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Abstract: The detection of a moving target using an IR-UWB Radar involves the core task of separating
the waves reflected by the static background and by the moving target. This paper investigates the
capacity of the low-rank and sparse matrix decomposition approach to separate the background and
the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are
criticized for being batched-data-oriented, which makes them inconvenient in realistic environments
where frames need to be processed as they are recorded in real time. In this paper, a novel method
based on overlapping-windows processing is proposed to cope with online processing. The method
consists of processing a small batch of frames which will be continually updated without changing
its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange
Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy
of target detection. The overlapping-windows processing method converges on the optimal solution
with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the
robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential
averaging method.

Keywords: UWB; moving target detection; background subtraction; matrix decomposition; low-rank;
sparse; RPCA; augmented Lagrange multiplier; online processing; real-time processing

1. Introduction

In recent years, Ultra-Wideband (UWB) radars have attracted a large amount of interest in research
due to their wide variety of practical applications and their ability to operate in indoor environments
and areas with poor visibility conditions. The most famous applications are the detection, localization
and tracking of a moving target because of the interest for rescue, surveillance and security purposes.
Some recent works proved that the UWB radar sensor networks can be used for improved accuracy
while working within wireless environments with multipath, clutter, line-of-sight (LOS) blockage,
excess propagation delays through materials, and other harsh conditions [1,2].

The basic idea behind UWB technology is to transmit impulses of electro-magnetic wave (EMW).
It is not possible to create an ideal impulse in the real world, so UWB technology uses a pulse
with a finite amplitude and very short duration, typically ∼0.5–1.5 ns, as a realistic approximation.
This pulse will have a very wide frequency spectrum, hence the name Impulse-Radio UltraWideband
(IR-UWB). After the radar transmits a pulse, it starts listening and the returned waveforms are recorded
for a fixed interval of time. This interval establishes the effective range of the radar, and the data
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recorded during one interval is called a “scan”. Each radar scan will be stored as a column vector of
length M, and if N scans are recorded, this will result in a data matrix X of dimension M × N called
“Radargram” as presented in Figure 1.

Sensors 2016, 16, 1409 2 of 13 

 

recorded during one interval is called a “scan”. Each radar scan will be stored as a column vector of 
length M, and if N scans are recorded, this will result in a data matrix X of dimension M × N called 
“Radargram” as presented in Figure 1. 

 

Figure 1. Raw data Radargram. 

The received signal beam includes reflections from both moving and static objects, the noise and 
direct waves between the transmitting (Tx) and receiving (Rx) antennas. Therefore, the moving-target 
detection and tracking task is achieved through a number of signal processing phases such as 
received raw signal preprocessing, background subtraction, target detection, localization and 
tracking where the output of each step will be the input to the next step as shown in Figure 2. In order 
to clean our signal and get rid of the noise and cross-talk waves between Tx–Rx, these can be removed 
or diminished by one suitable bandpass filter as it is explained in [3]. 

 
Figure 2. Signal processing steps for target detection and tracking. 

After bandpass-filtering the signal to get rid of the noise, the success in separating the two remaining 
components of the received signal beam will considerably enhance the accuracy in detection. Different 
techniques have been developed in this regard, but each one has its drawbacks [4,5], which will be 
discussed in the next section. The proposed RPCA algorithm efficiently and robustly recovers the low-
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The received signal beam includes reflections from both moving and static objects, the noise and
direct waves between the transmitting (Tx) and receiving (Rx) antennas. Therefore, the moving-target
detection and tracking task is achieved through a number of signal processing phases such as received
raw signal preprocessing, background subtraction, target detection, localization and tracking where
the output of each step will be the input to the next step as shown in Figure 2. In order to clean
our signal and get rid of the noise and cross-talk waves between Tx–Rx, these can be removed or
diminished by one suitable bandpass filter as it is explained in [3].
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After bandpass-filtering the signal to get rid of the noise, the success in separating the two
remaining components of the received signal beam will considerably enhance the accuracy in detection.
Different techniques have been developed in this regard, but each one has its drawbacks [4,5],
which will be discussed in the next section. The proposed RPCA algorithm efficiently and robustly
recovers the low-rank and sparse parts of a large matrix made up of the sum of these two components
where the clutter signal is modeled by the low-rank matrix, while the moving target signal is modeled
by the sparse matrix component. However, as stated in the previous section, many RPCA models are
implemented using batched data [6–8], so they require memorization of all samples in order to access
every sample in each iteration of the optimization. Storing data first and processing them in a batch
manner is not always of great significance, since in most cases we need to record and process frames at
the same time.

