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Abstract: For fast and standoff personal screening, a novel terahertz imaging scheme using a sparse
rotating array is developed in this paper. A linearly sparse array is designed to move along a circular
path with respect to an axis perpendicular to the imaging scenario. For this new scheme, a modified
imaging algorithm is proposed based on the frequency-domain reconstruction method in circular
synthetic aperture radar. To achieve better imaging performance, an optimization method of the
sparse array is also proposed, according to the distribution of the spectral support. Theoretical and
numerical analysis of the point spread function (PSF) is provided to demonstrate the high-resolution
imaging ability of the proposed scheme. Comprehensive simulations are carried out to validate
the feasibility and effectiveness of the array optimization method. Finally, the imaging results of
a human-scattering model are also obtained to further demonstrate the good performance of this new
imaging scheme and the effectiveness of the array optimization approach. This work can facilitate
the design and practice of terahertz imaging systems for security inspection.
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1. Introduction

Due to the increasing threat of terrorism, security inspection has been becoming increasingly
important at many high-security facilities, including airports and railway stations. Generally,
effective detection instruments, like X-ray imagers, metal detecting gates and hand-held metal
detectors, are widely applied for security inspection. However, for personal screening applications,
the X-ray imager cannot be an acceptable choice because of its harmful effects on body health.
Metal detectors are not suitable due to their dependence on human assistance, which leads to low
efficiency. With their safety characteristics and short data acquisition time, terahertz (THz) and
millimeter wave (MMW) technologies have been widely researched for security applications [1–4].
Moreover, THz waves and MMWs have penetration capability, and can achieve high spatial imaging
resolution, which enables them to display good performance in the detection of concealed dangerous
objects. Therefore, THz and MMW imaging is an alternative and effective means for personal screening.

Hitherto, a number of THz and MMW imagers have been developed for personal screening,
which can be divided into two types: mechanical scanning [5–8] and multistatic arrays [9–11].
The mechanical scanning architecture is usually implemented by a linearly moving process or fast
rotating reflector. In particular, the linearly moving process requires either a single antenna scan,
which lasts at least several minutes and results in low efficiency, or a linear array scan, which is
very expensive [5]. The optical reflector used for fast rotating usually requires a high-precision
manufacturing technique, and is also very expensive [6,7]. In addition, despite the very fast imaging
speed, multistatic architectures based on thousands of antennas are bulky, complicated, and costly
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for practical implementation [9,11]. Recently, an imaging method has been proposed based on the
mechanical scanning technique and multistatic arrays [12], which significantly reduces the time cost
compared to the traditional mechanical scanning method, but still requires hundreds of antennas.
Hence, to overcome the tradeoff between system cost and imaging speed, THz and MMW imagers still
need further investigation for wide application under practical conditions.

In this paper, a new terahertz imaging method for standoff personal screening is proposed
based on the circular synthetic aperture radar (SAR) configuration and the sparse array technique.
The circular scanning method ensures nonstop scanning with fast speed and high imaging resolution,
and the sparse array technique, which only needs several antennas, reduces the system cost. The rest
of this paper is organized as follows. In Section 2, the new terahertz imaging scheme is described
in detail, and the spectral support and the point spread function (PSF) are analyzed. A modified
imaging algorithm is developed based on the circular SAR imaging technique [13,14]. In Section 3,
an optimization method for the sparse array based on the distribution of the spectral support
is proposed, in order to achieve better imaging performance. Different from the existing array
optimization method [15,16], the proposed array optimization method is based on the distribution of
the spectral support and the imaging geometry. Simulations are performed to validate the effectiveness
of this proposed method. In Section 4, simulations of the imaging of a human-scattering model are
carried out to further demonstrate the good performance of the new imaging scheme. Results verify the
effectiveness of the proposed imaging algorithm and the array optimization method. The conclusions
are drawn in Section 5.

