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Abstract: Most traditional strong magnetic inspection equipment has disadvantages such as big
excitation devices, high weight, low detection precision, and inconvenient operation. This paper
presents the design of a giant magneto-resistance (GMR) sensor array collection system. The
remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on
the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWEF),
the image expression of wire ropes MFL on the surface was obtained. Then this was taken as
the input of the designed back propagation (BP) neural network to extract three kinds of MFL image
geometry features and seven invariant moments of defect images. Good results were obtained. The
experimental results show that nondestructive inspection through the use of remanence has higher
accuracy and reliability compared with traditional inspection devices, along with smaller volume,
lighter weight and higher precision.

Keywords: wire rope; remanence inspection; compressed sensing; wavelet filter; quantitative
recognition

1. Introduction

Wire ropes are widely used in industrial production, tourist cable cars, bridges, metallurgy,
mining, and informal elevators. Therefore, it is important to ensure the safety of the wire ropes
being used. The study of the residual strength of wire ropes is significant for developing advanced
instruments that can quantitatively detect wire-rope defects [1]. Currently, the stable and safe working
performance of wire ropes is of interest to more and more scholars who are interested in checking the
remaining longevity of wire ropes by using online inspection devices.

Jomdecha [2] improved on equipment that was magnetized by electric current. The equipment
was designed to control the strength of magnetization by adjusting the magnetized power supply or
engaged loops. One special type of testing coil was designed to capture the MFL signals. An eddy
current testing method [3] that used an alternating current to generate eddy current in the wire rope
was proposed. A function model, which explained the relationship among defects, characteristic
vectors, sensor parameters and wire ropes was established by relying on the testing data features.
Raisutis [4] studied the dispersion curves of ultrasonic guided-wave spread inside wire ropes. On the
basis of this research, the best and most promising receiving positions for ultrasonic guided-waves
were calculated. In [5] Peng and Wang designed a visual system on the basis of gamma rays. This
system focused on thick ropes used in a suspension bridge. Li et al. [6], used X-ray to detect defects in
the steel core of transmission belts. They also proposed a modified threshold rules method, which
captured the approximate shape of defects in the steel core.
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For the detection of wire rope gaps, Wang and Tian [7] applied the analysis method of finite
element to the MFL of wire ropes, and proposed an excitation method that adopted magnetic cores
into a magnetic column to improve the magnetic leakage strength of gaps. A system of strong
magnetic detection was designed using Hall sensors. During detection of the magnetic leakage
signals of wire ropes, the air gap affected the testing accuracy, therefore, Wang et al. [8] studied the
influence of different lift-off distances and different air gaps on detection accuracy and improved the
structural designs of the detector and the exciter. This device inhibited the influence of lift-off variation.
Li et al. [9] investigated the excitation model, established a design standard for the magnetizing
structure whose theoretical size was solved through numerical solution, and used finite-element
analysis to verify the theoretical size so that the final size was adjusted and determined. Some
researchers adopt digital-image processing (DIP) for the MFL signals, Cao et al. [10] unrolled the
MFL signals to grayscale, applied the DIP to extract the characteristics of the grayscale image, and
identified the different defects. Zhang et al. [11] discussed the limits of lift-off with the digital signal
processing method and designed a digital band trap to inhibit the strand waves of wire ropes. The sizes
of different defects, which were processed and recognized with statistics, were described as binary
images. Furthermore, Zhang et al. [12] designed a spatial filter to inhibit the strand texture of defects
of grayscale image and extracted textural features of filtered defects. Finally, a BP neural network was
designed and used for the quantitative identification of defects. Recently, most nondestructive testing
(NDT) devices were designed using a permanent magnet as an excitation component, which excited
wire rope to saturation magnetization. The MFL signals were captured by Hall sensors [10-13].

The most important aspect of a quantitative detection system is noise filtering of MFL signals.
To some degree, the selected filtering algorithm would have a major effect on the quantitative
inspection results. Taking into account the previously mentioned algorithm, Cao et al. [14] discussed
the relationship between the temporal domain and spatial domain of electromagnetic testing signals of
wire ropes, proposing a sampling theorem of the space-time signals, and the collection and processing
of the space-time signals was described in detail. Tian et al. [15] combined wavelet transform (WT)
and morphological transformation, and presented a morphological filtering algorithm used to inhibit
the baseline drift of MFL signals. For the quantitative inspection method, Zhang and Xu [16] discussed
the wavelet neural network model and weight-learning algorithm.