On the other hand, there are a few seminal works on online robust PCA [9–12]. In [9],
an incremental and robust subspace learning method is proposed. The method proposes to integrate the
M-estimation into the standard incremental PCA calculation. The author defined an incremental way
of solving the RPCA problem, where the PCA model updating is performed directly from the previous
eigenvectors and a new observation vector. Thus, each newly coming data point is re-weighted by
a pre-defined influence function of its residual to the current estimated subspace. However, the
performance is only guaranteed if the updated PCA model at each step of an incremental algorithm is
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good enough to function as the prototype model. In [10], He et al. propose an incremental gradient
descent method on Grassmannian manifold for solving the robust PCA problem, named GRASTA.
In each iteration, GRASTA uses the gradient of the updated augmented Lagrangian function after
revealing a new sample to perform the gradient descent. Balzano et al. [13,14] show that subspace
tracking is accomplishable on Grassmannian subspace only when limited entries of data are exposed.
In [11], Feng et al. proposed the Online Robust PCA (OR-PCA) which is based on stochastic
optimization of an equivalent reformulation of the batch RPCA. OR-PCA processes only one sample
per time instance and thus is able to efficiently handle big data and dynamic sample sets, as well as in
online systems. Compared to its batch-counterpart where the adopted nuclear norm tightly couples
the samples and thus the samples have to be processed simultaneously, OR-PCA pursues the low-rank
component in a different manner: using an equivalent form of the nuclear norm, OR-PCA explicitly
decomposes the sample matrix into the multiplication of the subspace basis and coefficients plus
a sparse noise component. Through such decomposition, the samples are decoupled in the optimization
and can be processed separately. However, Feng et al. acknowledged that the computational time of
OR-PCA is linear in the sample size and nearly linear in the ambient dimension. The most relatively
related to our approach in techniques is [12], where a compressive sensing based recursive robust PCA
algorithm is proposed. Their proposed method essentially solves compressive sensing optimization
over a small batch of data to update the principal components estimation. However, their algorithm
guaranteed a good performance only on data with structured noise which is too restrictive in real
life scenarios.

In this work, we demonstrate how the Robust PCA can optimally separate the two subspaces
modeling the clutter and the target signals. To tackle the above mentioned RPCA limitations, this work
develops a simple processing mechanism based on a relatively small batch of frames and processes the
new frames in a fashion that allows to keep the target’s position in real-time. The target detection and
localization are highly influenced by the capacity to recover the two subspaces successfully.

This paper considers 2 radar modules, each with a mono-static UWB radar configuration where
waveform pulses are transmitted from a single transmitting antenna and the scattered waveforms
are received by a collocated receiving antenna. According to our experiments, within a radar range
of 10 m, the averaged frame rate is 40 frames per second. Therefore, in order to perform real-time
target-detection using the algorithms processing one frame at a time, each frame should be processed
in 0.025 s, which is very ideal considering the time required for performing all the involved steps,
namely noise filtering, clutter rejection, detecting and localizing the target. For instance, for the
stochastic OR-PCA algorithm, the average computational time for one sample of length 240 is 0.0748 s,
and 0.0724 s for GRASTA [15].

