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Abstract: In this paper, we consider the problem of reconstructing the temporal and spatial profile
of some physical phenomena monitored by large-scale Wireless Sensor Networks (WSNs) in an
energy efficient manner. Compressive sensing is one of the popular choices to reduce the energy
consumption of the data collection in WSNs. The existing solutions only consider sparsity of
sensors’ data from either temporal or spatial dimensions. In this paper, we propose a novel data
collection strategy, CS2-collector, for WSNs based on the theory of Two Dimensional Compressive
Sensing (2DCS). It exploits both temporal and spatial sparsity, i.e., 2D-sparsity of WSNs and achieves
significant gain on the tradeoff between the compression ratio and reconstruction accuracy as the
numerical simulations and evaluations on different types of sensors’ data. More intuitively, with the
same given energy budget, CS2-collector provides significantly more accurate reconstruction of the
profile of the physical phenomena that are temporal-spatially sparse.

Keywords: two-dimensional compressive sensing; Kronecker product; wireless sensor networks

1. Introduction

The recent technological evolution of sensing devices has significantly broadened the
applications of Wireless Sensor Networks (WSNs). However, the current implementations of WSNs
are struggling with issues on the conflicts between the high accuracy requirement of recovering the
profile of physical phenomena and the restricted resource constraints (energy and computation) of
the embedded sensors. Specifically, in a real WSN deployment, especially for large-scale scenarios,
the embedded and low cost sensors periodically sample, send and relay data to a base station.
The energy consumption of each sensor normally consists of sensors’ sampling, radio communication,
microcontroller and quiescent consumption. Among all the factors of energy consumption, the
communication costs take a substantial share of total energy consumption. For example, Table 1
shows the energy load of a typical humidity sensor in WSNs that were evaluated in [1]. The statistics
demonstrate that the radio communication part consumes approximately 86% of the entire energy.
Therefore, reducing the energy consumption of data communication is the key to extending the
lifespan of WSNs.

Recent research has proposed data collection strategies based on compression methods in WSNs
to reduce the overall amount of data transmitted through the network to effectively save the energy of
each sensor so as to improve the lifespan of the whole WSNs [2,3]. The emerging mathematical theory
of Compressive Sensing (CS) [4,5] has triggered the possibility to further minimize communication
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cost by compressing the data locally on the embedded sensors. With the same target of reconstruction
accuracy at the base station, CS provides promising performance on reducing the sampling and
communication cost [6–8]. CS can be applied to significantly reduce the dimensionality of the
signals while preserving most of the information as far as the signals can be sparsely represented
in some transform domain, such as Discrete Cosine Transform (DCT) and wavelet domains [9–11].
Intuitively, if a signal can be sparsely represented in some transform basis or dictionary, most of the
information can be compressed within a significantly less number of random projections, and the
original signal can be reconstructed accurately with a high probability via a number of different ℓ1

optimization algorithms.

Table 1. The energy consumption load of humidity sensor.

Device Duty Cycle Average Current The Ratio of Energy

Sensors 1.67% 9 (µA) 3.8%
Radio 1% 206 (µA) 86%

Microcontroller 0.4% 9.6 (µA) 4%
Quiescent - 15 (µA) 6.2%

Traditional data collection approaches sample signals at a frequency of at least Nyquist rate (i.e.,
twice of the highest frequency of the original signal) or above. However, natural signals collected
from WSNs usually have relatively low information content as measured by the sparsity of their
spectrum [12]. The theory of CS suggests that randomized low-rate sampling may provide an efficient
alternative to high-rate uniform sampling by exploiting the prior of sparsity when recovering the
original signals. The applications of CS in WSNs have been investigated extensively. The goal of
applying CS on resource-constrained WSNs is to improve the accuracy of recovering the profile of the
physical phenomena meanwhile reducing the amount of data transmitted through the network [6,13].
However, most of the WSNs monitor the temporal-spatial profile of the physical phenomena whose
temporal and spatial spectrum can be sparse simultaneously while the current CS-based data
collection methods in WSNs only consider the sparsity in either temporal or spatial dimension.