In this paper, GMR sensors were distributed uniformly on the circumference of the wire rope
to capture the three-dimensional radial direction MFL signal of wire ropes’ residual magnetism.
Compressed sensing (CS) and wavelet filtering algorithms were used to eliminate noise signals.
The defect signal was translated into a two-dimensional image. For the image, the features that served
as inputs for damage inspection were extracted. Experimental results show that this method can
better distinguish the amount and width of broken wires and depict circumferential distribution of the
defects. The device has the advantages of high detection speed, high precision, structural simplicity,
as well as being lightweight, small in size, and low cost.

The paper is organized as follows: the remanence detection head device, data acquisition board
and MFL imaging approach are introduced in Section 2. Section 3 focuses on noise elimination, which
includes reprocessing the MFL signal and using the CSWF algorithm. The filtered MFL signal was
grayed into an image that was interpolated circumferentially. Next, positioning detects and dividing
negative axle waveform of defects, extracting morphological eigenvalues and invariant moments
as identification vector. Section 4 presents a BP neutral network design that uses the extracted
vector as inputs. Finally, the quantitative inspection of broken wires was completed. Section 5
includes comments and the discussion of this paper. Section 6 concludes the paper indicating major
achievements and future scope of this work.

2. Acquiring MFL Signal of Remanence

This wire rope detection device design includes a sensor array, an excitation device and a system
control board. The sensor array consisted of 18 GMR sensors, which were distributed on the rope
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circumferential direction to form a circle, with approximately 20° spacing between two adjacent sensors.
The excitation device consists of a permanent magnet, with three small magnets placed end-to-end to
form a magnetic stripe. A plurality of magnetic stripes was arranged circumferentially on the surface
of the wire rope through two magnetic pole pieces in contact with the wire rope; thus, a magnetic
flux loop forms between the wire rope and the excitation device (Figure 1). As shown in Figure 1a,
the excitation device was used for totally magnetizing the wire rope, after which GMR sensor arrays
were applied to acquire the MFL signal. The structure of the excitation device of the magnet is shown
in Figure 1b. Figure 1c shows the control board and the GMR sensor array.
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Figure 1. (a) Framework of the detection device and detection method diagram; (b) Excitation source;
and (c) Signal acquisition system board.

The capabilities of the control board include GMR array management, data acquisition, data
storage, and communications. The acquisition system uses pulses, which are provided by a grating
encoder, to ensure that the 18 channels acquire the MFL signal one by one. The grating encoder can
send out 1024 pulses every 0.35 m, and each pulse transfers to the control board so that data acquisition
for all channels would run once. Then the acquired data are stored on the SD card.

The raw data of 18 channels can be converted visually to form an image of the wire rope MFL.
The data have equal distance in the axial direction; therefore, the rolling course only needs to unfold
the data by circumferential capture order. A matrix of M x N pixels is available, where M is the
number of sensors (here, the number is 18) and the N depends on the number of pulses. The unrolling
processing is shown in Figure 2a, Figure 2b shows an unrolled matrix with mesh.

Serious channel imbalances and low signal-noise ratios in raw data can be seen in Figure 2b.
To improve the signal-to-noise ratio and nicely capture the defect localization, the following processing
steps were applied to the raw signal (Figure 3).
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Figure 3. Signal preprocessing flowchart.

3. Data Processing

3.1. Signal Pre-Processing

The raw data from the GMR sensors are contaminated by various sources of noise, including
high-frequency MFL noise caused by wires, lift-off variations, non-uniformity of magnetization,
electronic noise, and the wire rope strands. Figure 4 shows three raw data channels. From the picture,
serious channel imbalances can be clearly identified, much of which is caused by lift-off variations
and non-uniform extractions, and much high-frequency noise is caused by the spiral structure of the
wire ropes. To improve the signal-noise ratio and inhibit noise and channel equalization, the following
pre-processing steps were applied to the raw signals.
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Figure 4. Three different sensor channels of raw MFL data.
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The average filter is a simple and effective pre-processing method, implemented by meaning
the neighboring MFL data [12]. This filter suppresses the influence of high frequency caused by the
structure of wires and is implemented with Equation (1):

X = Ein,k(i: 1,2,...18,m = 1,2,...,N — n) 1)

k=m

where N is the amount of sampling, i is the number of channels; j is the current request point; k is the
axial position of raw data; 7 is the number of points used for averaging; and m is the starting point
of averaging.

