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Abstract: The cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter developed recently
has been proved an effective multi-target tracking (MTT) algorithm based on the random finite set
(RFS) theory, and it can jointly estimate the number of targets and their states from a sequence of sensor
measurement sets. However, because of the existence of systematic errors in sensor measurements,
the CBMeMBer filter can easily produce different levels of performance degradation. In this paper,
an extended CBMeMBer filter, in which the joint probability density function of target state and
systematic error is recursively estimated, is proposed to address the MTT problem based on the
sensor measurements with systematic errors. In addition, an analytic implementation of the extended
CBMeMBer filter is also presented for linear Gaussian models. Simulation results confirm that the
proposed algorithm can track multiple targets with better performance.

Keywords: error compensation; multi-target multi-Bernoulli filter; multi-target tracking; random
finite set

1. Introduction

Recently, the random finite set (RFS) theory [1] has provided an elegant formulation for the
multi-target tracking (MTT) problem and has already gained substantial interest. The probability
hypothesis density (PHD) multi-target filter [2] is an effective approach for tracking multiple targets
based on the RFS theory, as it can simultaneously estimate the number and the state of targets without
the measurement-to-track association used in the traditional MTT approaches [3—6]. The PHD filter
needs to calculate multiple integrals, and the integrals might be also intractable in many cases of
interest. In order to overcome the inherent intractability of the PHD filter, two major implementations
for the PHD filter have been developed. One is known as the sequential Monte Carlo (SMC)-PHD filter
or particle PHD filter [7,8] and the other is known as the Gaussian mixture (GM)-PHD filter [9,10].
The particle PHD filter uses a large number of particles to approximate the PHD distribution, while the
GM-PHD filter estimates the PHD distribution as a mixture of Gaussian densities. Convergence results
for the particle PHD filter and GM-PHD filter have been given in [11,12], respectively. The resulting
PHD filter subsequently became a very popular multi-target tracking method with applications in
sonar image tracking [13], video target tracking [14,15], vehicle cooperative localization [16], etc.

The PHD filter may produce unreliable estimates of the number of targets due to the Poisson
assumption for the target number distribution. Subsequently, the cardinalized probability hypothesis
density (CPHD) filter [17] was established to overcome the problem present in the PHD filter.
The Gaussian mixture CPHD (GM-CPHD) filter [18] provides a closed-form solution to the CPHD
filter for tracking multiple targets in practice. Compared with GM-PHD filter, the GM-CPHD filter
provides more accurate estimates of target number but with higher computational cost, as the filter
recursion equations for the target number distribution and intensity function are coupled.
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The multi-target multi-Bernoulli (MeMBer) recursion [19], which propagates the multi-target
posterior density approximately, is another approximation to the multi-target Bayes filter using
multi-Bernoulli RFS. However, it has been analyzed that the MeMBer filter overestimates the number
of targets. A satisfactory solution named the cardinality-balanced MeMBer (CBMeMBer) filter has
been proposed to reduce the posterior cardinality bias by modifying the measurement-updated tracks
parameters [20]. Similar to the PHD filter, there are two major implementations of the CBMeMBer
filter known as the particle CBMeMBer filter and the Gaussian mixture (GM-CBMeMBer) filter [20].
Moreover, the convergence results for the particle CBMeMBer filter have been given in [21]. Afterwards,
the work in [22] proposes an improved MTT algorithm based on the CBMeMBer filter and variational
Bayesian approximation to track multiple targets for the linear Gaussian models with unknown
measurement noise variances. To track multiple maneuvering targets, two different extensions based
on the CBMeMBer filter and the multi-model method have been proposed in [23,24]. Following the
CBMeMBer filter in MTT scenarios, a forward-backward CBMeMBer smoothing algorithm aimed
at improving the performance of the CBMeMBer-based filtering algorithms was proposed in [25].
In addition, based on the recently introduced labeled RFS formulation, the generalized labeled
multi-Bernoulli (GLMB) filter [26,27] was proposed as an improved approximation of the MeMBer
filter. The GLMB filter is superior to the MeMBer filter in the aspect of estimation accuracy, but with
a major disadvantage of greater computational complexity than the MeMBer filter, which is at worst
cubic in the number of measurements.