2. UWB Signal Processing Steps

2.1. Data Cleansing and Clutter Rejection

The received signal stream X comprises the reflections from physical obstacles within the radar
range, and these reflected waves are corrupted with a noise resulting from the target’s motions and the
propagation environment. It can be approximated as:

X [n] = E [n] + A [n] + N [n] , (1)

where E[n] is the target signal modeled by the sparse matrix and A[n] is the clutter signal modeled by
the Low rank matrix and N[n] represents the noise.

By analyzing the amplitude spectrum, the waves reflected from targets, which are characterized by
the dominant amplitude, have been located in the limited middle frequency interval. Other components
of the raw signal will be related to noise and direct waves between Tx-Rx. Therefore, the noise and
direct waves can be removed by one suitable band-pass filter. Figure 3 shows both the raw and filtered
signal frames.
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After applying the bandpass filter, the remaining portion of the received signal beam supposedly
consists of reflections from the static background and the moving target. The separation of these
two components, also known as the background subtraction or clutter rejection, is a key step that
aims at removing/minimizing the unwanted clutter signals through which the detection accuracy
can be improved. There are a number of approaches for this core step, but they are all sensible to
harsh conditions.

2.1.1. Exponential Averaging

In [16], a clutter-reduction method was proposed where the foundational theory of this method
is based on exponential averaging. Having an initial estimate of the clutter signal A(k−1), the new
estimated clutter signal A(k) is computed recursively from A(k-1) and the new incoming radar scan Xk ,
where k is the time index. Thus, A(k) is derived as:

A(k) = αA(k−1) + (1− α) Xk , (2)

where α is a constant scalar weighting factor which is between 0 and 1, A(k) is the estimated background
at k time index and Xk is the kth frame in the dataset. This method is appreciated for its speed for
real-time signal processing, but criticized for its very simple clutter estimation leading it to have poor
performance in complex scenario cases.

2.1.2. Principal Component Analysis

Computing PCA of a data set X involves subtracting the mean of each measurement type and
computing the eigenvectors of XXT [17]. Given the radar-scan data represented by a rectangular matrix
Xij, whose dimension is M × N (i = 1, 2, . . . , M; j = 1, 2, . . . , N), the N principal components of data
matrix X can be given by:

Y = ZTX, (3)

where X = [x1, x2, x3, . . . , xn]T is the zero-mean input vector, Y = [y1, y2, y3, . . . , yn]T is the output
vector called the vector of principal components, Z is an M × N matrix that transforms X into Y.·Z can
be computed using the covariance matrix. PCA assumes that Z is an orthonormal matrix (ZT

i ·Z j = δij)
such that the covariance matrix of Y; (Cy) is diagonalized. Then, the covariance matrix Cx of X is
given by:

Cx =
1
N

XXT . (4)

The eigenvector and eigenvalue matrices of Cx, denoted Φ and Λ respectively, are computed by:

CxΦ = ΦΛ, (5)
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where Λ = diag(λ1, λ2, λ3, . . . , λN) and λ1, λ2, λ3, . . . , λN are the eigenvalues. If one assumes that
the eigenvalues are sorted in an ascending order, λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λN, then the N-leading
eigenvector-matrix Z is given by:

Z = [Φ1 , Φ2 , Φ3 , . . . , ΦN ] . (6)

The clutter-free signal space can be extracted from the original entire signal space according to

E = ZnX . (7)

We select the matrix Zn to be a matrix whose rows zn are the eigenvectors of XXT (the principal
components of X).

2.1.3. RPCA via Inexact ALM

The above-defined classical PCA aims at the exact recovery problem from corrupted low-rank data
owing to small errors and noise, but it cannot effectively deal with incomplete or missing real-world
data suffering greater corruption. Therefore, the robust principle component analysis (RPCA) has been
proposed for corrupted low-rank data recovery [18–23].