Wavelet analysis has the characteristics of multiresolution analysis [17,18]. It can decompose a
one-dimensional signal into different frequency sequences, according to the features of the signal,
eliminate noisy coefficients and apply the wavelet inverse transform to get a clearer signal. By using
wavelet transform on the mean signal, the baseline of the signal is a low-frequency direct current,
with few defect elements in the high-frequency coefficient, so every array signal uses eight-wavelet
decomposition with Equation (2):

YA]'Jrl = Zho(i’l — Zk)yA] (2)
Xp;, = Lhi(n — Zk)ij
aﬁAj = Zho(k — 2”)7/*,41 +h(k — ZH)ED].H 3)

where X, , is the j-th lowest frequency coefficient; Xp,, is the j-th highest frequency coefficient;

ho(n) and hy(n) are the decomposing filters &, (k) = h; (—k); and £ 4, is the approximate signal whose
baseline and highest noise are eliminated.

The available highest coefficients and lowest ones are at zero, and the two sequences of wavelet
coefficients have almost no defect components. By applying Equation (3), the MFL signal without
a baseline is obtained. Figure 5 shows that the MFL signal had been pre-processed. Comparison of
Figures 5 and 2b clearly indicates that the signal-noise ratio improves after the image pre-processing
and that the high-frequency noise is inhibited lightly so that the definition of defective region is obvious.
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Figure 5. Unrolled preprocessed signals.

3.2. Denoising Based on CSWF

The pre-processed signal £ A still contains much irregular strand waves and noise that would
have a bad effect on the subsequent feature extraction and recognition processing. Because of the
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special structure of ropes, impurities on the rope surface, and changes to the internal structure because
of twisting and uneven stress, the coercivity of the different parts of the ropes is not similar, and the
strand noise does not resemble a periodic signal. Traditional digital filters cannot perform well for
inhibiting these noises, but the CSWF [19-21] method could overcome this drawback well.

The noisy signal is not sparse in the wavelet domain. According to compressed sensing,
a certain measurement matrix exists, in which the linear measurement of the wavelet coefficients is
obtained [20,21]. The OMP [22-24] algorithm is one method for reconstructing the sparsest wavelet
coefficients. The core of the OMP algorithm is that the closest matching column, which has the
maximum inner product with measurement residue, is selected by greedy fashion. This column is
added to the selected columns, which is then eliminated from the measurement matrix. By applying
the least-squares method to all the selected columns, the approximate sparse solution was acquired,
and the residue is updated. The selection process was not repeated until the iterations reached the
sparsity K. Thus, the clear defect signal could be extracted with suited K.

The CSWF algorithm is as follows:

(1)  For the pre-processed signal £, the Mallat decomposition algorithm is used and the wavelet
coefficients W; under each scale j are obtained.

(2) The appropriate random measurement matrix ® (here is a 350 x 1024 Gaussian matrix),
is selected, and the wavelet coefficients of linear measurements i under the measurement matrix
® : y = ®W; are calculated.

(3) Through the OMP algorithm, the most-sparse wavelet coefficient W]- is reconstructed; the
algorithm steps are as follows:

Step One: residue, t|;—0 = y, and index set, Ay = ¢ (empty set), are initialized

For iteration, t is 1 to K (K is the sparse degree; here it is 8.)

Begin

Step Two: the inner product is calculated (r; e ®)

Then, the column of whose inner product is the maximum in ¢ is obtained:
Ay = arg max |(ri_1 @ ®y)|;

The subscript Ay = [A;_1,A,,] is stored, and the most orthogonal column of ®:
O = &1 U {D,,}, the selected column of P, is set to 0;

-1
Step Three: The least-squares method is used w; = argmin || y — Prw; ||2= (@Fd)t) oHy;
—1
Step Four: Approximation y; = ®w; = &4 (@F CIDt) CIDF y is updated;

The residue, r; = y — y;, is updated;
End

(4) Using approximate wavelet coefficients W] (A j) = w; the MFL signals are reestablished.