2. The Proposed Imaging Scheme and Algorithm

2.1. Description of the Imaging Model

The observation geometry of the proposed imaging scheme is shown in Figure 1, where the
front view displayed in Figure 1b is rotationally symmetric about the OZ axis. The target coordinate
system OXYZ is fixed. The radar, consisting of m self-transceiver antennas, moves along a circular
path on the vertical plane z = Zc, i.e., the X′O′Y′ plane, where Zc is the range between the radar
and the target in the horizontal direction. Thus, the radius of the circular path for each antenna is
Ri ∈ [Rm, R1], i = 1, . . . , m, and the coordinate of the ith antenna in the spatial domain can be denoted
by (Ri cos θ, Ri sin θ, Zc), where θ ∈ [0, 2π) is the azimuthal angle. It can be seen from Figure 1a
that the circular synthetic aperture achieved by one antenna is similar to the synthetic aperture of
the circular SAR [14,17]. In Figure 1b, αi represents the side angle of the ith antenna with respect to
the origin O, which is equal to arctan (Zc/Ri). It should be noted that all the antennas rotate around
the same center (0, 0, Zc) and the same azimuthal angle θ, but with different radii Ri. As the radar
moves along the circular path, the beams of all the antennas are spotlighted on a disk with radius
W centered at the origin O on the XOY plane, where W indicates the radius of the imaging scenario.
It can be seen from Figure 1b that the half-power beamwidth φi of the ith antenna can be denoted by
φi = arctan [(W − Ri)/Zc] + arctan [(W + Ri)/Zc] [13]. Accordingly, the half-power beamwidth φ of
all the antennas should satisfy the condition

φ ≥ max{φ1, . . . , φm} = max
{

arctan
(

W − Ri
Zc

)
+ arctan

(
W + Ri

Zc

)
, i = 1, . . . , m

}
(1)
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Figure 1. Observation geometry of the proposed imaging method: (a) Perspective view; (b) Front 

view; (c) Right side view. 

It is assumed that the antennas transmit the linear frequency modulation (LFM) signal in time 
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Figure 1. Observation geometry of the proposed imaging method: (a) Perspective view; (b) Front view;
(c) Right side view.

It is assumed that the antennas transmit the linear frequency modulation (LFM) signal in time
sequence. When the LFM signal is transmitted by the ith antenna, the ith antenna itself is used to
receive the echo signal, which can be defined by

si(k, θ) =
∫ ∫

g(x, y)× e−j2k
√
(x−Ri cos θ)2+(y−Ri sin θ)2+Z2

c dxdy (2)

where g(x, y) denotes the reflectivity function and k = 2π f /c is the wavenumber.
f ∈ [ fc − B/2, fc + B/2], where fc is the center frequency. B is the bandwidth and c is the light
speed in the free space.

2.2. Analysis of the Spectral Support and PSF

According to Equation (2) the phase trace of the ith antenna response is

Ωi = −2k
√
(x− Ri cos θ)2 + (y− Ri sin θ)2 + Z2

c . The spatial frequency along the X and Y direction
on the XOY plane can then be defined by the derivative of Ωi, i.e.,

kx = ∂Ωi
∂x = −2k x−Ri cos θ√

(x−Ri cos θ)2+(y−Ri sin θ)2+Z2
c

ky = ∂Ωi
∂y = −2k y−Ri sin θ√

(x−Ri cos θ)2+(y−Ri sin θ)2+Z2
c

(3)

It can be known from Equation (3) that the spectral support of the imaging scheme is spatially
variant, because the values of kx and ky are dependent on the location of the target P(x, y, 0).
In particular, for the target located at origin (0, 0, 0), the corresponding spatial frequency can be
written as

kx = 2k cos αi cos θ

ky = 2k cos αi sin θ
(4)

where cos αi = Ri/
√

Z2
c + R2

i .

Denote the spatial wavenumber as ρi =
√

k2
x + k2

y = 2k cos αi. When a signal with wide

bandwidth is used and the condition θ ∈ [0, 2π) is satisfied, the two-dimensional spectral support
of the ith antenna imaging is an annulus in Figure 2, and the radii are ρmin

i = 2kmin cos αi and
ρmax

i = 2kmax cos αi, respectively. To obtain a better visual effect, only one annulus is displayed as an
example in Figure 2, which represents the spectral support of one antenna. It can be noted that the
spectral support of any other antenna is a similar annulus with a different radius.
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Figure 2. The spectral support of imaging with one antenna. 