Recently, Wright et al. [24] have shown that under rather broad conditions the answer is
affirmative: as long as the error matrix E is sufficiently sparse (relative to the rank of A), one can exactly
recover the low-rank matrix A from X = A + E by solving the following convex optimization problem:

min
A, E
||A||∗ + λ ||E||1 , subject to X = A + E, (8)

where ‖·‖∗ is the nuclear norm of a matrix, and thus the sum of its singular values, ‖·‖1 is the sum of
the absolute values of matrix entries, and λ is a positive weighting parameter on the sparse error.

Different algorithms have been recently developed to solve the RPCA problem. They all model the
background with a low rank subspace, while the moving foreground objects constitute the correlated
sparse outliers.

As stated in the first section of this paper, the proposed model follows the techniques developed
by Augmented Lagrange Multiplier. Given a radar-scan data matrix X whose dimensions are M × N,
and a weight λ on sparse error term, if we identify:

X = (A, E),
f (X) = ‖ A ‖∗ + λ‖ E ‖1

h(X) = X−A− E
, (9)

where A and E are the low-rank and sparse matrices respectively. The general augmented Lagrangian
function will then be defined as follows:

L (X, Y, µ) = f (X) + 〈 Y, h (X)〉+ µ

2
||h (X)||2F , (10)

where µ is a positive scalar. It has been proven in [25] that if µ is increasingly changing in each iteration
and f and h are continuously differentiable functions, then under rather general conditions the ALM
method converges Q-linearly toward the optimal solution.

In [11] Feng et al. explained how the use of RPCA algorithm for online processing is challenged
by the nuclear norm defined in Equation 8. In order to find the minimum nuclear norm, a Singular
Value Decomposition (SVD) has to be performed across all samples, though SVD is the operation
that consumes the most running time. In [26], the inexact ALM (IALM) approach was defined and
converged to global minimum by computing only the first few, largest singular values.

The inexact ALM method will then be defined by Algorithm 1:
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Algorithm 1 Robust PCA via the Inexact ALM Method

1: Y0 = X/J(X); E0 = 0; µ0 > 0; ρ> 1; k = 0
2: while not converged do

3: (U,S,V) = svd(X − Ek +µ−1
k Yk)

4: Ak+1 =US
µ−1

k
[S]VT

5: Ek+1= S
λµ−1

k

[
X− Ak+1 + µ−1

k Yk

]
6: Yk+1 = Yk +µk (X − Ak+1 − Ek+1);

µk+1 = ρµk
7: k = k + 1

8: end while

The algorithm takes X (an MxN radar-Scans matrix) and λ (a positive weighting parameter on the
sparse error) as inputs and returns Ak, Ek: the estimated background and foreground respectively.

In [14] the value of λ is said to be calculated as 1√
max(M,N)

, but our extensive experiments proved

that if M>>N then λ = 1√
M/N

(or vice-versa) will be used; otherwise, the first holds.
From Theorem 1 and Theorem 2 elaborated in [26], we can get the following conclusion: for

geometrically growing µk, IALM converges Q-linearly, and the faster µk grows, the faster IALM
converges. However, when ρ is too large such that the condition lim

k→+∞
µk (Ek+1 − Ek) = 0 is violated,

IALM may fail to converge to the optimal solution. Thus, if seeking both optimality and fast
convergence, the values of µ0 and ρ must be chosen cautiously.

2.2. Target Detection

The target detection task implies analyzing a signal frame and deciding if there is a target within
the radar range or not which can be solved using methods of statistical decision theory. Those methods
will take a clutter-free signal and compare it with a given threshold to reach such a decision. Besides the
simple threshold detectors, the interperiod-correlation processing (IPCP) detector [27], the constant
false alarm rate (CFAR) [28], the CLEAN detection algorithm [29] and their modifications have shown
their capacity to provide good and robust results in target detection by UWB radar.

In this regard, with the intention to illuminate the differences in performance of the discussed
background techniques, their respective outputs were passed to the CLEAN algorithm for target
detection and the obtained results are compared.

