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Abstract: In this paper, to deal with the concealed target detection problem, an accurate and efficient
algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a
two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT)
is performed on the scattered data along the antenna array plane. Then, a phase shift is performed
to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform
FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D
spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional
method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples
and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our
FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case
and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled
case, which are good properties for practical applications. Both simulation and experimental results
demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging
performance than the conventional method for down-sampled measurements.
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1. Introduction

In recent years, the demand for millimeter wave imaging techniques has increased in the field of
nondestructive testing (NDT) or in security check applications since the threat of terrorism attacks
is increasing [1–5]. Millimeter waves are an effective sensing method since these waves have the
ability to penetrate clothing and other dielectric barriers with minimal reflection and attenuation.
In addition, three-dimensional (3-D) images can provide more information than two-dimensional
(2-D) images, which makes the millimeter wave 3-D imaging promising. Various techniques have
been proposed to exploit the abilities of millimeter wave 3-D imaging, such as optimized-based
microwave imaging [6], confocal radar-based imaging [7], the microwave tomography method [8],
and the microwave holography method [9].

The near-field 3-D images are obtained by illuminating the object at multiple angles using
a wideband electromagnetic wave with a spherical wavefront and measuring the scattered fields.
The measurements can be achieved with a cylindrical synthetic aperture or 2-D planar synthetic
aperture [10]. In this paper, we discuss the mode of 2-D planar synthetic aperture, as it is easy to
acquire the scattered data and is the basic model for other types of 3-D imaging systems. The 3-D
imaging with wideband 2-D planar antenna aperture can be considered holographic radar imaging
with a wideband signal, and can also be regarded as an extension of 2-D SAR imaging to 3-D by adding
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an additional scanning axis. The 3-D resolutions depend mostly on the aperture of the 2-D plane array
and the bandwidth of transmitted radar signal [11].

It is usually difficult to get satisfactory imaging accuracies using the plane wave illumination for
high frequencies or large objects in the near-field case [12]. Based on spherical wave propagation theory,
many approaches have been proposed to deal with the near-field imaging. The near-field tomographic
algorithm could be used to reconstruct an image in Cartesian coordinates [13]. The spherical
back-projection method [14] and the fast cyclical convolution method [15] could also be applied
to near-field imaging. These algorithms use summation procedures and are more time-consuming
than fast Fourier transform (FFT) procedures.

As a matter of fact, the near-field 3-D spatial spectrum lies on a spherical curve and is nonuniform
in the 3-D Cartesian domain, which limits the direct application of Fourier transforms. Conventional
near-field 3-D holographic imaging methods [1,3] generally use 3-D interpolation to obtain uniform
spatial spectrum samples and then apply a 3-D fast Fourier transform to obtain the 3-D image of
the target. These approaches can be considered interpolation-FFT methods, which would introduce
interpolation errors and have a high demand for densely sampled data especially when the working
frequency is high and the imaged scene is small, where the interpolation errors will be serious and
greatly affect the quality of reconstructed images. To solve this nonuniform Fourier transforming
problem and to take advantage of FFT, nonuniform fast Fourier transform (NUFFT) approaches have
been developed. The NUFFT idea was first described by Dutt and Rokhlin [16] and Beylkin [17].
They presented a group of algorithms to generalize the fast Fourier transform in the case of noninteger
frequencies and nonequispaced nodes based on a combination of certain analytical considerations
with the classical fast Fourier transform. Later, Liu [18] and Nguyen [19] proposed an accurate
algorithm for NUFFT based on the regular Fourier matrix, which is a new class of matrices. Then,
Greengard [20] improved the computational efficiency of nonuniform Fourier processing based on a
fast Gaussian gridding (FGG) scheme by utilizing the nice property of the Gaussian spreading function.
The NUFFT approaches have broad applications. For example, they have been used in near-field 2-D
imaging to speed up the fast gridding algorithm [12] and can be applied to 2-D and 3-D MR image
reconstruction [21,22]. The NUFFT reconstruction method has a better trade-off between accuracy and
efficiency than the conventional gridding method and has been successfully applied to studies on small
animals [22]. The NUFFT method has also been used in three-dimensional cases to deal with landmine
detection using ground-penetrating radar [23]. Compared with the conventional migration method,
the NUFFT migration method is more useful in focusing images, estimating landmine structures,
and retaining a relatively high signal-to-noise ratio. In [24], to realize linear MIMO array imaging, the
authors utilized NUFFT to replace Stolt interpolation, which leads to improvement of the accuracy
and computational efficiency.