In this paper, we focus on the CBMeMBer filter due to its computational efficiency and satisfactory
filtering accuracy compared with other RFS-based filters. As is well known, the purpose of MTT is
to recursively estimate the target numbers and their states by using the cluttered measurement sets
collected by sensors. In practical applications, the measurements produced by an imperfect sensor
are usually characterized by both the random noise and systematic errors or biases. This implies
that the measurement model is influenced by a bias vector and the sensor measurements are biased.
Hence, if the bias is not incorporated in the measurement model, the performance of the filter will
degrade. The GM-CBMeMBer filter, whose prediction and update steps for each hypothesized track
are performed by using the Kalman filtering technique, is a closed solution to the CBMeMBer filter
for linear Gaussian models. However, for the standard GM-CBMeMBer filter, the systematic errors in
sensor measurements are not considered. The existence of systematic errors in sensor measurements
will affect the accuracy of target position estimations. That is, the position estimations will be biased.
In addition, the existence probabilities of new targets at the time steps where new targets appear
depend on the measurement-updated tracks, while the existence probabilities of surviving targets
depend on the legacy tracks. Hence, at the time steps where the new targets appear, the existence of
systematic errors might lead to problems such as the target number being underestimated and the
position estimations of the new targets being lost.

In this paper, an extended CBMeMBer filter is proposed to address the problem of MTT with
systematic errors. By introducing the joint probability density function of the target state and systematic
error, the proposed filter can be derived from modifying the CBMeMBer recursion equations directly.
In addition, the analytic implementation of the extended CBMeMBer filter is also derived by using the
bias measurement models and the linear Gaussian assumptions on target models. Simulation results
verify that the proposed algorithm outperforms GM-CBMeMBer filter in both the aspects of target
state estimation and target number estimation by using the biased measurements.

The rest of this paper is organized as follows. In Section 2 an extended CBMeMBer recursion is
provided. The analytic implementation of the extended CBMeMBer recursion is elaborated in Section 3.
In Section 4, the simulated results are presented and discussed. Finally, some meaningful conclusions
are given in Section 5.
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2. Extended CBMeMBer Filter

In MTT problems, the numbers of targets and measurements are time-variant due to targets and
clutter appearing and disappearing. The linear Gaussian dynamic and bias measurement models that
each target in two-dimensional plane follows can be written as

X = Fr_1X—1 + Gr_19k—1 1)

z, = Hpxp + by + v 2)

where x; is the target state vector at time step k, and F,_1 and Gy_1 are the state transition matrix and
the noise input matrix, respectively. z; and Hj are the measurement vector and the observation matrix.
The state noise g;_1 is assumed to be zero-mean white Gaussian noise with covariance Qx_1, and the
measurement noise vy is zero-mean white Gaussian noise with covariance Ry. by, which denotes the
sensor systematic error vector.

As defined in [28], the systematic error by can be modeled as a first-order Gauss-Markov process.
From Equation (2), it can be seen that the existence of systematic errors in sensor measurements means
that the value of E(zy — Hyxy) is not zero and results in damages to the performance of target tracks
update. The damage of systematic error on the performance of target tracks update is different from
that of random noise because it cannot be reduced by simple averaging.

To reduce the influence of systematic errors on filtering results, and for the CBMeMBer update
functions to perform adequately, an extended CBMeMBer filter is proposed in this section. For the
derivation of the extended CBMeMBer filter, we can treat (xy, by) as the augmented state and express
the joint probability density function of x; and by as p(x, bx). The extended CBMeMBer filter is derived
from substituting the augmented state model parameters into the standard CBMeMBer recursion
equations. The prediction and update equations of the proposed filter derived are given in the
following subsections.

