + δae−n2), (9)

in which δam−n denotes the mechanical NEA of the spring-mass structure and δae−n is the electronic
NEA of the sensing and feedback electronic circuit. As an accelerometer with the self-noise lower than
0.3 ng/

√
Hz is required, the δam−n should be below 0.3 ng/

√
Hz.

2.2. Design and Model Analysis of the Spring-Mass Structure

For a typical spring-mass-damper system, the mechanical NEA of the spring-mass structure in a
unit bandwidth at all of the frequencies can be written as [21]

δam−n =

√
4kBTω0

mQ
, (10)
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where kB is the Boltzmann constant, T is the temperature in Kelvin unit, ω0 =
√

k0/m is the resonant
angular frequency, and Q = mω0

γ is the quality factor of the spring-mass structure.
According to Equation (10), the most effective way to reduce δam−n is to use a larger proof mass

m. However, this will result in an increase in electrostatic voltage to hold the proof mass at its null
position, hence bringing more noise from the electrostatic actuator. Using the softer supporting spring
with a smaller stiffness k0 is another feasible method to reduce δam−n. However, it will make k0 closer
to or even smaller than ke, making the spring-mass-damper system unstable in the closed-loop mode.
The value Q depends on airy viscous damping and materials’ internal damping, thus the capsulation
and material of the spring-mass structure should also be considered to get a larger quality factor value.
In addition, the spring should be tough enough to support the proof mass, thereby a spring-mass
structure with higher stiffness at the cross-axis directions is required to suppress the cross couplings
with the sensitive input axis in developing GGI [7,8]. Consequently, all of those issues should be
carefully considered when designing a spring-mass structure.

In the process of our design and simulation, we found that if the proof mass is inversely supported
by two pairs of parallel leaf springs of the same stiffness, the proof mass, centered between two
capacitor plates, will move along a true straight line with no swinging motion, thus both capacitor
plates are kept parallel. As compared with the single leaf spring structure, as shown in Figure 2,
the pairing of two parallel springs not only increase the linearity of the mechanical probe, but also
significantly suppress the cross coupling between the sensitive axis and the torsional direction.
Furthermore, this structure is strong enough to support a proof mass of up to tens of grams, implying
that larger proof masses can be used in this design by adding more pairs of parallel leaf springs with
proper stiffness. Because the rotation of the proof mass is almost eliminated, this novel design also
ensures the spring-mass structure a very high rejection ratio at the cross-axis directions.
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Figure 2. Comparison of the motion of the spring-mass structure with a single leaf spring and a pair of
leaf springs, respectively.

The spring-mass structure has been fabricated, as shown in Figure 3. The optimized parameters,
with the aim to obtain a low noise and a large cross-axis rejection, are listed in Table 1. The spring-mass
structure is fixed to a copper pedestal, and the proof mass with a weight of 27.5 g is inversely supported
by two pairs of straight parallel beryllium-bronze leaf springs. An adjustable mass, mounted at the
bottom of the proof mass, is used to precisely adjust the centroid of the proof mass. The proof mass
is mainly made of the red copper to obtain a heavy mass, and it also acts as a middle capacitor plate
coated by a 400 nm gold layer on its surface to prevent oxidization.
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Table 1. A typical set of parameters of the proposed spring-mass structure.

Parameter Value

Proof mass m (g) 27.5
Leaf springs’ w, t, l (mm) 5, 0.08, 28

Leaf springs’ Young’s modulus E
(N/m2) 1.25× 1011

Total stiffness k0 (N/m) 58.3
Natural frequency f0 (Hz) 7.33

The total stiffness of the leaf springs can be written as

k0 =
4t3wE

l3 , (11)

where w, t, l, and E represent the width, thickness, length, and Young’s modulus of the leaf springs,
respectively.

With the parameters of the proposed spring-mass structure, as shown in Table 1, the static
mechanical mode can be analyzed by using the finite element analysis (FEA). The 22 lowest oscillation
modes are listed in Table 2 in the order of increasing frequency. The modes marked as I, O, P, RI , RO,
and RP are corresponding to the six degrees of freedom of the spring-mass structure to characterize
the motion along the input, output, pendulous axis, and the rotation around the input axis, output,
pendulous axis with the frequencies of 7.163, 444.2, 2592, 1458, 1047, 304.5 Hz, respectively. The modes
marked as BS1, BS2, BS3 characterize the fundamental, second harmonic, and third harmonic bending
modes of the four leaf springs, which are 426, 1192, 2360 Hz, respectively. The mode RS1 describes the
first order rotation modes of the four leaf springs around the pendulous axis with the frequency of
about 1590 Hz.