In this paper, we investigate the effectiveness of the FGG-based NUFFT (FGG-NUFFT) method
in near-field millimeter wave 3-D imaging and propose a FGG-NUFFT-based 3-D imaging method.
For near-field 3-D imaging, the nonuniform Fourier transforming problem directly affects the imaging
quality. According to the nice feature of the fast Gaussian gridding method described in [20],
we introduce the fast Gaussian gridding based NUFFT method to solve the nonuniform Fourier
transforming problem. The imaging performance of our proposed method in both adequate sampling
rate and down-sampling rate are analyzed and validated. Moreover, our method can preserve the
FFT’s advantage of high efficiency, making it an available method used for near-field millimeter wave
3-D imaging application in a down-sampled or sparsely sampled situation.

The rest of this paper is organized as follows. In Section 2, a near-field 3-D imaging scene with
a two-dimensional plane antenna array is described. Section 3 briefly describes the conventional
holographic 3-D imaging algorithm. Section 4 presents our FGG-NUFFT-based 3-D imaging method
in detail. Section 5 displays both simulation and experimental results. Finally we summarize the
conclusions in Section 6.
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2. Near-Field 3-D Imaging Scene Description

The monostatic two-dimensional plane antenna array layout for near-field 3-D imaging is shown in
Figure 1. The capital coordinates represent the position of the transceiver, and the ordinary coordinates
represent a single point in the target or the imaging region. Scattered data are collected by scanning
a transceiver over a rectilinear planar aperture that has one or more targets within its field of view.
The dimension perpendicular to the 2-D X−Y plane is defined as the Z-dimension and the measuring
plane is at Z = z0. The target is characterized by a reflectivity function σ(x, y, z). Since the probe
is within the near-field of the specimen under test, the wavefront curve is no longer negligible.
The received spherical wavefront at position (X, Y), with a temporal wavenumber k, is then given by

E(X, Y, k) =
y

σ(x, y, z) · exp(−jk · r)dxdydz (1)

where
r =

√
(x− X)2 + (y−Y)2 + (z− z0)

2

k = 2π f /c =
√

k2
x + k2

y + k2
z

(2)

Here, r is the range between the probe and the target, c is the speed of light, f is the temporal
frequency, kx, ky are wavenumbers corresponding to x and y, and the wavenumber corresponding to z

is kz =
√

k2 − k2
x − k2

y.

Sensors 2016, 16, 1525 3 of 15 

 

2. Near-Field 3-D Imaging Scene Description 

The monostatic two-dimensional plane antenna array layout for near-field 3-D imaging is shown 

in Figure 1. The capital coordinates represent the position of the transceiver, and the ordinary 

coordinates represent a single point in the target or the imaging region. Scattered data are collected 

by scanning a transceiver over a rectilinear planar aperture that has one or more targets within its 

field of view. The dimension perpendicular to the 2-D X Y  plane is defined as the Z-dimension 

and the measuring plane is at 0Z z . The target is characterized by a reflectivity function ( , , )x y z . 