2.1. Prediction
At time step k — 1, if the joint posterior multi-target density is a multi-Bernoulli and has the form

b )= (D 0 b M1 3
1 (Xk—1,be—1) = {(rp 2, pply (-1, be-1)) b (3)

where r]({ill is the existence probability of the ith hypothesized track, pl(le (x¢_1,bx_1) denotes the joint
probability density function of xj_1 and by_1, M_1 is the number of hypothesized tracks.

Suppose that the target state x; and the systematic error by are uncorrelated. Then, the predicted
joint multi-target density at time step k is also a multi-Bernoulli and given by

. . M : : M k
oo (%6, 06) = {1 P (G b)Y UL P (e b)) (4)
(i)

M
(X%, b))} " denotes the parameter set of the multi-Bernoulli RFS of births at time
yk ATk TR T

where {(rs)k, p
step k, and

i’g?k‘k,l = 7’;(21 <P;(21(xk—1/ bx—1), PS> = V;((l,)lff pSPI(Ql(xk—lrbk—l)dxk—ldbk—l 5)

p(i) (xp b)) — <fk\k—1(xk/bk‘xlf—lfhk—l)zpspliizl(xk—lrbk—1)>

P15 <P;(<121(xk71rbk71)/175>

_ <fk\k—1(xk‘xk—l)fk\k71(bk|bk—l)fpsp1(<i_)1(xk—lrbk—1)>

B <P](<i,)1(xk—1/hk—1)rp5>

I s fk—1 (kX 1) feji— (bk‘hk—l)pl(ﬁl(xk—lrbk—l)dxk—ldbk—l
B I psp) s (e 1bg 1)1 by

(6)
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where (-, -) denotes inner product, ps is the target survival probability, fx_1(bk|bx—1) denotes the
transition density of the systematic error, and fyx_1 (xk|x_1) is the single target transition density.

2.2. Update
If the predicted joint multi-target density at time step k is a multi-Bernoulli and has the form

My

k-1 () = {(r40 1 Pip (b))} 7)

i=1

then, the updated joint multi-target density at time step k can be also approximated by a multi-Bernoulli as

Q) @) My
T (i, i) = {(rp o Pr (e b))} ULk (ze), puk (e b 26)) b5, e 7, (8)
where 0
. . 1-— Xklk—l
r[f}( = f:(f\gﬂl(i)—(i) )
~ Tkik—1Xkjk-1
pé’,)k(xk, b) = %P;Ll(xk, br) (10)
~ Xkjk-1
o a0 e
= (1_”((1",){71)(1((3{71)2
VU,k(Zk) = My "15]\)1( 11/’/(ci)<zk) (11)
ke(ze) + Xy oo
= 17712\1)#17(1&\3#1
(0
My 0 :
I 1jk<i>1 PDP;Eii,l(xk/ bi) 8k (zk| Xk, br)
puk (X, b z) = KL i (12)
M1 i ()
Yot o ¥ (=)
klk—1
(i) _ ()
Xk-1 = <Pk kq(xkr bk)/PD> 13
= IJ poPit (e b dxicby
¢;§Z)(Zk) = <gk(zk‘xk/bk)/PDPI(;‘;(_l(xk/bk)> 14

JI PDP;Ela(_l(xkr bie) Qi (zk | xk, by ) dxydby

where pp is the detection probability, zj is the measurement set received at time step k, gi(+|x, b) is the
single-target measurement likelihood, and x(z) is the intensity of Poisson clutter.

From the above recursion equations, it can be seen that the extended CBMeMBer filter is generally
intractable because of the existence of multiple integrals. To obtain close-form solutions, an analytic
implementation of the extended CBMeMBer filter is proposed in the next section.