To further improve the performance of WSNs on energy consumption and signal reconstruction
accuracy, we propose a new data collection strategy, CS2-collector, for WSNs based on the theory
of two-dimensional CS (2DCS) by exploiting the two-Dimensional sparsity (2D-sparsity), i.e., the
temporal and spatial sparsity, existing in most of WSNs. Like our evaluations on different types of
real world sensors’ data, CS2-collector produces significant performance gain on signal reconstruction
accuracy compared with the traditional one-dimensional CS (1DCS) based approaches with the
same compression ratio or energy consumption budget. In other words, with the same goal of
reconstruction accuracy, CS2-collector requires a significantly less amount of data transmitted through
the network to the base station so that the energy consumption can be reduced.

The rest of this paper is organized as follows. Section 2 surveys the related work. Section 3 gives
a brief introduction about CS. In Section 4, we describe the basic setup of network architecture and the
CS2-collector in detail. The numerical simulations and real world dataset evaluations are presented
in Section 5. In Section 6, we conclude the whole paper.

2. Related Work

In order to improve the efficiency of wireless sensor networks, numerous prior works have been
done to investigate the availability of compressive sensing. The problem of energy consumption
and data compression using CS is widely developed in the literature. Even though a rich literature
focus on reconstruction algorithms and mathematical aspects, practical aspects and implementation
problems have been developed lately.
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The general problem of using CS in WSNs is investigated in several works, e.g. [14–16], and
these papers focus on the problem of signal reconstruction. Ref. [14] evaluates the reconstruction
accuracy by analyzing synthetic and real signals. Ref. [15] routes the measurement matrix to obtain
a higher reconstruction quality, ref. [16] improves reconstruction accuracy by reordering input
data to achieve a good compressive consequence. In [17], the authors apply one-bit compressive
sensing in WSNs to reduce the number of measurements needed to transmit to the base station and
propose a new optimisation algorithm to improve the reconstruction accuracy. Our work in this
paper is different from papers above. Firstly, all of these papers assume that all the sensors sample
and transmit the physical information at each time slot, but we proposed 2DCS in this paper, which
show that some sensors do not transmit its data in a duration. Secondly, we exploit the data in
temporal-spatial compression at the same time, and the outcomes of experiments show that 2DCS
has a higher reconstruction precision.

Besides the classical digital implementation of CS used in all the papers above, in this paper,
we also deal with CS when the signals are sampled at a sub-Nyquist frequency. As seen in previous
sections, this compression technique is defined as analog CS, and the effects of analog compressive
sensing architectures are discussed in [18].

Furthermore, the paper [19] uses a synthetic sparse matrix modifying the sampling rate to obtain
a good reconstruction quality when energy consumption is smallest. The authors adjust the the
sampling pattern to maintain a good reconstruction performance. Differently from other works, the
authors do not focus on the issue of investigating different reconstruction algorithms, and they just
exploit simple Basis Pursuit (BP) algorithm for reconstruction. Our work in this paper differs from
this paper, and we try to exploit potential temporal-spatial correlations among nodes and increase
the reconstruction quality by taking advantage of these correlations.

The sparse measurement matrices is investigated in [7,20], the energy consumption in a WSN is
considered in [7], but there is no precise analysis on the energy for compression nor a relationship
between energy consumption and reconstruction accuracy. In addition, the authors do not try to
investigate potential temporal-spatial correlation in [20].

Ref. [21] reconstructs data collected using a sparse measurement matrix by exploiting a weighted
form of the basis pursuit. However, the aim of the paper differs from ours: the paper [21] wants
to obtain a acceptable reconstruction accuracy by presuming a well-defined frequency, but this
pattern makes it easier to acquire better reconstruction accuracy. In addition, the probability that
the reconstruction qualities are all good at different compressive ratios is tiny. While, in our work, we
deal with the reconstruction without any prior knowledge about the information. Ref. [22] introduces
the random access compressed sensing, which is a kind of low-rate CS, but the authors focus on
investigating the network architecture more than exploiting CS for data compression.

Some recent work has been proposed to exploit the temporal-spatial correlation in WSNs to
improve the performance of data collection [23–29]. Among them, [25] is the most related work,
which exploits the joint sparsity model to reconstruct the temporal-spatial profile of WSNs, and
we will compare it with our work in Section 5.3. The real world implementations are important
for evaluation of practical performance of algorithms designed for WSNs. For example, the
implementation of RSSI (Received Signal Strength Indicator) estimation algorithms in real world
WSNs [30,31], background subtraction system on embedded camera networks [32,33] and wildlife
recognition systems on acoustic sensor networks [34].