Since the probe is within the near-field of the specimen under test, the wavefront curve is no longer 

negligible. The received spherical wavefront at position ( , )X Y , with a temporal wavenumber k , is 

then given by 

( , , ) ( , , ) exp( )E X Y k x y z jk r dxdydz     (1) 

where 

2 2 2

0

2 2 2

( ) ( ) ( )

2 / x y z

r x X y Y z z

k f c k k k

     

   
 (2) 

Here, r  is the range between the probe and the target, c  is the speed of light, f  is the 

temporal frequency, xk , 
yk  are wavenumbers corresponding to x  and y , and the wavenumber 

corresponding to z  is 2 2 2

z x yk k k k   . 

 

Figure 1. Geometry of near-field 3-D imaging by 2-D plane array. 

3. Conventional Holographic 3-D Imaging 

The conventional holographic method is processed in wavenumber domain and its major 

advantage is high computational efficiency. Based on the theory that the spherical wave can be 

decomposed into an infinite superposition of plane waves [1], the echoed data can be presented as: 

0

( , , ) ( , , ) exp( )

{ ( , , ) exp[ ( )]

                   exp( )exp[ ( )]}

x y z

z x y x y

E X Y k x y z jk r dxdydz

x y z j xk yk zk dxdydz

jz k j Xk Yk dk dk





   

   

 



   (3) 

Let 3( , , ) [ ( , , )]F

x y z Dk k k FT x y z  , we have 

2 2 2

2 0( , , ) [ ( , , )exp( )]F

D x y z x yE X Y k IFT k k k jz k k k    (4) 

 

3-D 

imaging 

planeAntenna 

array

Figure 1. Geometry of near-field 3-D imaging by 2-D plane array.

3. Conventional Holographic 3-D Imaging

The conventional holographic method is processed in wavenumber domain and its major
advantage is high computational efficiency. Based on the theory that the spherical wave can be
decomposed into an infinite superposition of plane waves [1], the echoed data can be presented as:

E(X, Y, k) =
t

σ(x, y, z) · exp(−jk · r)dxdydz
=

s
{
t

σ(x, y, z)exp[−j(xkx + yky + zkz)]dxdydz
·exp(jz0kz)exp[j(Xkx + Yky)]}dkxdky

(3)

Let σF(kx, ky, kz) = FT3D[σ(x, y, z)], we have

E(X, Y, k) = IFT2D[σ
F(kx, ky, kz)exp(jz0

√
k2 − k2

x − k2
y)] (4)
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Since the coordinate systems coincide after the FFT and inverse FFT (IFFT) operations, we can
ignore the capital and ordinary coordinate systems’ difference and solve Equation (4). Then the 3-D
image is reconstructed by [1]

σ(x, y, z) = IFT3D{FT2D[E(X, Y, k)]exp(−jz0

√
k2 − k2

x − k2
y)} (5)

Here, IFT3D indicates a 3-D spatial inverse Fourier transform from the wavenumber domain
variables (kx, ky, kz) to the spatial domain variables (x, y, z). FT2D indicates a 2-D spatial Fourier
transform from the spatial domain variables (X, Y) to the wavenumber domain variables (kx, ky).
FT3D and IFT2D are the corresponding inverse transforms of IFT3D and FT2D respectively.

Since the frequencies are uniformly sampled and the probe scans along the X − Y plane with
uniform steps, k, kx, ky are uniform, making kz nonuniform. Thus Equation (5) cannot be directly solved
using the regular FFT algorithm. The conventional imaging methods [1,3] utilize Stolt interpolation
to solve this nonuniform Fourier transforming problem, which can be regarded as interpolation-FFT
methods. Several methods of realizing Stolt interpolation have been described in [25]. Since the
3-D spatial spectrum here is only nonuniform along kz, it is easy for us to use a linear interpolator
along kz to realize interpolation and obtain a uniform 3-D spatial spectrum. The major advantage
of the interpolation-FFT methods is the high imaging efficiency from utilizing FFT. However, the
interpolation procedures introduce approximation errors and the interpolation accuracy depends
mostly on the nonuniform spatial spectrum samples. If the measurements are down-sampled or some
samples are missed, the imaging quality with the interpolation-FFT methods would be degraded.