However, the geometric attenuation of the wave emitted by the antenna must be considered and
its relation with the distance between the radar and a reflecting point [30].

2.2.1. Path Loss Compensation

The radar range equation (or simply radar equation) associates the ratio between the received
power and the transmitted power with the forth power of the inverse distance to a reflecting point:

Prec

PT
=

GT Ae σ

(4π)2 R4 L
, (11)

where Prec is the power captured by the receiving antenna, PT is the transmitted power, GT is the gain
of transmitting antenna, Ae is the effective aperture of the receiving antenna, σ is the radar section, R is
the range (target distance), and L denotes all losses affecting the radar performance.

In the development of this range equation, it is assumed that both the radar’s transmitter and the
target are isotropic radiators. An isotropic radiator does not focus energy; instead it distributes power
uniformly over the surface of a sphere centered on the antenna. We note that an isotropic radiator
cannot exist in the “real world”. However, it is a mathematical and conceptual concept that is often
used in radar theory.
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Another note is that the development of the above equation makes the tacit assumption that
the antenna is pointed exactly at the target, which is not always the case depending on the various
positions of the target; otherwise, GT must be modified to account for this.

All these mathematical assumptions used in the radar theory accept the flexibility in the range
power, which can also vary according to the target’s physical shape and properties [31]. In this regard,
following our experimentation, we have chosen 2 as a power of the range so that the path loss will
be compensated with the squared distance of a reflecting point. Therefore, the signal’s power at each
point was weighted with R2 where R is the range between the radar and that particular point.

2.2.2. CLEAN Algorithm

After the clutter-free signal is amplified for the path loss compensation, the resulting signal
will be the input of the CLEAN algorithm for target detection. The CLEAN algorithm is defined by
Algorithm 2:

Algorithm 2 CLEAN Algorithm

(1) Input: v(k): Waveform template; Tclean : detection threshold, x(t): data frame
(2) Initialize: Form initial residual waveform d0(t) = x(t). Set iteration counter i = 0.
(3) Signal analysis: Compute cross-correlation rvd(τ) between v(t) and di(t);

The time-index associated to the maximum magnitude of rvd(τ) is the ith estimated TOA:
ñi(t) = argmaxτ |rvd(τ)|.
The cross-correlation at ñi(t) is the ith estimated amplitude: ãi(t) = rvd(ñi(t)).
If the ãi(t)> Tclean:

a Increment the iteration counter: i← i + 1.
b Update residual waveform: di(t) = di−1(t) − ãi(t)v(t − ñi(t)).
c Iterate: Go to step 3.

(4) Stop

Thus, the CLEAN Algorithm will give one TOA for every target, even when it is a distributed
target. This TOA will be used to calculate the position (distance) of the target.

R(t) = ñ(t)× c/2, (12)

where R denotes the distance between the radar and the target, ñ is the TOA, c is the speed of light and
t denotes the observation time which is herein associated with the frame number.

2.3. Target Localization

The intention of this step is to find the coordinates of the target’s position in a 2D space.
Using a mono-static UWB radar, we can only estimate a 1D-positioning which gives the distance R
between the radar and the target. However, there are many points laying at the same distance from
the radar but in different positions, and these make up the circumference of a circle whose radius is R.
In order to obtain a 2D-positioning, we need at least two receiving antennas [32] or two mono-static
radars. The distance between the two modules and their respective positions is crucial to the accuracy
of the target-positioning [33]. For this regard in this work we estimate the 2D coordinates of the
target using two independent monostatic radars (connected on a same PC for real-time processing).
These radars are capturing one frame each at a time consecutively to avoid cross-talk between them
and to allow them to capture frames in relatively close times. Data from the respective radar modules
are stored as two different Radargrams which will be processed independently and will result in series
of (Ri, t) couples where R is the distance between the radar and the target, i = 1, 2 denotes the radar’s
index and t is the observation time which is herein associated with the frame number. Assuming that
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the coordinates of the radars are known and are (xi, yi) (i = 1, 2), the 2D coordinates of the target
position will be given by a geometric interpolation presented in Figure 4.Sensors 2016, 16, 1409 8 of 13 

 

 

Figure 4. 2D positioning with two radars. 