3. Analytic Implementation of the Extended CBMeMBer Filter

To facilitate the derivation of the analytic implementation, we first rewrite the linear Gaussian
dynamic and bias measurement models represented by Equations (1) and (2) in the following form

fite—1 (xlxe—1) = N (x5 Fe-1Xk—1, Ge-1Qk-1G{_1) (15)

Sk (zk| Xk, b)) = N(zi; Hexye + by, Rye) (16)

where N(-;m, P) denotes a Gaussian function with mean m and covariance P.
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In addition, the birth model at time step k is assumed to be a multi-Bernoulli with parameter set

{(”(71,)1« ps,)k(xk, bk))}i;l'k, and the joint probability density of the ith birth track p(vl/)k(xk, by) has the form

Pl (e ) = Zw” (g m), PN (b '), PED) (17)

Finally, the systematic error by is the first order Gauss—Markov process given by

frjk—1(bx|br—1) = N(bg; bx_1, Bx—1) (18)

Similar to the GM-CBMeMBer filter [20], the analytic implementation of the extended CBMeMBer
filter can be carried out by applying the standard results for Gaussian functions given in [29].
The following subsections show how the multi-Bernoulli joint posterior density is analytically
propagated in time.

3.1. Prediction
Suppose that at time step k — 1, the multi-Bernoulli joint posterior density 7_1 (x¢_1,bc—1) has

(i)

the form of Equation (3), where p,’, (xt_1, bx_1) can be expressed as

P;(Ql (-1, ber) = ) w 1(<']) N(x_1; m,ﬁ ’]%,PIE ']1))N(bk711 m,E )1 ;S 1)) (19)
Then, the predicted multi-target density Tk k—1 (Xx, by) at time step k is the same as Equation (4),

where the parameters in {(r )kpg)k(xk, b))} jl’ are given in Equation (17). In addition, substituting
Equations (15), (18) and (19) into Equations (5) and (6), other parameters in Tl (k-1 (xk, b ) can be derived

as follows 0 0
1 1
"pkik—1 = PsTk21 (20)
(i) (i) ) (i) 5 (0,]) #(i.f)
Pp k-1 (xk, b) = Zwk|k N (xi; m polk—17 ik N (b 7 Mp klk— 1’PP,k\k—1) (21)
i) _ (i)
Mpie—1 = Fe-1m ) (22)
POl = Ge1Qe1 Gy + Fa P EL (23)
A7) (i)
Mppk—1 = M1 (24)
pli = pll 1B (25)
Pk|k—1 Pklk—1 k—1
3.2. Update

Suppose that at time step k, the multi-Bernoulli joint posterior density 7y 1 (x%,bx) has the form

of Equation (7), where pﬁ?{_l (xx, by) can be written as

P (b = 1 0l NGgmygl) PR NG PG ) (26)
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Then the updated joint multi-target density 7y (xx, by) at time step k is the same as Equation (8).
Substituting Equations (16) and (26) into Equations (9)-(14), the derived equations for calculating the
parameters in 7y (X, by ) are presented as follows

(i) _ 0 1-pp
Lk = Tk ) (27)
L= porieq
P ek ) = Pl (e ) (28)
Lk \%ks %k ) = Pplg—1 Xk Yk
y M i (i )9 (26)
= <1—pm£?k 1>2
ru(zr) = " op (29)
2) + klk—1 k\k 17k \*k
( k) Z 1— pDrI(c‘;c—l
(i) (8 (i) (i), (i) (i) (i)
¥ (z) = pp 2 wk|k 1N(zk,Hkmk|k 1+mk|k 1,Rk+Pk|;j 1+HkPk‘k] HD) (30)
Mo 0 g A g
Zi:kl\k 1Zjik1 1 (Z])N(x mgjk)lp(z:{())N(bk;m(u]k) gjk))
pu(xk b zx) = " S (31)
L e e
N oo
il = — () (32)
1—r
K[k—1
mgljk) = m1(<1|1£) 1t ngk) (2 — Hkml(cj,kj) 1 ml(clu? 1) (33)
Pyy = (1= K HORGL, (34)
K = Pl HE (R + Bpg) B! (35)
) — i) (i) (i) (ij) yTy-1 (i) )
Mk = Mgk 1+Pk\k 1 (R JFp|k 1+Hkpk|k] 1Hi) (Zk_Hkmk\k 1 1) (36)
A0 _ (i) (i) (if) T\—1y i)
Uk (I_Pk\k 1(Rk+Pk|k] 1+HkPk|k] 1Hi) )Pk|k/71 (37)