4. FGG-NUFFT-Based 3-D Imaging

In this paper, a FGG-NUFFT-based 3-D imaging algorithm is introduced to efficiently and
accurately deal with the nonuniform summation problem in near-field image reconstruction.
The NUFFT approaches are popular methods to overcome the nonuniform sampling limitation [16].
The FGG-NUFFT means fast Gaussian gridding based NUFFT, which was proposed in [20] to accelerate
the nonuniform Fourier transforms. A nonuniform Fourier transform is done along kz. The process of
calculating nonuniform inverse Fourier transform along kz can be presented as 1-D type-1 NUIFFT,
where type-1 means a Fourier transform from a nonuniform domain to a uniform domain.

For simplicity, we now consider a general 1-D type-I NUIDFT, which is defined in the form of

F(u) =
1
N

N−1

∑
i=0

fie−juvi f or u = −M
2

, ...,
M
2
− 1 (6)

where vi ∈ [0, 2π] and vi may not be uniform. fi, i = 0, · · · , N − 1 is nonuniform spectrum data in
wavenumber domain, and F(u) is the uniform output signal in spatial domain.

Let f (v) be a periodic function on [0, 2π] with f (v) =
N−1
∑

i=0
fiδ(v− vi) and gτ(v) be the periodic

heat kernel on [0, 2π] with gτ(v) =
∞
∑

l=−∞
e−(v−2lπ)2/4π . fτ(v) is defined as the convolution with

fτ(v) = f ∗ gτ(v) =
2π∫
0

f (s)gτ(v− s)ds. Then fτ(v) is a 2π periodic C∞ function, which is well-resolved

by a uniform mesh in v, whose spacing is determined by τ. Set the oversampling number Mr = R× N,
where R is the oversampling coefficient. If we choose grids with a proper interval determined by Mr,
as described in [20], we have:

Fτ(u) ≈
1

Mr

Mr−1

∑
m=0

fτ(2πm/Mr)e−ju2πm/Mr (7)
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where

fτ(2πm/Mr) =
N−1

∑
i=0

figτ(2πm/Mr − xi) =
N−1

∑
i=0

fi

∞

∑
l=−∞

e−(vi−2πm/Mr−2lπ)2/4τ (8)

Once the values Fτ(u) are known, we can get the evaluation of F(u): F(u) =
√

π
τ eu2τ Fτ(u).

This is a direct result of the convolution theorem and the fact that the Fourier transform of gτ is
Gτ(u) =

√
2τe−u2τ .

The dominant task in the NUFFT is to calculate fτ(2πm/Mr) in Equation (8), referred to as the
gridding process. In fact, the calculation of Equation (8) is actually not that expensive. As the Gaussian
heat kernel is sharply peaked, we can change our point of view from the receiving point 2πm/Mr to
the source point vi and consider one Gaussian source at a time; then we have

fτ(m + m′)← fτ(m + m′) + fie−(vi−ξ−2πm′/Mr)
2/4τ (9)

where 2πm/Mr is the nearest regular grid point from vi, m′ = −Msp + 1, ..., Msp, and Msp is the
spreading number. This processing can accelerate the convolution calculation. Details of this algorithm
can be found in [20]. The procedure of FGG-NUIFFT processing is described in Table 1. Then, the image
reconstruction procedure can be represented as

σ(x, y, z) = IFTkx ,ky{NUIFFTkz{FT2D[E(X, Y, k)]exp(−jz0

√
k2 − k2

x − k2
y)}} (10)

where NUIFFTkz indicates a NUIFFT from kz to z, and IFTkx ,ky indicates a 2-D spatial inverse Fourier
transform from (kx, ky) to (x, y).

Table 1. Procedure of FGG-NUIFFT.