2.4. Overlapping Windows Processing 

Our particular motivation for this work is to exploit the robustness of RPCA methods that have 
always been criticized for being batch-oriented and inefficient for online processing systems or 
processing incremental data sets. We call these methods for clutter removal in the task of detecting 
and localizing a moving target in real-time using an IR-UWB radar. 

The proposed method essentially follows the normal IALM to process a small batch of data 
which is continuously updated as new frames are captured. This framework is shown in Figure 5. 
The method considers a small batch of n frames as one “window.” The first window, called the “base 
window,” will be recorded first. This window will go through the processing steps, including data 
cleansing, background subtraction, target detection and localization. The next window is generated 
by appending the p newly recorded frames to the previous window and eliminating the p first frames 
of the window to keep the same window size. The new window will be processed in the same way 
as the base window, but for the detection task only the p new frames will be concerned. The flowchart 
in Figure 6 shows the working mechanism of this method.  

 

Figure 5. Overlapping windows processing framework. 

The choice of n (window’s width) and p (shift step) are crucial and must be done counting on 
their effects on the overall performance of the system. In instance, a very large value of n will result 
in a very big dataset (window) and hence slow down the processing, and also we will have to wait 
longer to get the base window. In contrast, a very small n will not allow RPCA to converge to its 
optimal solution. On the other hand, a great value of p will devastate our “in real-time” concept.  

The radar module of this work has an average frame rate of 40 frames per second. Therefore, we 
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2.4. Overlapping Windows Processing

Our particular motivation for this work is to exploit the robustness of RPCA methods that
have always been criticized for being batch-oriented and inefficient for online processing systems or
processing incremental data sets. We call these methods for clutter removal in the task of detecting
and localizing a moving target in real-time using an IR-UWB radar.

The proposed method essentially follows the normal IALM to process a small batch of data which
is continuously updated as new frames are captured. This framework is shown in Figure 5. The method
considers a small batch of n frames as one “window.” The first window, called the “base window,”
will be recorded first. This window will go through the processing steps, including data cleansing,
background subtraction, target detection and localization. The next window is generated by appending
the p newly recorded frames to the previous window and eliminating the p first frames of the window
to keep the same window size. The new window will be processed in the same way as the base
window, but for the detection task only the p new frames will be concerned. The flowchart in Figure 6
shows the working mechanism of this method.
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The choice of n (window’s width) and p (shift step) are crucial and must be done counting on
their effects on the overall performance of the system. In instance, a very large value of n will result in
a very big dataset (window) and hence slow down the processing, and also we will have to wait longer
to get the base window. In contrast, a very small n will not allow RPCA to converge to its optimal
solution. On the other hand, a great value of p will devastate our “in real-time” concept.

The radar module of this work has an average frame rate of 40 frames per second. Therefore,
we chose n = 20 and p = 4. The value of n was decided basing on experimental observations, thus the
minimum number of frames that allows us to reach the optimal solution. Each window is processed in
approximately 0.1 s, so we chose p = 4 for time compensation since 0.1 s is the time required to capture
4 frames.
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3. Experimental Results

The experiments of this work were conducted in indoor conditions, in a building’s pavilion of
approximate size 8 m × 10 m. The two radars were set up on a table of 1 m high, 2.5 m distant from
each other and connected with a computer that was running the program. Numerous experiments
were run with different scenarios, namely with 1, 2, 3 and 5 persons, to prove the consistent efficiency
of the proposed method. In all these scenarios, the targets were moving with an average velocity of
10 m/12 s.

While running the experiment with online processing, the raw signal frames were saved in order
to be able to process the same scenario later with other methods for a better comparison. Figure 7
shows the results of the respective clutter rejection methods.