According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the
input axis at the fundamental vibrational mode I, and the second mode RP is the rotation around the
pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can be
estimated by comparing the stiffness, which can be written as

ki
kI

=
ωi

2/m
ωI2/m

=
ωi

2

ωI2 , (12)

where ki, ωi represent the stiffness and angular frequency of the modes at the cross-axis directions,
kI , ωI are the stiffness and angular frequency of the fundamental mode I. The refore, the minimum
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rejection ratio at the cross-axis directions is ωRP
2/ωI

2 ≈ 1807, which is just the ratio of the effective
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode I. It is
about four to five times higher when compared to the traditional force-balanced flexure accelerometer.
As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes O, P, RI could
not influence the capacitive displacement transducer because there is no variation of the differential
capacitors. The rotation mode around the output axis RO has a frequency of 1047 Hz, and the rejection
ratio is ωRO

2/ωI
2 ≈ 21365. Finally, the modes BS1, BS2, BS3, RS1 are just the vibrations of the leaf

springs and will not affect the displacement detection either.

Table 2. The 22 lowest oscillation modes of the proposed spring-mass structure.

NO. 1 2 3, 4, 5, 6 7 8

Frequency
(Hz) 7.163 304.5 425.4, 425.7

426.0, 426.7 444.2 1047

Description of
mode (i)
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accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 
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Table 2. The 22 lowest oscillation modes of the proposed spring-mass structure. 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 

BS2

Sensors 2017, 17, 2669  7 of 15 

 

Table 2. The 22 lowest oscillation modes of the proposed spring-mass structure. 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
spring-mass structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further 
reduce mechanical NEA to below 0.1 ng/√Hz.  

2.3. Noise Analysis of the Sensing and Feedback Circuit 

To evaluate the NEA of the circuit ܽߜ௘ି௡, we present a noise model for the accelerometer, as 
shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive displacement 
transducer ܪௗ , the analog PID controller ܪ௖ , and the electrostatic actuator ܪ௔ , respectively. The 
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According to the FEA results, the proof mass oscillates at a frequency of 7.163 Hz along the 
input axis at the fundamental vibrational mode ܫ, and the second mode ܴ௉ is the rotation around 
the pendulous axis with a frequency of 304.5 Hz. The rejection ratio at the cross-axis directions can 
be estimated by comparing the stiffness, which can be written as ௞೔௞಺ ൌ ఠ೔మ/௠ఠ಺మ/௠ ൌ ఠ೔మఠ಺మ, (12) 

where ݇௜, ߱௜ represent the stiffness and angular frequency of the modes at the cross-axis directions, ݇ூ, ߱ூ are the stiffness and angular frequency of the fundamental mode ܫ. Therefore, the minimum 
rejection ratio at the cross-axis directions is ߱ோುଶ/߱ூଶ ൎ 1807, which is just the ratio of the effective 
spring stiffness of the mode at the cross-axis directions to the fundamental vibrational mode ܫ. It is 
about four to five times higher when compared to the traditional force-balanced flexure 
accelerometer. As the proof mass is sandwiched by the two capacitor plates symmetrically, the modes ܱ,	ܲ,	ܴூ could not influence the capacitive displacement transducer because there is no variation of 
the differential capacitors. The rotation mode around the output axis ܴை has a frequency of 1047 Hz, 
and the rejection ratio is ߱ோೀଶ/߱ூଶ ൎ 21365. Finally, the modes ܤௌଵ ௌଶܤ , ௌଷܤ , , ܴௌଵ  are just the 
vibrations of the leaf springs and will not affect the displacement detection either. 

According to Equation (10), the mechanical NEA ܽߜ௠ି௡  of the spring-mass structure is 0.53/ඥܳ	ng/√Hz	ሺܶ ൌ 300	Kሻ. If one hopes to obtain a mechanical NEA below 0.3 ng/√Hz, the 
quality factor Q should be greater than 3, which can be easily achieved by mounting the 
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Rejection ratio
ωi

2/ωI
2

27,646, 27,692
27,692, 27,879 41,431 49,148, 49,210

49,272, 49,334
108,459, 108,551
108,827, 109,288 130,942

According to Equation (10), the mechanical NEA δam−n of the spring-mass structure is
0.53/

√
Q ng/

√
Hz (T = 300 K). If one hopes to obtain a mechanical NEA below 0.3 ng/

√
Hz,

the quality factor Q should be greater than 3, which can be easily achieved by mounting the spring-mass
structure into a small vacuum cavity. Furthermore, a quality factor of 30 will further reduce mechanical
NEA to below 0.1 ng/

√
Hz.