Step I: Initialization

1. Set the over sampling rate R, the spreading Gaussian parameter Msp, and the Gaussian kernel
parameter τ.

2. Precompute coefficients E3(l) = e−(πl/Mr)
2/τ for 0 ≤ l ≤ Msp and E4(u) = E4(M− u) = eτu2

for
|k| ≤ M/2. This step can be precomputed.

Step II: Convolution for Each Source Point

1. find the nearest grid point ξ = 2πm
Mr

with ξ ≤ vj

2. Compute E1 = e−(vj−ξ)2/4τ E2v = e(vj−ξ)π/Mrτ E2v(l) = E2v
l for −Msp < l ≤ Msp

3. Convolve the Gaussian spreading function with fi as follows:

V0 = fi · E1
f or lv = −Msp + 1, Msp

Add V0 · E2v(l) to fτ(m + l)

This step costs O(4Msp · N) operations.

Step III: IFFT and Deconvolution

1. Compute IFFT of fτ(m) to obtain Fτ(u)

2. Deconvolution F(u) =
√

π
τ E4(u)Fτ(u)

This step requires O(Mr log2 Mr) operations.

5. Experimental Results and Analysis

In this section, the performance of our proposed FGG-NUFFT based near-field 3-D imaging
method is demonstrated using the simulated and real measured data. The conventional imaging
method is utilized for comparison. Both simulated data and real measured data are used to analyze
the performance. In the interpolation-FFT method, first-order linear interpolation is employed as it is
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commonly used in practice [23]. For the calculation of NUFFT, the kernel size Msp and oversampling
rate R are set to 4 and 2, respectively. We discuss the FGG-NUFFT based 3-D imaging method in the
case of sufficient sampling rate and down-sampling rate, respectively. The latter is meaningful for
reducing measuring time and memory.

5.1. Simulated Data Imaging

5.1.1. Imaging with Sufficient Sampling Rate

The simulated scattered data are generated by Matlab on a computer, according to the near-field
modeling parameters we set. In this simulation case, we assume that the transceiver antenna
transmits a wideband signal whose frequency range is f = 30 ∼ 40 GHz with a frequency
interval of 100 MHz. It scans along a planar array of 15 cm × 15 cm with a sampling interval of
∆x = ∆y = λmin/4 = 1.875 mm, where λmin is the minimum wavelength of the wideband signal.
The sampling rate in the spatial domain is subject to the rigorous Nyquist sampling rate as described
in [1]. The whole area to be imaged is 20 cm × 20 cm × 20 cm. There are seven ideal point-like
scatterers with unit reflectivity amplitude located in the imaged area, and the perpendicular distance
from the center of the imaged area to the antenna plane is 0.32 m. The coordinates of the scatterers are
shown in Table 2. Then a matrix of size 161 × 161 × 101 is generated to store the simulated scattered
data of these ideal point-like scatterers, according to Equation (1).

Table 2. Position coordinates of scatterers.

Scatterers i x-axis (m) y-axis (m) z-axis (m)

1 0 0 0
2 0.1 0.1 0.1
3 0 0.1 0
4 0 0 0.1
5 −0.1 0 0
6 0 −0.1 0
7 0 0 −0.1

The imaging results depicted in Figures 2–5 are acquired by the conventional method and our
proposed method with ideal conditions, where noise is absent and the number of samples is adequate.
Figure 2 is the reconstructed 3-D image with a dynamic range of −30~0 dB. Figure 3 is the slice at
y = 0 m, Figure 4 is the slice at z = 0 m, and Figure 5 shows the profiles along x and z of the center point
in the imaged area. It should be noted that the profile along y is the same with x and can be omitted
here. We can see that the point-like scatterers are well focused at the correct locations with two methods
and the imaging resolutions are nearly the same. Imaging processes are implemented using Matlab
2012b on a desktop with an Intel Core i5 3 GHz CPU and 16 GB RAM. The computational time for the
conventional method with 256 × 256 × 256 FFT points in this simulation is 58.2284 s, while for our
proposed method it is 70.3315 s, which is comparable to the conventional method. The conventional
interpolation method is accurate and efficient when the sampled data are dense enough. When the
samples are not enough, such as in the case of down-sampling, the conventional method does not
perform so well, which will be discussed in the next section.
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Figure 2. 3-D imaging result of the conventional method (left) and the proposed method (right).
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Figure 3. Slice result at y = 0 m of the conventional method (left) and the proposed method (right).
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Figure 4. Slice result at z = 0 m of the conventional method (left) and the proposed method (right).
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Figure 5. Profile comparisons along x direction (left) and z direction (right).
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5.1.2. Imaging with Down-Sampling Rate