The CSWF algorithm eliminates the strand wave and noise, and improves the signal-noise ratio.
Figure 6 shows the image processed by the CSWF algorithm.

3.3. MFL Image Processing

Because of the 18 GMR sensors around the wire ropes, the captured data have low circumferential
resolution, which is far below the axial resolution. Then, the clear signals are interpolated to improve
the circumferential resolution. Figure 7 shows the image with the interpolated data.
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Figure 6. CSWF filtered three-dimensional diagram.
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Figure 7. Three-dimensional diagram interpolated data.

3.3.1. Defect Image Extraction

Before defect characteristic extraction, the MFL defect photos need to be positioned and segmented.
The local modulus maxima algorithm is adopted to locate the defects. From experience, the produced
minimum artificial defect is more than 100 mV, so in this paper, 100 mV was set to be a threshold,
used for judging whether the part is defective. As shown in Figure 8, various defects can be detected.
In the captured image, different broken wires form different defect photos, which show the main
power concentrated on broken wires, centered in a cone-like recess, which is also shown in Figure 6.
Five different broken wires photos and local MFL images were stretched between 0-255 and, the size
of local MFL is 200 x 200 pixels.

3.3.2. Defect Characteristic Exactions

By the procedure given, a local MFL image of the localized defects is presented, and the geometric
features and moment invariants of the MFL image can be used to identify defects. The geometric
features describe the basic shape of object, and the moment invariant is the average description of area
gray distribution, which is calculated by all points in the area and is less susceptible to noise. In total,
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ten characteristics of the MFL image were selected, including the equivalent area, the slenderness ratio,
and the circularity and first- to seven-order moment invariants ($1-®y).

:one broken wire
:two broken wires
:three broken wires
:five broken wires

O G 0O oW

:seven broken wires

Figure 8. Photos (above) and local MFL image (below).

1. Basic Description of Image Shape

Geometric features were calculated by brief description of features, such as: area (S), perimeter
(L), major axis (L1), and minor axis (L;). All these descriptions are as follows.

The area of defect image is:

S = Z I 4)
(x,y)€ER

where R is the set of points in the defect region; S is the amount of high-value in binary image; and I is
the binary image.

The defect perimeter is the total length of the outer boundary, which can be expressed by the sum
of the distance between adjacent pixels. If the number of pixels of the outer boundary is #, its chain
code, ¢; is followed by c1, ¢, 3, . .. , ¢y and the perimeter can be presented as follows:

L

_ V241 \/§2+ 13- (Cpp )
i=1

2

where L, is defined as the maximum distance between any two points in the outer boundary, and L; is
defined as the longest straight line which is vertical to L1, as shown in Figure 9.

4

Figure 9. L1 and L2 sketch map.

Assuming two random points are present in the outer boundary, a1(x1,y1) and a(x2,y2). The
endpoints of the vertical line are vy (m1,11) and vy (1mp,n7) to L1. The Ly and L, are calculated as follows:

st (x1 — x2)(my —ma) + (1 — y2)(ng —m2) =0 (6)

{ Ly = max(y/(n — x)* + (11 — )

Ly = max(y/(m — m)? + (m — na)?)
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2. Characteristic Descriptions of Shape

Because of the different sizes of wire rope and lift-off variations, the detected defect area, perimeter,
and length-width are not similar in the same case. Therefore the basic description is not taken as
the recognition features. Nevertheless the equivalent area, which is the ratio of area and perimeter,
represented by G, is taken as the recognition feature:

G =S/L (7)

where the equivalent area G reflects the surrounded region of defects by unit perimeter. If the shape of
the defect is circular, the ratio of area and perimeter is the minimum.
Slenderness ratio F is defined as the ratio of the major axis L; and the minor axis Ly:

F=1/L, 8)

The slenderness ratio reflects the shape of the defects. It is a sensitive parameter of the circular
boundary. When the defect shape forms a circle, the long and short diameters are relatively close, and
the F value is close to 1. The greater the ratio of the long axis to the short axis, the slimmer the shape of
the defect.