2.3. Noise Analysis of the Sensing and Feedback Circuit

To evaluate the NEA of the circuit δae−n, we present a noise model for the accelerometer,
as shown in Figure 4. The circuit of the accelerometer contains three parts: the capacitive
displacement transducer Hd, the analog PID controller Hc, and the electrostatic actuator Ha,
respectively. The capacitive displacement transducer, shown in the dashed line box, is similar to that
of Josselin V et al., and Hu M et al. [18,19]. This design consists of a charge amplifier, a band-pass filter,
a lock-in amplifier, and a low-pass filter with transfer functions HCA, HBP, HLIA, and HLP, respectively.
The low-frequency variation of the capacitance of the two differential capacitors, which represents
the external acceleration to be measured, is carried by a high-frequency sine wave vp and is input to
the charge amplifier by a differential transformer. Through the signal conditioning of band-pass filter,
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this differential variation of the capacitance is then demodulated by the lock-in amplifier and finally
filtered by the low-pass filter.
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Figure 4. Noise model of the accelerometer. ain denotes the external acceleration, and Vout represents
the output voltage of accelerometer.

According to Figure 4, there are nine types of noise sources that contribute to the total noise
of the accelerometer. As the mechanical noise δam−n has been discussed in Section 2.2, here we
investigate electronic noise, consisting of the other eight types of noise sources, namely the charge
amplifier’s voltage noise vCA−n, the sine wave generator’s equivalent voltage noise at the output of
charge amplifier vECA−pn, the band-pass filter’s voltage noise vBP−n, the lock-in amplifier’s voltage
noise vLIA−n, the low-pass filter’s voltage noise vLP−n, the analog PID controller’s voltage noise vc−n,
the ADC’s voltage noise vADC−n, and the electrostatic actuator’s NEA noise δaa−n which also contains
the noise of the regulated DC power supply. The refore, the power spectral density (PSD) of the
electronic noise δae−n could be deduced as

(δae−n)
2 ≈ (

vECA−pn
Hm HCA

)
2
+ (

vCA−n
Hm HCA

)
2
+ ( vBP−n

Hm HCA HBP
)

2
+ (

vLIA−n
Hm HCA HBP HLIA

)
2
+

( vLP−n
Hm HCA HBP HLIA HLP

)
2
+ (Havc−n

Hopen
)

2
+ (HavADC−n

Hopen
)

2
+ (δaa−n)

2.
(13)

where Hopen = HmHCAHBPHLIA HLP HcHa.
To get an accurate noise calculation, each part of the noise from the circuit should be carefully

considered. The noise of the sine-wave generator is different from the other seven parts because it is
related to the imbalances of the capacitance bridge and transformer bridge, and it will be discussed
individually in the first place. The noise contributions from the other seven stages are discussed
subsequently by using a method similar to that used in [18,19].

The sine-wave generator’s equivalent voltage noise at the output of charge amplifier can be
written as

vECA−pn =
2∆C
C f

vp−n, (14)

where vp−n is the voltage noise of the sine-wave generator, ∆C is the variation of the capacitance of the
differential capacitors, and C f is the feedback capacitor of the charge amplifier. In the closed-loop mode,
because of the integral effect of the PID controller, the displacement of the proof mass is approximately
equal to zero so that there is almost no change in capacitance. Thus, the noise vEAC−pn can be ignored
ideally. However, in fact, there are imbalances of the differential capacitors C1, C2 and the inductances
of the primary windings L1, L2, which generate a bias capacitance

Cbias =
C1L1 − C2L2

2L
. (15)
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This bias capacitance may lead to an increase of the noise vEAC−pn as ∆C = Cbias. According to
the first item of Equation (13), the NEA of the noise from the sine-wave generator can be written as

δap−n =
vECA−pn

Hm HCA
=

2Cbias
Hm HCAC f

vp−n. (16)

With the demand δap−n < 0.3 ng/
√

Hz and the typical parameters of |Hm| ≈ 24,500 pF/g,
HCAC f = 10 V and vp−n = 5 uV/

√
Hz, the Cbias < 7.4 pF is desired. Besides, the bias capacitance

Cbias also contributes a bias acceleration abias, which is

abias =
Cbias
Hm

. (17)

Because abias < 1 mg is required in the development of GGI, the equivalent bias capacitance
Cbias < 24.5 pF is desired. In this work, the imbalance of the capacitance bridge is compensated by
selecting a transformer with suitable parameters to make Cbias below 0.5 pF.