Accordingly, the PSF of the target located at the center point (0,0,0)  in the spatial domain is 

[13,18]: 
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J  is the first order Bessel function of the first kind. The radial resolution 
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0
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i
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0
1    2a  [14]. The spectral support of the proposed imaging scheme with m  

antennas is a combination of m  annuluses, shown in Figure 2, and thus the final PSF can be written 
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x y x y
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Figure 2. The spectral support of imaging with one antenna.

Accordingly, the PSF of the target located at the center point (0,0,0) in the spatial domain is [13,18]:

psfi(x, y) =
ρmax

i J1(ρ
max
i r)− ρmin

i J1(ρ
min
i r)

r
(5)

where r =
√

x2 + y2, J1 is the first order Bessel function of the first kind. The radial resolution becomes
π/ρmax

i under a limit condition ρmin
i = 0. Hence, the radial resolution is approximately a0π/ρmax

i ,
where 1 ≤ a0 ≤ 2 [14]. The spectral support of the proposed imaging scheme with m antennas
is a combination of m annuluses, shown in Figure 2, and thus the final PSF can be written as the
accumulation of Equation (5).

PSF(x, y) =
m

∑
i=1

psfi(x, y) =
m

∑
i=1

ρmax
i J1(ρ

max
i r)− ρmin

i J1(ρ
min
i r)

r
(6)

As cos αi is proportional to Ri, the best radial resolution depends on a0π/ρmax
1 . The behavior of

the point spread function and its spatial resolution depends on the bandwidth of the radar signal and
the array configuration. Hence, the array optimization needs to be studied to further improve the
imaging performance.

2.3. Modified Imaging Algorithm

According to the array configuration, in order to meet the requirements of real-time imaging
for personal screening, a modified imaging algorithm is proposed based on the frequency-domain
reconstruction method described in [13,14]. The circular SAR reconstruction method is based on
Fourier analysis and the slant plane Green’s function, which is free of approximation. Specifically,
the slant plane circular SAR phase history is firstly transmitted into the ground plane phase history,
and then the target area reconstruction based on the ground plane circular SAR data is conducted.
Consequently, as the observation geometry of the new THz imaging scheme is vertical to that of
circular SAR, the proposed imaging algorithm in this paper mainly includes two steps, i.e., the slant
plane to vertical plane transformation and the vertical plane reconstruction.

In general, the interpolation process is essential in the target reconstruction of the circular SAR,
which transforms the target spectrum from polar coordinate form to rectilinear coordinate form.
However, the calculation volume and time consumption for the interpolation algorithm is enormous,
and this would be multiplied with the array configuration in the proposed imaging scheme. Hence,
to meet the real-time requirement of personal screening, the Non-Uniform Fast Fourier Transform
(NUFFT) is used in the proposed imaging algorithm. The NUFFT algorithm possesses a particularly
fast and simple implementation [19,20], which can substitute the interpolation processing and the
two-dimensional inverse Fourier transform. The imaging procedure is described in detail as follows.
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Firstly, the slant plane to vertical plane transformation is performed on the echo of each antenna
separately. In particular, the processing of the ith antenna can be achieved by

sv
i (ρi, θ) =

∫
k

Λ∗(ρi, k)si(k, θ)dk (7)

where

Λ(ρi, k) = W f (ρi, k)× e−j
√

4k2−(ρi)
2Zc (8)

Different from the target reconstruction approach in circular SAR, the proposed imaging method
concentrates on a fixed scenario with constant radius. The window function W f (ρi, k) in the polar
spatial frequency domain is defined as

W f (ρi, k) =

{
1 2k cos αmax

i ≤ ρi ≤ 2k cos αmin
i

0 otherwise
(9)

where αmax
i = arctan [Zc/(Ri−W)] and αmin

i = arctan [Zc/(Ri +W)] are the maximum and minimum
side angles of the ith antenna with respect to each edge of the scenario, respectively.