3. Introduction to Compressive Sensing

In order to make the paper self-contained, in this section, we provide a brief introduction for CS.
CS is an emerging theory in signal processing. It aims to recover a high-dimensional sparse signal
from a small number of measurements (or projections).
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We consider a real-valued signal vector x ∈ Rn in which the number of elements n is huge.
To compress the signal, CS applies a projection matrix to reduce the dimensionality of the original
signal as

y = Φx, (1)

where Φ is an m × n projection matrix and m ≪ n. Therefore, the projections vector y ∈ Rm contains
a significantly less number of elements than the original signal. According to the theory of CS, to
achieve accurate reconstruction, the original signal x should be sparse in some transform domain, i.e.,

x = Ψs, (2)

where Ψ is some transform basis such as Discrete Cosine Transform basis, Wavelet Transform basis,
etc. s is a sparse representation of the original signal x in transform basis Ψ. s is called sparse when
only very few elements in s are non-zeros.

However, in most of the real applications, the ideal sparsity is not practical. It has been
proved that the properties of CS still hold when the signals are Compressible. A signal x is said
to be compressible if its representation s in transform basis Ψ only contains a very few number
of dominant coefficients. More formally, descending the elements in s by its absolute value as
|s|(1) ≥ |s|(2) ≥ ... ≥ |s|(n), x is compressible if its representation satisfies

|s|(k) ≤ Ck−p ∀k = 1, 2, ..., n (3)

for some p ≥ 1 [35] and some constant C. As sparsity and compressibility produces the same
properties in CS, in the rest of this paper, we will simply use sparsity instead of compressibility when
concerning the practical applications to make the paper consistent.

According to the theory of CS, the original signal can be recovered by solving the following ℓ1

optimization problem,
ŝ = arg min ||s||1 s.t. y = ΦΨs (4)

when the the projection matrix, i.e., Φ, satisfies the Restricted Isometry Condition (RIP) [36].
One striking result is that the random matrices generated from Gaussian or Bernoulli distributions
satisfy the RIP condition.

4. CS2-Collector for Data Collection in WSNs

4.1. System Architecture

Figure 1 presents the system architecture of a typical WSN running CS2-collector to collect sensor
data in an energy efficient way. In the base station, the sample scheduler decides the sampling
parameters and some global control information like the compression ratio at local sensors, the
schedule of time slots for each sensor to submit their compressed data and the random projection
matrix used to compress the time-series data. Each local sensor compresses time series-data sensed
and transmits the compressed data vector to the base station at its assigned time slots. When the base
station receives compressed data vector from multiple sensors, it operates ℓ1 optimization to recover
the original signals of the whole WSNs.
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Figure 1. System architecture.

4.2. CS2-Collector

Data compression via compressive sensing is one of the popular choices to reduce the amount
data required to transmitted through the network [14,15], so that the communication cost can be
vastly saved.

Suppose a WSN consists of N sensors to monitor the temporal-spatial profile of some physical
phenomena. According to the schedule from the base station, each sensor collects M data points
during a time period of T seconds. Then, the temporal-spatial profile can be represented by a
collection of data matrices D ∈ RM×N . The ith column of D is the data vector sensed by the ith
sensor for T seconds. To exploit the temporal sparsity, each sensor applies CS locally to reduce
the dimensionality of the time-series data vector. These operations, as a whole, can be uniformly
represented by applying CS on the left of data matrix D which is, in math, left multiplying a random
projection matrix A ∈ Rmt×N with D,

Yt = AD, (5)

where the random projection matrix A is randomly generated from Gaussian or Bernoulli distribution
and mt ≪ N. The ith column of Yt is the compressed data vector from the ith sensor.

As spatial sparsity is also pervasive in WSNs, CS can be also applied to compress the sensor data
in spatial domain:

Y = ADBT , (6)

where B ∈ Rms×N is a random projection matrix and ms ≪ N. Y is the compressed data matrix after
2DCS. Different from the Gaussian/ Bernoulli projection matrix A, the projection matrix B is a sparse
random projection matrix. It is called sparse because only one entry at each row can be non-zero while
each of its columns also contains only one non-zero. When the non-zeros are all 1 s, this operation is
equal to randomly selecting ms sensors to submit their compressed data vector to base stations. It is
known that, in the theory of CS, most of the information can be preserved by randomly choosing a
small subset of the sensors. It has been proved in [8] that this sparse projection matrix satisfies the
RIP condition. Because only a small subset of sensors are required to submit their data, the overall
energy consumption during data transmission is reduced significantly.