The noises of the other seven parts of the circuit are originated from several basic noise sources
including:

• the input voltage noise en and input bias current noise in of the amplifier,
• the thermal voltage noise er generated by the resistor,
• the thermal noise il of the transformer bridge caused by hysteresis loss, eddy current loss,

and residual loss of the transformer.

For example, from the noise model of the band-pass filter shown in Figure 5, the basic noise
sources are the input voltage noise en and the input bias current noise in of the amplifier, and the
thermal voltage noises ez1, ez2 generated by the resistors Z1 = R1//R2 and Z2 = R3. If the noise
components are uncorrelated, the variances are added as

vBP−n =

√
(Hz1ez1)

2 + (Hz2ez2)
2 + (Henen)

2 + (Hinin)
2, (18)

where Hz1, Hz2, Hen, Hin are the transfer functions from ez1, ez2, en, and in to the output of band-pass
filter. The noise caused by the other six parts of the circuit can be discussed in the same way,
as introduced by references [18,19], and the basic noise sources of each part are different. To get
an accurate result of noise analysis, every basic noise sources (en, in, er, il) of the seven parts are
evaluated and measured to meet the requirements in the process of making and debugging the sensing
and feedback circuit.
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2.4. Noise Analysis Result 

Based on the analysis in the previous section, the contributions to the mechanical noise 𝛿𝑎𝑚−𝑛 

and electronic noise 𝛿𝑎𝑒−𝑛  are both taken into consideration to meet the requirement of GGI. 

According to Equation (13), the electronic noise of the instrument can be optimized by adjusting the 

gain of the transfer functions of the sensing and feedback circuit. Finally, the optimized result is 

Figure 5. Noise analysis of the band-pass filter. (a) Schematic diagram of the band-pass filter. Vin and
VBP are the input and output voltage of band-pass filter, respectively. (b) Noise model of the band-pass
filter. The input of band-pass filter is grounded. Z1 = R1//R2 and Z2 = R3.

2.4. Noise Analysis Result

Based on the analysis in the previous section, the contributions to the mechanical noise δam−n and
electronic noise δae−n are both taken into consideration to meet the requirement of GGI. According
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to Equation (13), the electronic noise of the instrument can be optimized by adjusting the gain of
the transfer functions of the sensing and feedback circuit. Finally, the optimized result is shown in
Figure 6. It can be seen that the NEA of the electrostatic actuator δaa−n dominates the total noise below
0.3 Hz. From 0.3 to 10 Hz, the mechanical noise δam−n becomes more significant. The total noise of
the instrument is calculated to be between 0.2 ng/

√
Hz and 0.3 ng/

√
Hz over the frequency range

from 0.2 to 2 Hz, and it is below the new low-noise model (NLNM) over the frequency range of 0.1 to
10 Hz [25].
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3. Prototype and Preliminary Test Results

Based on the design, the prototype of the accelerometer was fabricated, as shown in Figure 7. All of
the characterization of the accelerometer was achieved in the cave laboratory of HUST, in which the
variation of temperature is lower than 0.03 K/day and the vibration noise floor is extremely low [26].
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3.1. Measurement of Quality Factor and Natural Frequency

We firstly measured the quality factor Q and the natural frequency f0. In the accelerometer
design, the spring-mass structure was assembled in a small vacuum cavity where the air pressure
can be maintained at a low level without the ion pump and getter. The pulse response curve of the
spring-mass structure, as shown in Figure 8, indicates that the quality factor Q was about 550 at 2 h
after evacuation. After 20 days, it dropped down to 15. The quality factor Q has been maintained at
15 for six months until the time when this manuscript is being prepared. The natural frequency f0

was kept at 7.35 Hz. Thus, the actual δam−n can be easily given as δam−n = 0.14 ng/
√

Hz (Q = 15),
which agrees with the predicted result within 17%.
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3.2. Calibration of Accelerometer’s Scale Factor

Next, we calibrated the accelerometer’s scale factor by a tilt method. In this experiment, a biaxial
dividing head with a precision of one arcsecond was applied to change the accelerometer’s orientation
in order to detect the variation of input acceleration that is projected by the local gravity vector.
The dividing head is rotated by 1′ each time so that the variation of input acceleration is about
0.29 mg per step. The rotating angle is ±1′, ±2′, ±3′, and the calibration curve is shown in Figure 9a.
By analyzing the data with a linear fitting as shown in Figure 9b, the scale factor of the accelerometer
can be calculated as

K = (9725± 11) V/g

with a nonlinearity of about 0.1%. The measuring range of the present accelerometer is set to be
±1 mg, corresponding to an output voltage of about ±9.725 V.
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about 0.29 mg; (b) Result of linear fit with the scale factor K = (9725± 11) V/g and the nonlinearity of
about 0.1%.
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3.3. Estimation of Self-Noise of the Accelerometer