The second step, i.e., the vertical plane reconstruction, is performed by

Fi(ρi, ξ) = Sv
i (ρi, ξ)Γ∗i (ρi, ξ) (10)

where ξ is the Fourier counterpart domain of θ (Fourier series domain) and F(θ)[ ] denotes
one-dimensional Fourier transform with respect to θ. Sv

i (ρi, ξ) = F(θ)[sv
i (ρi, θ)]. Γ∗i (ρi, ξ) is the

conjugate of Γi(ρi, ξ), Γi(ρi, ξ) = F(θ)[e−jρi Ri cos θ ].
Therefore, the target function in the polar spatial frequency domain can be obtained from the

inverse transformation Fi(ρi, θ) = F−1
(θ)

[Fi(ρi, ξ)]. Then, the imaging result with high resolution can be
achieved through the joint NUFFT processing of F1(ρ1, θ), . . . , Fm(ρm, θ). Moreover, the flowchart of
the modified imaging algorithm for the proposed imaging method is illustrated in Figure 3.
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3. Optimization Method of Sparse Array

3.1. Array Optimization Method

According to the analysis of PSF in Section 2.2, the spatial resolution of the proposed new imaging
method is dependent on the array configuration. Hence, the optimization method of the sparse
array is studied here to achieve better imaging performance. The spectral support of the proposed
imaging scheme is the combination of m annuluses shown in Figure 2, and the radii are decided by the
parameters R1, . . . , Rm. Generally, the spatial distribution of the two antennas’ spectral supports have
three types of relationships, i.e., separate, adjacent and overlapping, shown in Figure 4 (each color
region indicates the spectral support of one antenna). The values of Ri of the outside annuluses remain
invariant and have the same value. However, the corresponding Ri+1 of the inside annulus increases
gradually from Figure 4a–c.
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Based on geometric knowledge, the area of annulus is proportional to cos2 αi (cos2 αi ∝ Ri),
which indicates that the area of the spectral support increases with an increase of Ri. Hence, the second
type of the spatial distribution in Figure 4b has the largest area.

According to the properties of Fourier transform, the imaging resolution increases with the
increase of the width of the spectral support [21]. With the same value of Ri, the imaging resolutions
corresponding to Figure 4a–c are the same in theory. However, the density and gap of the spectral
support are associated with the side-lobe level, and a lower side-lobe can be obtained when the gap is
smaller. Therefore, the array configuration corresponding to the second type of spatial distribution can
be used to achieve better imaging performance.

In Figure 4, the radii of the outside annuluses are 2kmin cos αi and 2kmax cos αi, and the radii of
the inside annuluses are 2kmin cos αi+1 and 2kmax cos αi+1. Therefore, the spatial distribution of two
antennas’ spectral support in Figure 4b can be expressed by:

2kmin cos αi = 2kmax cos αi+1 (11)

Substitute αi with arctan (Zc/Ri) and replace αi+1 with arctan (Zc/Ri+1). Then, the relationship
between Ri+1 and Ri can be given by:

fmax
Ri+1√

R2
i+1 + Z2

c

= fmin
Ri√

R2
i + Z2

c

(12)

The value of Ri+1 is decided by the parameters Ri, f and Zc, which indicate that the optimization
of the sparse array should be conducted with the constraints of system parameters. When the system
parameters are fixed, the value of Ri+1 should be accurately obtained according to Equation (12),
which will lead to better imaging performance.
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3.2. Simulation Results for Array Design

In this section, simulations are performed to show the advantage and effectiveness of the proposed
array optimization method. According to the current device level of the terahertz radar, the frequency
of the transmitted LFM signal is from 210 GHz to 230 GHz. The radius of the imaging scenario is set
as 1 m, which is fit for a human being’s height. The radar system works at a standoff range 3 m from
the imaging scene. According to the theoretical analysis above, the best spatial resolution a0π/ρmax

1 is
determined by the maximum value of the antenna rotation radius. Thus, R1 is set as 0.6 m to achieve the
theoretical imaging resolution 0.0017 m~0.0034 m. The main simulation parameters are listed in Table 1.

Table 1. Simulation parameters.