3.3. Pruning and Merging

In the proposed algorithm, if the multi-Bernoulli joint posterior density at time step k — 1 has
Mj_1 hypothesized tracks, then, at time step k, the total number of the updated hypothesized
tracks is My_q + M, i + |Zi|, and the number of the Gaussian components representing the ith
measurement-updated track is (My_1 + M%k)]g}(il. This indicates that the number of the updated
tracks and the Gaussian components representing the multi-Bernoulli posterior density increases with
the time step increases, making the computational load very high. Hence, to reduce the computation
load, the pruning and merging procedure needs to be implemented after the update step. The detailed
pruning and merging procedure used in the proposed algorithm is provided in Algorithm 1.
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Algorithm 1. Pruning and merging for the proposed algorithm.

Step 1. Pruning

. . M
Given the updated multi-target density 7 (xx, by) = {r,(cl) , p(l) (xk, bk)}l.:kl at time step k,

k
and two truncation thresholds P, and Ty,.

Set I = {i|r) > P,}.
fori=1,---,|I
Set J0) = {jlwi” > Ty}.
end
Step 2. Merging
Given a merging threshold Uy, and a maximum allowable number of Gaussian
components Jmax-

fori=1,---,|I

Set a(‘) 0.

if |] \ > 0

n= argmaxwl(( 2

]e] . , . .. P .
—Uelu L7 — T ! — ™) < Uy}
@,(( = Y wy ’]
jeA
(i) (z/)
)y E
e = Ty
i)
o RN R GO G
P(l,a ) jEA
k - _(i,a(i))
Wk
5 (i)

7(1,a<i)) _ ]EAmk

e = A

a0y LAY

k M

JO = () A
end
ifa) > Jmax,

Discard a(!) — Jinax Gaussian components with lowest weights.

end
end

Step 3. Output results
Output {r A () (,J) A(z]) }Si,]) (i) }] 1} with 70 = min(Jmax,a®).

Remark 1. The notations |1|, \],Ei) |, and | A| used in Algorithm 1 denote the number of elements in the sets I,

J (@) , and A, respectively.

In the next section, we analyze the performance of the proposed algorithm compared with the

GM-CBMeMBer filter using the Monte Carlo (MC) simulations.

4. Simulation Results

To verify the effectiveness of the proposed algorithm, consider a two-dimensional scenario with
an unknown and time varying number of targets observed in clutter. The simulation environment was
as follows: AMD A8-6600K APU with Radeon HD (tm) Graphics 3.9 GHz, 4 GB DDR3 1600 Memory,
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Windows 7, and MATLAB R2012a. The sampling period is A = 1 s. In the dynamic models given in
Equations (1) and (2), the kinematical matrices are defined as follows:

1 A0 0 A2/2 0 101"

01 00 A 0 a2 0 00 o2 0
- , G = L, Q= | 1 , H, = L Ro=| "7
k1 00 1A k1 0 Az | Qe [0 ag] k 0 1 k [0 ag]

00 0 1 0 A 00

The sensor systematic error by is a first order Gauss—-Markov process with transition
density function
fik=1(k[bx—1) = N(by; bx_1,Bx—1) (38)

where B;_; = diag ([¢?,07]) and diag (-) denotes the diagonal matrix.

; 3
The birth process is a multi-Bernoulli RFS with density 7w, = {(r,x ps)k(xk, bk))}i—l’
where ., ; = 0.03, and
P(yl)k = N(x; m(yl)k Py k)N (b, Poi) , i=1,2,3 (39)

where m'!) = [190,2.5,150, ~1]7, '3, = [150,4,180,2]", m'", = [100,35,220,3]", P, = diag ([1,1, 1,1]),
fity = [25,3]", and P, = diag([02, 02)).