The circular degree of the image is the complexity degree of the area shape measured on the basic
of the area and perimeter. Its mathematical expression is as follows:

e = 47S/C? ©)

where e is the circularity of the defect; S is the area; and C is the perimeter.

When the object region is circular with the radius, r, its area S = 772 and its perimeter is C = 27tr.
That is, its circularity e = 1. This characteristic reflects the complexity of the shape in the area. If the
shape is closed to a circle, e is bigger, and the maximum is value 1. If the shape is more complex, ¢ is
closer to 0.

3. Characteristics of Invariant Moment

Invariant moments are established on statistical analyses of the gray distribution of the target
area, a sort of statistical description on average. It describes the overall characteristics of an object
from a global view, thus, it is less susceptible to noise and would not change with the translation,
rotation and scale of the image [25]. For this paper, we chose to describe the shape characteristics of
the defect image.

Given an image f(x,y), if it is piecewise continuous, with a limited non-zero number available on
the plane, its varied order exists. The two-dimensional (p + 4) order moment of f(x,y) is defined as [25]:

mpg = Y ) xPx1f(x,y) (10)
T

The value of moments, m,;, will change when (x,y) is translated. To reduce and eliminate
unfavorable effects, the central moments are defined as:

upg = 3y (x =) (y — 1) (x,y) (11)
Xy

where X and ¥ are the center of gravity, defined as:

X = myg/moo, ¥ = my1/ Mmoo (12)
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On the basis of the defined central moments, the seven invariant moments are defined as
follows [25]:

M = u + up (13)
My = (u — up)?® + 4udy (14)
Ms = (uz) — 3upp)” + (Buz + ugs)’ (15)
My = (us + u12)” + (uz1 + ugs)? (16)
Ms = (uzo — 3u1p)” + (u12 + uzo)[(us0 + u12)” — 3(uzy + 1gs)’] +
(Bua1 — ugs)(ua1 + ug3) [3(1430 + up)? — (21 + u03)2} {17)
Ms = (u20 + uge)[(uz0 + u12)* — (a1 + u03)’] + 4upy(uzo + ur2)(u21 + 1gs) (18)
Mz = (3uz — ugs) (us0 + u2) (uz0 + u12)® = 3 (uz — ugs)” + (19)

(Bu1p — uzp) (U1 + uoz) [3 (usp + 1412)2 — (up; + uos)z]

Equations (10) to (19) are implemented in the defects image. Seven invariant moments are
calculated as the characteristic vectors of the image. In this paper, we selected four different wire rope
structures as detection examples. They were 6 x 19,6 x 36, 6 x 37, and 7 x 27. According to the
characteristic extraction above, parts of vectors of one wire rope are listed in Table 1.

Table 1. Parts of the characteristic vectors of the defects.

'::]‘i’:‘:s“ F e @ @, @ @4 @ D @,
1 422 0864 0647 669 x 1010 448 x 1021 288 x 102  2.35 x 10% 4,02 x 10%7 —2.26 x 108 6.27 x 10%°
2 6.06 0392 0537 671 x100 451 x 1021 266 x 100 236 x 100  —276 x 102 —4.03 x 10®  —1.24 x 10®
3 119 0935 0623 670 x 1010 4.49 x 10% 7.26 x 101 2.57 x 102! 3.83 x 1022 251 x 108 —4.9 x 102
4 19.6 1.150 0.642 658 x 1010 432 x 1020 211 x 1020 151 x102! 201 x 108  —6.24 x 10%° 3.15 x 10%
5 715 0364 0499 658 x 1010 433 x 1021 552 x 102 562 x 1020 —119 x 10¥%  —7.64 x 1090 —7.68 x 10%
7 164 0811 0592 6.65x 1010 442 x 102 6.67 x 1021 4.95 x 10% —3.16 x 104 7.42 x 10%° —9.84 x 10%