Parameters Numerical Value

Center frequency fc 220 GHz
Bandwidth B 20 GHz

Maximum radius of antenna R1 0.6 m
Horizontal range Zc 3 m

Imaging scene radius W 1 m
Sampling interval of f 0.01 GHz
Sampling interval of θ 0.1◦

Sampling numbers of frequency N f 2001
Sampling numbers of azimuthal angle Nθ 3600

To simplify the analysis, two antennas in radial direction are used in the simulations, and the
setup of rotation radii is displayed in Table 2. The values of R2 are set differently for comparison,
resulting in a distribution of the spectral support corresponding to the three types of relationship
in Figure 4. The radius R2 = 0.546 m of Type IV is calculated according to Equation (12). Additionally,
a simulation using a single antenna with radius 0.6 m is also performed.

Table 2. Different array configurations.

No. Type I Type II Type III Type IV Type V Type VI

R1 (m) 0.6 0.6 0.6 0.6 0.6 0.6
R2 (m) 0.3 0.4 0.5 0.546 0.57

The spectral supports of the different array configurations are displayed in Figure 5. To compare
the imaging performance of different array configurations sufficiently, the two-dimensional imaging
results at (0,0) and the one-dimensional imaging results are also shown in Figures 6 and 7, respectively.
Furthermore, quantitative analysis of the imaging performance is performed, and is listed in Table 3.
The meaning and definition of each parameter in Table 3 is explained below.
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Table 3. Quantitative comparison of the different distribution antennas.

No. Type I Type II Type III Type IV Type V Type VI

Area percentage 16.43% 18.99% 22.24% 23.95% 19.22% 13.06%
ISLR (dB) 9.0674 7.5736 7.3180 6.7343 8.4933 9.9953

Image entropy 12.8088 12.0532 11.3908 10.5492 11.1750 11.7455
IRW (m) 0.0019 0.0017 0.0015 0.0013 0.0013 0.0013

The area percentage is defined as the ratio of the area of array’s spectral support to the area
defined by kx ∈ [−2k cos α1, −2k cos α1], ky ∈ [−2k cos α1, −2k cos α1], i.e., the ratio of the area in
white color to the area in black color in Figure 5. Obviously, the area percentage is associated with
the image side-lobe level. The two-dimensional integral side-lobe ratio (ISLR) is defined as the ratio
of the power of the side-lobe to that of the main lobe, which reflects the focusing performance of the
image and the lower value represents the better performance. Image entropy has been successfully
applied to evaluate the quality of SAR or inverse SAR (ISAR) images [22,23]. A canonical definition of
the image entropy is [24]

En =
x
−H(x, y)× ln H(x, y)dxdy, H(x, y) =

|h(x, y)|2
s
|h(x, y)|2dxdy

(13)

where H(x, y) is the normalized image power density, h(x, y) depicts the reconstructed reflectivity
function of target. However, the imaging results obtained in this paper are discretized images
composed of discrete grids; thus, the discretized expression of Equation (13) can be written as

En = −
P

∑
p=1

Q

∑
q=1

H(p, q)× ln H(p, q), H(p, q) =
|h(p, q)|2

P
∑

p=1

Q
∑

q=1
|h(p, q)|2

(14)

where p and q are the discretized pixels of the imaging result, and P and Q represent the total number of
pixels in each row and each column. The two-dimensional image entropy represents the quality of the
imaging result, and a smaller value corresponds to a better imaging performance. The values of ISLR
and image entropy can be calculated based on Figure 6. Moreover, the 3 dB resolution of the imaging
results can be represented by the impulse response width (IRW), which can be obtained from Figure 7.

It can be seen from Figure 5a–c that the spectral support of the previous third array configurations
have a separated distribution relationship, and the width of the gap in each annulus decreases from
Figure 5a–c. In Table 3, the IRWs of Type I, Type II and Type III are larger than those of the last three array
configurations, which indicates that the gap in the spatial frequency domain may degrade the imaging
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resolution. According to the quantitative analysis of the array configurations of Type I, Type II and
Type III, the values of ISLR, image entropy and IRW decrease, which demonstrates that the quality of the
imaging results gradually improves from Type I to Type III. Hence, it can be concluded that the narrower
the gap in the spatial frequency domain, the better the imaging performance that can be achieved.