To further compare the performance of the proposed method and the conventional method,
the imaging case with down-sampling rate is discussed. If the scattered data are down-sampled
measured with a factor of 4 along both X and Y directions, the measuring time can be reduced to 1/16
of the original time, which is beneficial to data collection.

The imaging results with a down-sampling rate of 4 using two methods are shown in Figures 6–9.
Figure 6 is the reconstructed 3-D image, where a dynamic range of −20~0 dB is used to provide a
good view. Figure 7 is the slice at y = 0 m with a dynamic range of −30~0 dB, where the conventional
method has visibly stronger clutter compared to the proposed method. Furthermore, it can be seen that
for both methods, there is clutter distributed around the imaged scatterers, and the clutter is heavier
when the z-coordinates are smaller. Here, we will provide some explanation. For targets located far
away from the antenna array, which means the z-coordinates are small, the practical spatial spectrum
contributed by the targets will be more uniform than that of the targets whose z-coordinates are larger.
This means the nonuniform Fourier transforming procedure of those targets with smaller z-coordinates
will introduce fewer errors and have better imaging results. Figure 8 is the slice at z = 0 m where it
can be seen that compared to the conventional method, our method has relatively weaker sidelobes.
Moreover, the slice of the conventional method has many tiny noisy artifacts distributed randomly
around the imaged target, while our method has a much better view. Figure 9 shows the profiles along
x and z of the center point in the imaged area, and we can see that our method is more consistent with
weaker sidelobes than the conventional method. When looking closely at the profile comparisons
along z, it can be seen that our method has a slightly higher sidelobe level than the conventional
method when it is closer to the main lobe. This can possibly be explained as follows: each interpolation
along kz for (kx = 0, ky = 0) is accurate since the spatial spectrum along this line of kz is uniform,
while the FGG-NUFFT will still introduce errors for its convolution procedure.
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Figure 6. 3-D imaging result under down-sampling rate of the conventional method (left) and the
proposed method (right).
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Figure 7. Slice result at y = 0 m under down-sampling rate of the conventional method (left) and the
proposed method (right).
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Figure 8. Slice result at z = 0 m under down-sampling rate of the conventional method (left) and the
proposed method (right).
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Figure 9. Profile comparisons under down-sampling rate along x direction (left) and z direction (right).

It is demonstrated that the proposed method with down-sampling rate of factor 4 can maintain
the imaging performance with sufficient sampled data. Furthermore, the proposed method is better
focused with lower sidelobes and weaker clutters than the conventional method in the case of
down-sampled data. Computational time of the conventional method with 256× 256× 256 FFT points
in this simulation is 57.89 s, while for our proposed method it is 75.25 s, which is comparable to the
conventional method. It can be seen that the interpolation-FFT method is always fast and efficient,
while our method takes more time. The theoretical analysis has been described in Section 4. The main
advantage for down-sampling case is to save the processing time for measuring.