4. Quantitative Recognition

The BP neural network [16,26,27] is the most studied and widely used method in target recognition.
A three-layer neural network can approach any nonlinear function. For this paper, the BP neural
network was selected for defect recognition. A BP neural network model was built, including
an input layer, a hidden layer and an output layer. The ten extracting characteristic vectors from the
former processing are taken as the input of the neural network. The designed BP has a single output,
so the structure of the designed BP neural network is 10 x N x 1 (N represents the number of hidden
nodes). The function “tansig” was selected as the transfer function of the hidden layer and “logsig”
one was the transfer function of the output layer. In this paper, the output of the neural network is the
percentage of broken wire. For example, a wire rope of 9 x 19 structure with a defect of concentrated
broken wires with the amount of three, because of the output range, the characteristic vectors of defect
need to be normalized to [0, 1], so the output would be 0.175. In the experiment, four kinds of wires
were chosen including 9 x 19, 6 x 36, 6 x 37 and 7 x 27, and their diameters were 22, 25, 28, 30, 31, 32,
and 34 mm, separately.

There were 105 samples of various defects in the experiment. Of the samples, 55 were randomly
selected as training samples, and the others were selected for testing. The BP neural network was
built by using MATLAB. The training error of BP was set so low that the training network had great
convergence. Various hidden layer nodes of the network had different ratio of inspection, part of them
is shown as Figure 10, whereas the network training performance graph of the different hidden nodes
is shown in Figure 11. Table 2 presents the training results and test samples in quantitative inspection
of the percentage of broken wires. In different hidden layers, the iteration times and training time vary
significantly. The best performance of the BP network was seen when the number of hidden layers



Sensors 2016, 16, 1366 11 of 14

was 21 and the recognition error of training samples was less than 1.075%. For test samples, when the
allowable identification error is 1.5%, the success rate is as high as 94%, but the recognition error is less
than 2.571%.
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Figure 10. Different hidden nodes recognition graphs: (a) Identification ratio graph of 21 hidden layer
nodes; (b) Identification ratio graph of 24 hidden layer nodes; (c) Identification ratio graph of 27 hidden
layer nodes; and (d) Identification ratio graph of 30 hidden layer nodes.
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1 : 1 :

Mean Squared Errar
Mean Sguared Error

Mean Squared Errar
Mean Squared Error

o 20 4 LU 1= R . R

" (@) Epochs

Figure 11. Training performance graphs for different hidden layer numbers: (a) 21 hidden nodes;
(b) 24 hidden nodes; (c) 27 hidden nodes; and (d) 30 hidden nodes.
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Table 2. Performance of the BP network in different hidden layers.

Hidden Layer Iteration Maximum Error for = Maximum Error Train Sample
Number Time (s) Training Set (%) for Test Set (%) Number
21 138 1.353 2.521 55
24 128 1.606 2.734 55
27 173 1.479 4211 55
30 121 1.075 2.732 55

5. Comment and Discussion

With GMR sensors areuniformly distributed around the wire rope, the MFL of remanence in
the vicinity of the wire rope is captured, and the raw data are unrolled to form the MFL image,
as shown in Figure 2. The channel imbalance and high-frequency noise are serious in the raw signals.
The pre-processing based on wavelet transfer is used for suppressing the influence which is caused
by lift-off variation, non-uniformity of magnetization and the wires. Comparison of Figure 5 with
Figure 2b indicates that the channel consistency is greatly improved and that high-frequency is
inhibited. Then the CSWF method is presented in this paper to inhibit the noise further. Figure 6 shows
that the noise is almost rejected. Furthermore, the data interpolation is introduced to improve the
circumferential resolution of the MFL image, and the local MFL image is scale normalized to the size
of 200 x 200 pixels. Three characteristics of shape and the seven-order invariant moment of the MFL
image are used as input for BP networks for the quantitative inspection of wire rope defects. Network
performances vary greatly in different number of hidden layers. The best performance is met when
the number of hidden layer nodes is 21. Its recognition is as high as 94%, and recognition error is 1.5%.