The standard deviations o3, and o7, are known, with ¢;, = ¢;, = 0.1 m, and the standard deviations
of the state and measurement noise are 0; = 0.2 m and 0, = 0.5 m, respectively. The survival probability
is ps = 0.99. The detection probability is pp = 0.98. The clutter is modeled as a Poisson RFS with the
mean r = 9 over the region [0,300] x [0,300] m?. At each time step, the hypothesized tracks are pruned
by using an existence probability threshold of P, = 1073, the Gaussian components are pruned and
merged by using a weight threshold of T,, = 1075, and a merging threshold of Uy, = 4. The maximum
allowable number of Gaussian components is Jmax = 100.

The filtering performance of the proposed algorithm is evaluated by using the optimal subpattern
assignment (OSPA) distance [30] defined as

dospa (X,Y) = (1 (min f d (x;, yr. )P + P (n — m)>> ' (40)

n o\ welln; 5

where the parameters are set to p = 2 and ¢ = 50 m in our simulation. To obtain reliable results,
500 Monte Carlo (MC) trials are performed for each algorithm on the same target tracks but with
independently generated measurements.

In Figure 1, the true target tracks and the cluttered measurements are shown in x and y coordinates
versus time, where the solid lines denote the true target tracks, and the plus signs denote the
measurements. Note that there exists one target appearing at time steps 6, 11, and 16, respectively.

Figure 2 plots the average target number estimations for the GM-CBMeMBer filter and proposed
algorithm over 500 MC trials. As seen, at time steps 6, 11, 16, since there is separately one target
appearing at those time steps, the proposed algorithm can obtain more reliable number estimations
than the GM-CBMeMBer filter. This is due to the fact that the existence probabilities of newborn
targets depend on the measurement-updated tracks, which can be computed more accurately by the
proposed algorithm.
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Figure 1. True target tracks and measurements.
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Figures 3 and 4 show the individual x and y coordinates of the true target tracks and the estimated
targets against time, respectively. From Figures 3 and 4, it can be seen that the GM-CBMeMBer filter
cannot filter out the position estimations of the newborn targets at the time steps where the new targets
appear, while the proposed algorithm has no missed position estimations at those time steps. As can
be seen by comparing, the target position estimations of the proposed algorithm are closer to the
true target tracks than that of the GM-CBMeMBer filter. That is due to the fact that the proposed
algorithm can compensate for the systematic errors in sensor measurements during filtering while the
GM-CBMeMBer filter cannot.

Figure 5 plots the average OSPA distances for the proposed algorithm and GM-CBMeMBer filter
over 500 MC trials. As expected, the results indicate that the proposed algorithm performs better than
the GM-CBMeMBer filter throughout the entire filtering process. In addition, it can also be seen that
the GM-CBMeMBer filter has three high error peaks at the time steps where the new targets appear.
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Figure 3. True target tracks and position estimations in x coordinate versus time.
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Figure 4. True target tracks and position estimations in y coordinate versus time.
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Figure 5. Average optimal subpattern assignment (OSPA) distances for different algorithms.

Also, 500 MC trials are performed for both algorithms over varying clutter rates to compare the
average performances in terms of the average computing time and time-averaged OSPA distances,
with the results shown in Figures 6 and 7, respectively. From Figures 6 and 7, it can be seen that the
proposed algorithm needs a bit more time than the GM-CBMeMBer filter to complete one MC trial.
However, it outperforms the latter a lot in the aspect of filtering accuracy.
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Figure 6. Average computing time for different algorithms versus clutter rate.
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Figure 7. Time-averaged OSPA distances for different algorithms versus clutter rate.

5. Conclusions

In this paper, to compensate for the systematic errors in sensor measurements and improve the
filtering performance of the CBMeMBer filter, an extended CBMeMBer filter is proposed. Moreover,
under the linear Gaussian dynamic and bias measurement models, an analytic implementation of the
extended CBMeMBer filter is also proposed by combining the close-form expressions with a pruning
and merging procedure to reduce the computation load. Simulation results demonstrate that the
proposed algorithm can obtain more reliable target number estimations and achieve better filtering
accuracy than the CBMeMBer filter.
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