Figure 5d represents the adjacent distribution of the spectral support, which corresponds to
the optimized array configuration (Type IV). In Figure 5e, the overlapped distribution of spectral
support is displayed with respect to Type V. The spectral support of imaging with one antenna
located at R1 = 0.6 m is depicted in Figure 5f. Comparing the imaging results of the six types of array
configurations, the ISLR of Type VI has the largest value, which indicates that the obtained image using
single antenna has poor imaging performance with higher side-lobe level and lower image-focusing
ability. The image entropy of Type I and Type II is larger than that of Type VI, which is caused by the
lower IRWs of Type I and Type II. The more antennas that are used, the better the imaging performance
that can be achieved. Hence, the advantages of the array configuration for the proposed imaging
scheme can be recognized.

According to the results of the area percentage listed in Table 3 and the spectral support shown
in Figure 5, the spectral support of the optimized array (Type IV) has the maximum area among the
six array configurations. Moreover, the ISLR, image entropy and IRW of the optimized array’s imaging
result have the minimum values in all imaging results, which indicates that the optimized array
configuration can be used to achieve the best imaging performance with lower and fewer side-lobes.
In addition, the best imaging performance of the optimized array configuration can also be recognized
with the best visual effect in Figure 6. Therefore, we can draw a conclusion that the proposed
optimization method is feasible and effective.

In addition, the theoretical PSF according to Equation (6) is also calculated, and is shown
in Figure 7. It can be seen from Figure 7 that the main-lobes of the simulated PSF and the theoretical
PSF almost have the same width, despite the different distribution of the antennas. Additionally,
the side-lobes of the simulated PSF and the theoretical PSF are more similar when the spectral support
is more intense. Thus, the effectiveness of the proposed imaging algorithm is validated.

4. Imaging Results and Analysis

Based on the proposed array optimization method, the imaging results of the human-scattering
model are provided to show the advantages of the proposed imaging scheme for personal screening.
According to Equation (12), the rotation radii of six antennas are 0.377 m, 0.413 m, 0.453 m, 0.497 m,
0.546 m, and 0.6 m. Two uniform array configurations are considered for comparison, denoted by
uniform array 1 and uniform array 2. The rotation radii of uniform array 1 are 0.1 m, 0.2 m, 0.3 m, 0.4 m,
0.5 m and 0.6 m, and the rotation radii of uniform array 2 are 0.45 m 0.48 m, 0.51 m, 0.54 m, 0.57 m and
0.6 m. The spectral supports of the three array configurations are shown in Figure 8. It can be seen
from Figure 8b,c that the spectral supports of the two uniform array configurations possess separated
and overlapped distribution relationships, respectively. The area percentages of Figure 8 are 52.03%,
33.39% and 41.07%, which indicate that the optimized array has the largest area of spectral support.
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The reflection distribution of the human-scattering model used is displayed in Figure 9,
which contains 3453 scatters with 0.005 m spacing. The imaging results of the three arrays are
achieved in Figure 10. The image entropy of the three sub-images in Figure 10 are 11.7326, 12.9384 and
11.9848, which indicate that the array optimization procedure leads to better image quality. Moreover,
it can be seen from the imaging result in Figure 10a that the profiles and details of the human model
are quite clear. Thus, the proposed new imaging scheme can be used for security inspection.
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In this paper, a desktop computer with Intel(R) Core(TM) i5-4460U CPU @ 3.2 GHz and
8 GB RAM is used for the imaging simulation. Through the processing of the 3D data
N f × Nθ ×m (2001 × 3600 × 6), imaging results of 2 × 2 m2 with 0.001 m spacing can be achieved in
30 s. Accordingly, the time consumption of the imaging processing can be reduced to several seconds
with advanced computer technology, which meets the requirements of the real-time imaging. Hence,
the proposed new imaging scheme is suitable for standoff personal screening.

5. Conclusions

To conclude, a fast terahertz imaging method based on a sparse rotating array has been proposed
in this paper. This new imaging scheme can be used to achieve high imaging resolution, fast imaging
speed and low system cost, which is an effective and acceptable terahertz imager for standoff personal
screening. A modified imaging algorithm based on the circular SAR reconstruction method was
developed for this new imaging scheme, which was validated by analyzing the PSF. Moreover,
an optimization method of the sparse array was proposed. Based on the proposed optimization
method, a sparse array was obtained and the imaging results of a human-scattering model were
achieved, which validated the good performance and merits of the proposed imaging scheme.
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