6. Conclusions

The MFL of remanence inspection equipment with GMR sensor arrays has been designed to
overcome the limitations of traditional equipment. Both the circumferential and the axial distributions
of defects are obtained, which improves the defect-detection resolution. The MFL image consists
of 18-channel data from the GMR sensor array. Signal-to-noise ratio is further improved by CSWE.
Circumferential resolution is improved by interpolation. Three description characteristics of shape
and seven-order invariant moments are extracted as features of the MFL image. They are utilized
as the inputs of the BP networks to classify different defects. The results show that it is possible
to implement the quantitative inspection of broken wires by utilizing the remanence of wire rope,
and the CSWF method can inhibit noise sufficiently to receive clear MFL signals. For future work,
more characteristics should be extracted as BP network input, which would change the recognition
style and correct a greater range of defects to improve the generalization ability of network and the
performance of detection systems.

Acknowledgments: This work is partially supported by the National Natural Science Foundation of China
(Grant No. 61040010, 61304144), Key Technologies R&D Program of Henan Province (Grant No. 152102210284).
We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author Contributions: Juwei Zhang conceived, directed and designed the all work; Xiaojiang Tan performed the
experiments, analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cao, Y.N.; Zhang, D.L.; Xu, D.G. The State-of-Art of Quantitative Testing of Wire Rope. Nondestruct. Test.
2005, 27,91-95. (In Chinese)

2. Jomdecha, C.; Prateepasen, A. Design of modified electromagnetic main-flux for steel wire rope inspection.
NDT E Int. 2009, 42, 77-83. [CrossRef]


http://dx.doi.org/10.1016/j.ndteint.2007.10.006

Sensors 2016, 16, 1366 13 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Cao, Q.S,; Liu, D.; Zhou, J.H.; Zhou, ].M. Non-destructive and quantitative detection method for broken
wire rope. Chin. |. Sci. Instrum. 2011, 32, 787-794.

Kreak, J.; Peterka, P.; Kropuch, S.; Novak, L. Measurement of tight in steel ropes by a mean of thermovision.
Meas. |. Int. Meas. Confed. 2014, 50, 93-98. [CrossRef]

Peng, P.C.; Wang, C.Y. Use of gamma rays in the inspection of steel wire ropes in suspension bridges.
NDT E Int. 2015, 75, 80-86. [CrossRef]

Li, X.G.; Miao, C.Y.,; Zhang, Y.; Wang, W. Automatic fault detection for steel cord conveyor belt based on
statistical features. J. China Coal Soc. 2012, 37, 1233-1238.

Wang, H.Y,; Tian, J. Method of magnetic collect detection for coal mine wire rope base on finite element
analysis. J. China Coal Soc. 2013, 38, 256-260.

Wang, H.Y; Xu, Z.; Hua, G; Tian, J.; Zhou, B.B.; Lu, Y.H.; Chen, EJ. Key technique of a detection sensor for
coal mine wire ropes. Min. Sci. Technol. 2009, 19, 170-175. [CrossRef]

Li, W,; Feng, W.; Li, Z.; Yan, C. Dimension design of excitation structure for wire rope nondestructive testing.
J. Tongji Univ. 2012, 40, 1888-1893.

Cao, Y.N.; Zhang, D.L.; Xu, D.G. Study on algorithms of wire rope localized flaw quantitative analysis based
on three-dimensional magnetic flux leakage. Acta Electron. Sin. 2007, 35, 1170-1173.

Zhang, D.L.; Zhao, M.; Zhou, Z.H. Quantitative Inspection of Wire Rope Discontinuities using Magnetic
Flux Leakage Imaging. Mater. Eval. 2012, 70, 872-878.

Zhang, D.; Zhao, M.; Zhou, Z.; Pan, S. Characterization of wire rope defects with gray level co-occurrence
matrix of magnetic flux leakage images. J. Nondestruct. Eval. 2013, 32, 37-43. [CrossRef]

Kim, J.W,; Park, J.Y.; Park, S. Magnetic Flux Leakage Method based Local Fault Detection for Inspection of
Wire Rope. |. Comput. Struct. Eng. Inst. Korea 2015, 28, 417-423. [CrossRef]

Cao, Q.S.; Zhou, J.H,; Li, J.; Liu, D. Theoretical analysis of space-time signals for electromagnetic detection of
ropes. J. Mech. Eng. 2013, 49, 13-19. [CrossRef]

Tian, J.; Wang, H.Y.; Zhou, ].Y.; Meng, G.Y. Study of pre-processing model of coal-mine hoist wire-rope
fatigue damage signal. Int. J. Min. Sci. Technol. 2015, 25, 1017-1021. [CrossRef]

Zhang, D.L.; Xu, D.G. Qualitative Classification and Quantitative Inspection for Broken Wires in Wire Ropes
Based on Wavelet Neural Network. Chin. |. Sci. Instrum. 2002, 23, 486-488.