As discussed in the sections above, the raw frames recorded by each radar are processed separately
for the background removal. The first and second rows of Figure 7 present the clutter-free signals of
the two radar modules using different clutter removal algorithms. It is clear that the reflected waves
from farther targets are very weak, henceforth the need of path loss compensation.

The estimated clutter-free signals of both radar modules are submitted to the target-detection
algorithm and the results of both datasets are plotted in the third line of Figure 7. At this stage,
the results are already elaborated for comparison. If we compare these methods, we can see the
weaknesses of PCA and Exponential Averaging in separating the two subspaces, which results in
many false alarms in the detection step. The detection results from the two radars will then be used for
the target-localization task, and the results are shown in the last row of Figure 7.
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Figure 7. Clutter-free signals of the 2 radars, their respective detection results and the resulting
2D positioning given by different clutter removal techniques: Column (a) O-W processing RPCA;
Column (b) Batch Processing RPCA; Column (c) EAM; Column (d) PCA.

The results in Figure 7 present the outcome of the target detection and localization steps based
on the clutter removal results of every method. We can clearly see the good performance of the first
two methods, RPCA in both live and batched data processing, and this can also be proved by the
numeric results presented in Table 1. For a better comparison, we use the following metrics to explain
the differences in performance of these methods:

X RMSE (Root Mean Square Error): the commonly used metric to measure the differences between
two data sets, one predicted by a model or an estimator and the actually observed one. In here,
it is the average of the individual RMSEs between each radar’s estimated clutter and the true
clutter. The true clutter is approximated by recording a relatively large number of frames in a
target-free space, and these frames are averaged to minimize the effect of the noise.

RMSE =
1
M ∑ M

i=1

(√
1
N ∑ N

J=1

(
A(i,j) −Â(i,j)

)2
)

, (12)

where A is the estimated clutter and Â is the true clutter.
X Localization error: the average distance-error (the Euclidean distances) between the estimated

target position and the approximated the true path of the target. We assume the target was
moving following straight lines.
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Table 1. Numeric results for a one-person-scenario.

RPCA (Live) RPCA (Batch) EAM PCA

RMSE 1.261 1.287 1.873 1.962
Locat. Error (m) 0.26 0.49 1.33 1.29

Other experiments, of which the results are shown in Figure 8, were run with 2, 3 and 5 moving
targets, and the processing procedure took the same flow as in a one-person scenario. The presented
results show the detection results from one radar’s data, and are numerically compared based only on
RMSE as it is presented in Table 2.
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Table 2. Numeric results (RMSE) for a multiple-person scenario.

RPCA (Live) RPCA (Batch) EAM PCA

2 Moving targets 3.715 4.828 5.489 6.712
3 Moving targets 3.712 4.734 5.00 6.104
5 Moving targets 1.397 1.346 1.576 1.958

4. Conclusions

The task of detecting and localizing a moving target using IR-UWB radar requires a perfect
separation of the waves scattered by the time-invariant background from the waves scattered by the
moving targets. Subspace learning has proved its capacity to recover the low-rank matrix modeling
the clutter signal and the sparse error matrix modeling the target signal.

In this paper, Robust PCA via the Inexact Augmented Lagrange Multiplier is proposed for clutter
removal in IR-UWB-based target detection and localization, and a novel processing mechanism is
developed to adapt this batch-oriented algorithm to the real-time processing trend. The algorithm
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performs well in simple scenarios as well as in complex ones. The results prove that we can accurately
perform the task of detection and localizing a moving target within an online framework.
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Abbreviations

IR Impulse Radio
UWB Ultra-Wide Band
PCA Principal Component Analysis
RPCA Robust Principal Component analysis
IALM Inexact Augmented Lagrange Multiplier
EA Exponential Averaging
O-W Overlapping Windows
EMW Electromagnetic wave
Tx Transmitting Antenna
Rx Receiving Antenna
SVD Singular Value Decomposition
TOA Time of arrival
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