5.2. Real Data Imaging

The experimental dataset was also used to validate the proposed method in a down-sampling
case. In this experiment, the parameters are the same as those in the simulation case with a
down-sampling rate of factor 4. There is a pair of metal scissors located with a perpendicular range
of 0.32 m to the measured antenna array. The scissors are concealed tightly in a paper box and
the millimeter wave can penetrate the thick paper to image the scissors. The scissors are nearly
10 cm× 8 cm× 1 cm (x− y− z) in size. The measured scattered data are collected by the near-field
millimeter wave imaging experimental system which mainly consists of a vector network analyzer
(VNA), millimeter wave antennas and a 2-D plane mechanical scanner with millimeter stepped interval.
An Agilent E8363A is used as for power and a pair of standard gain horn antennas is linked to the
VNA to transmit the millimeter wave signal and receive scattered data respectively. The frequency
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range is 30 ∼ 40 GHz with 101 frequency steps. The two antennas are located next to each other to
ensure that the imaging mode can be approximately regarded as monostatic. The antennas move
on the 2-D plane mechanical scanner step by step with an interval of ∆x = ∆y = λmin = 7.5 mm
which is under-sampled with a factor of 4 compared to the rigorous sampling rate. The measuring
scope is (−0.15 m, 0.15 m) × (−0.15 m, 0.15 m) in X − Y plane, and 81 × 81 steps are needed.
The average measuring time along X direction is 90 s, so that the whole data acquisition procedure
needs 90× 81 s = 121.5 min. Although this measuring time is long, compared with the procedure
under the rigorous full sampling rate, the down-sampled procedure can save 15/16 of time.

The experimental imaging system is shown in Figure 10a and the target scene to be imaged is
shown in Figure 10b. The paper box will be put on the white foam pillar.
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Figure 10. Experimental imaging scene. (a) Experimental imaging system; (b) Scissors to be imaged.

The experimental imaging results are given in Figures 11–15. Figure 11 shows the 3-D imaging
results of the scissors with 256 × 256 × 128-point using the conventional method and our method,
respectively. In order to have a good view, the 3-D results are displayed with a dynamic range
of −15~0 dB. We can see that both methods can reconstruct the basic 3-D shape of the scissors
(two semi-circles of handle and a line of blade). However, when compared with the conventional
interpolation method, the proposed method behaves better with respect to the contour continuity
and clarity. It can also clearly be seen that the results from the conventional method have many noisy
artifacts distributed around the scissors, while our method still has no obvious noisy artifacts in the
down-sampling rate case. To further compare the imaging performance, we select three slices in each
dimension and give the results. Figure 12 shows the slice at z = 0 m, where it can be seen that the front
view of the scissors reconstructed by the proposed method is better focused than the conventional
method, with less clutter and fewer noisy artifacts. Figure 13 is the slice at y = 0 m and Figure 14 is the
slice at x = 0 m. Both slices for our proposed method have better vision effect with lower clutter. More
importantly, the results of our method tend to be less noisy than those using the conventional method,
which is an important property for real applications. Comparing the reconstructed 3-D images and
the slices, we can see that the results of the conventional method have many noisy artifacts randomly
distributed around the imaged target, while our method has a much better background.

We also compare some slices at different depths of z in Figure 15 to discuss the geometry
information along the depth direction. It is important for concealed target detection and recognition.
Slices at z = 0 m, z = 7.5 mm, z =−7.5 mm are presented. Different layers of the scissors are shown. It can
be found that the result of our method has better contour and less noise than that of the conventional
interpolation method. This scissors are put next to one surface of the paper box and the millimeter
waves penetrate this paper surface to reconstruct the scissors. The thickness of the scissors along z
direction is thin, and the three slices reflect three states of the scissors. The slice at z = −7.5 mm reflects
the edge of the scissors next to the paper surface and is affected heavily by the paper surface, the slice
at z = 0 m reflects the main body of the scissors which is affected slightly by the paper surface, and the
slice at z = 7.5 mm reflects the other edge of the scissors away from the paper surface, whose image
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intensity is relatively weak. There is a tiny gap in the contour of the scissors, which may be caused by
the spatial posture and the scattering characteristics of the target.
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Figure 11. 3-D reconstructed result of real data under down-sampled rate using the conventional
method (left) and the proposed method (right).
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Figure 12. Slice result at z = 0 m of real data under down-sampled rate using the conventional method
(left) and the proposed method (right).
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Figure 13. Slice result at y = 0 m of real data under down-sampled rate using the conventional method
(left) and the proposed method (right).
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Figure 14. Slice result at x = 0 m of real data under down-sampled rate using the conventional method
(left) and the proposed method (right).
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Figure 15. Slices at different z depths using the conventional method and the proposed method.  
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method; (e) Slice at z = −0.0075 m using the conventional method; (f) Slice at z = −0.0075 m using the 
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Near-field concealed targets imaging impose great demands on the image quality and accuracy 