Meng, X.Z.; Ni, ].P; Zhu, Y.B. Research on vibration signal filtering based on wavelet multi-resolution
analysis. In Proceedings of the 2010 International Conference on Artificial Intelligence and Computational
Intelligence (AICI), Sanya, China, 23-24 October 2010; pp. 115-118.

Zhang, WW.; Li, M.; Zhao, J.Y. Research on electrocardiogram signal noise reduction based on wavelet
multi-resolution analysis. In Proceedings of the 2010 8th International Conference on Wavelet Analysis and
Pattern Recognition, Qingdao, China, 11-14 July 2010; pp. 351-354.

Li, Z.C,; Deng, Y.; Huang, H.; Misra, S. ECG signal compressed sensing using the wavelet tree model. In
Proceedings of the 2015 8th International Conference on BioMedical Engineering and Informatics, Shenyang,
China, 14-16 October 2015; pp. 194-199.

Zhu, L.; Zhu, Y.L.; Mao, H.; Gu, M.H. A new method for sparse signal denoising based on compressed
sensing. In Proceedings of the 2009 2nd International Symposium on Knowledge Acquisition and Modeling,
Wuhan, China, 30 November-1 December 2009; pp. 35-38.

Cheng, C.; Pan, Q.; Wang, S.L.; Cheng, Y.M. Research on MEMS gyroscope signal denoising based
compressed sensing theory. Chin. J. Sci. Instrum. 2012, 33, 769-773.

Ravelomanantsoa, A.; Rabah, H.; Rouane, A. Compressed Sensing: A Simple Deterministic Measurement
Matrix and a Fast Recovery Algorithm. IEEE Tran. Instrum. Measur. 2015, 64, 3405-3413. [CrossRef]

Li, Y; Chi, YJ; Huang, C.H. Dolecek, L. Orthogonal Matching Pursuit on Faulty Circuits.
IEEE Tran. Commun. 2015, 63, 2541-2554. [CrossRef]

Huang, G.X.; Wang, L. High-speed Signal Reconstruction for Compressive Sensing Applications. J. Signal
Process. Systems 2015, 81, 333-344. [CrossRef]

Chen, L.W,; Li, C.R. Invariant moment features for fingerprint recognition. In Proceedings of the 2013 10th
International Computer Conference on Wavelet Active Media Technology and Information, Chengdu, China,
17-19 December 2013; pp. 91-94.


http://dx.doi.org/10.1016/j.measurement.2013.12.026
http://dx.doi.org/10.1016/j.ndteint.2015.06.006
http://dx.doi.org/10.1016/S1674-5264(09)60032-6
http://dx.doi.org/10.1007/s10921-012-0156-6
http://dx.doi.org/10.7734/COSEIK.2015.28.4.417
http://dx.doi.org/10.3901/JME.2013.04.013
http://dx.doi.org/10.1016/j.ijmst.2015.09.021
http://dx.doi.org/10.1109/TIM.2015.2459471
http://dx.doi.org/10.1109/TCOMM.2015.2422301
http://dx.doi.org/10.1007/s11265-014-0954-4

Sensors 2016, 16, 1366 14 of 14

26. Lu, D.; Wang, J. The application of improved BP neural network in the engine fault diagnosis. In Proceedings
of the 31st Chinese Control Conference, Hefei, China, 25-27 July 2012; pp. 3352-3355.

27. Liu, S.Y,; Zhang, L.D.; Wang, Q.; Liu, ].]. BP neural network in classification of fabric defect based on particle
swarm optimization. In Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern
Recognition, Hong Kong, China, 30-31 August 2008; pp. 216-220.

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Acquiring MFL Signal of Remanence 
	Data Processing 
	Signal Pre-Processing 
	Denoising Based on CSWF 
	MFL Image Processing 
	Defect Image Extraction 
	Defect Characteristic Exactions 


	Quantitative Recognition 
	Comment and Discussion 
	Conclusions 