To measure the self-noise of a high-resolution accelerometer, experiments are usually conducted
in seismically quiet areas like desert, cave, vibration isolation platform etc. However, as discussed
in Figure 6, the predicted noise of accelerometer is lower than NLNM, making it very difficult to
measure the actual noise in the environment with a large seismic noise. To overcome this challenge,
we introduce a method that is based on coherence analysis. If the test accelerometer X and the reference
accelerometer Y are of the same type, then the self-noise of these two accelerometers could be treated
as identical. Thus, when the two accelerometers are aligned together in the same direction, both of
them are detecting a coherent seismic noise. The refore, the coherence analysis can be used to eliminate
the coherent seismic noise, and then the self-noises of the two accelerometers can be written as [27,28]

|NEAn(ω)| = |NEAX(ω)|
√[

1−
√

γ2
XY(ω)

]
, (19)

where NEAX(ω) is the NEA of the accelerometer X, which contains the self-noise of the instrument and
the seismic noise. γ2

XY(ω) is the coherence between the measured outputs of the accelerometers X and Y.
However, in practice, there is always a misalignment between the two accelerometers.

This misalignment brings an incoherent seismic noise that cannot be reduced by the coherence analysis.
To solve this problem, a commercial triaxial seismometer is used to find the orientations of the
two accelerometers [29]. Since

→
aX,

→
aY represent the seismic noise tested by the two accelerometers,

an acceleration vector
→

aYX
′
, which can be found by iterative algorithms with the criterion of the

coherence of
→
aX and

→
aY +

→
aYX

′
[27–29], is used to align the orientation of reference accelerometer Y.

Finally, the coherent seismic noise can be almost eliminated by the coherence analysis. In this test,
the commercial triaxial seismometer, CMG-3ESPC, is applied to compensate for the misalignment.
The experimental results are shown in Figure 10. Finally, the measured self-noise is between
0.2 ng/

√
Hz and 0.3 ng/

√
Hz over the frequency range of 0.2 to 2 Hz, which agrees with our prediction.
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Figure 10. Instrument’s noise test result of the electrostatic accelerometer. The black and pink
solid lines are the noise equivalent acceleration (NEA) of the new high-noise model (NHNM) and
NLNM, as proposed by Peterson [25], respectively. Besides, the blue solid line, orange solid line,
and yellow solid line are separately the NEA of the signals acquired by test accelerometer (X), reference
accelerometer (Y), and CMG-3ESPC, which all contain the NEA of the seismic noise and the instruments.
The green solid line shows the NEA of the accelerometer, which is based on coherence analysis. The red
dash line shows the NEA of the accelerometer predicted in Section 2.4.
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4. Conclusions

An electrostatic accelerometer is under development with a demonstrated resolution of
0.2 ng/

√
Hz to 0.3 ng/

√
Hz over the frequency ranging from 0.2 to 2 Hz. Experimental results show

that a scale factor of (9725± 11) V/g and a measurement range of ±1 mg with the maximal output
voltage of about ±10 V, can be achieved. The minimum rejection ratio between the fundamental
vibrational mode and the other modes at the cross-axis directions ωi

2/ωI
2 is 1807, which is four times

higher than the conventional force-rebalanced flexure accelerometers. In summary, the performance of
the proposed electrostatic accelerometer meets the demands in developing the rotating accelerometer
gravity gradiometer.

When compared to the previous STAR, SuperSTAR and GOCE electrostatic-space-accelerometers [13],
our accelerometer has a wider measurement range, a smaller volume, and a higher cut-off frequency,
and is able to work in near-earth gravity environment. The commercial seismometers based
on the principle of speedometer, such as Nanometrics’ Trillium compact HP, Guralp’s CMG-3T,
and Streckeisen’s STS-2, indeed have a lower noise floor [14–17]. However, their bulky size and
extremely high costs are major disadvantages as compared to our accelerometer. Furthermore,
the self-noise of our accelerometer is almost three orders lower than typical inertial navigation-grade
accelerometers, such as Honeywell’s QA-3000 [30]. Although the long-time stability of our
accelerometer is not as good as QA-3000, it has met the requirement of being used in GGI. Indeed,
the noise floor of our accelerometer is still higher than the improved Bell model VII, which has
been applied to the Bell’s GGI. Nevertheless, it meets the noise requirement of 0.3 ng/

√
Hz over the

frequency range of 0.2 to 2 Hz for developing our GGI at the present stage. Efforts can also be made to
further decrease the noise floor of the proposed accelerometer.
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