since they have a great effect on the latter detection and recognition of concealed targets. The FGG-

NUFFT-based 3-D imaging method is efficient and accurate even in a down-sampled case. By using 

down-sampled data, the measuring time can be reduced, which is important for near-field 3-D 

imaging. 

6. Conclusions 

In this paper, an accurate algorithm for fast formation of near-field 3-D images via FGG-NUFFT 

is presented. We tried to introduce FGG-NUFFT into the near-field 3-D imaging area since the 

imaging procedure also needs to deal with the nonuniform Fourier transforming problem. 

Simulation and experimental results have shown that the FGG-NUFFT-based method is comparable 

with the interpolation-FFT method in both accuracy and efficiency when the scattered data are 

sampled densely enough. We also discussed a case with down-sampled measurements, which is 

important for real applications of the near-field 3-D imaging. The FGG-NUFFT-based method can 

have better imaging performance with less clutter and fewer noisy artifacts. This paper is an 

elementary study of the FGG-NUFFT-based method used in near-field imaging with uniform 

sampled data with a sufficient sampling rate or down-sampling rate. We will further study the 

potential of FGG-NUFFT used in compressed sensing imaging or MIMO array imaging in future 

work. 
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Figure 15. Slices at different z depths using the conventional method and the proposed method.
(a) Slice at z = 0 m using the conventional method; (b) Slice at z = 0 m using the proposed method;
(c) Slice at z = 0.0075 m using the conventional method; (d) Slice at z = 0.0075 m using the proposed
method; (e) Slice at z = −0.0075 m using the conventional method; (f) Slice at z = −0.0075 m using the
proposed method.

In this experiment, the down-sampling measured data are extended to a 256 × 256 × 128 matrix
by zero-padding for image reconstruction. The processing times for the conventional method and our
method are 32.31 s and 43.77 s, respectively. The interpolation-FFT method is always fast and our
method is comparable to some extent. The main advantage of down-sampling measuring is to reduce
the acquiring time of the scattered data, which is important for real applications.

Near-field concealed targets imaging impose great demands on the image quality and
accuracy since they have a great effect on the latter detection and recognition of concealed targets.
The FGG-NUFFT-based 3-D imaging method is efficient and accurate even in a down-sampled case.
By using down-sampled data, the measuring time can be reduced, which is important for near-field
3-D imaging.

6. Conclusions

In this paper, an accurate algorithm for fast formation of near-field 3-D images via FGG-NUFFT
is presented. We tried to introduce FGG-NUFFT into the near-field 3-D imaging area since the
imaging procedure also needs to deal with the nonuniform Fourier transforming problem. Simulation
and experimental results have shown that the FGG-NUFFT-based method is comparable with the
interpolation-FFT method in both accuracy and efficiency when the scattered data are sampled densely
enough. We also discussed a case with down-sampled measurements, which is important for real
applications of the near-field 3-D imaging. The FGG-NUFFT-based method can have better imaging
performance with less clutter and fewer noisy artifacts. This paper is an elementary study of the
FGG-NUFFT-based method used in near-field imaging with uniform sampled data with a sufficient
sampling rate or down-sampling rate. We will further study the potential of FGG-NUFFT used in
compressed sensing imaging or MIMO array imaging in future work.
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