4.3. Data Matrix Reconstruction at Base Station

When the base station receives the compressed data matrix Y from the end sensors, it starts
reconstructing the original temporal-spatial profile of a physical phenomenon, i.e., the data matrix D.
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4.3.1. Two-Dimensional Sparsity

Similar to the traditional one-dimensional CS (1DCS) theory, the data matrix D can be accurately
reconstructed after 2DCS if it is two-dimensional sparse (2D-sparse), i.e., it is temporally and spatially
sparsely represented simultaneously. The 2D-sparse representation of the data matrix D can be
expressed as

D = PSQT , (7)

where P ∈ RM×M, Q ∈ RN×N are two transformation matrices in which the columns and the rows
of D can be sparsely represented, respectively. S is 2D-sparse representation of D, whose entries are
mostly zeros or close to zeros.

4.3.2. Kronecker Product for ℓ1 Optimisation

The reconstruction of the data matrix can be converted to the one-dimensional data vector
reconstruction problem by introducing Kronecker Product into the formulations of 2DCS. Then, it can
be solved by standard ℓ1 optimization algorithms.

By applying Kronecker product, Equation (7) can be rewritten as,

d = (P ⊗ Q)s, (8)

where the operator ⊗ is the Kronecker product and d and s are two long vectors derived from
vectorizing matrices D and S by column, respectively. The Kronecker product of P and Q produces
an MN × MN block matrix expressed as

P ⊗ Q =

 p11Q · · · p1MQ
...

. . .
...

pM1Q · · · pMMQ

 . (9)

Similar to the transformation of 2D-sparsity, 2DCS in Equation (6) can be written as
one-dimensional formation

y = (A ⊗ B)d, (10)

where A ⊗ B produces a mtms × N2 projection matrix and y ∈ Rmtms is derived from concatenating
the columns of the received compressed data matrix Y.

We define Ψ = P ⊗ Q as an equivalent basis where the temporal-spatial profile D is sparse and
Φ = A ⊗ B as an equivalent projection matrix. With Equations (8), (9) and (10), 2DCS is transformed
to a standard CS formation:

y = Φd = ΦΨs; (11)

therefore, the accurate and efficient reconstruction can be achieved by solving an ℓ1 optimization
problem as below:

ŝ = arg min ||s||1 s.t. y = ΦΨs. (12)

Then, the reconstructed long data vector d̂ = Ψŝ and the estimated temporal-spatial profile D̂
can be obtained by filling the columns of an M × N matrix with the entries in d̂ in order. Again, in the
real applications, the signals are normally compressible but not ideally sparse. However, the above
statements of the 2DCS still hold when the signals are compressible.

5. Performance Evaluation

5.1. Goals, Metrics and Methodologies

The goals of our evaluations in this section is to demonstrate that (1) the temporal-spatial profile
of some physical phenomena are 2D-sparse and (2) CS2-collector provides higher reconstruction
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accuracy than the 1DCS based approaches and the balanced temporal-spatial CS proposed in [25]
based on the Joint Sparse Model under the same compression ratio.

The performance of CS2-collector is evaluated by both numerical simulations and real world
datasets. We first use simulated sparse signals to provide some primary results in ideal conditions in
numerical simulations. Then, in the dataset evaluation part, we use four different types of sensors’
data from the real world dataset to investigate the performance of CS2-collector under practical
conditions. The dataset we use is from the Intel Berkeley Lab sensor network, which monitors an
indoor environment of the Intel Berkeley Research Lab and provides four different types of sensors’
data, i.e., temperature, humidity, light and voltage. The software environment for the evaluations
is MATLAB 2015b (MathWorks, Natick, MA, USA) and it runs on an Macbook pro laptop which
features a 2.9 GHz Dual Core i5, 16GB memory and the operating system is Mac OS X EI Capitan
(Apple, Cupertino, CA, USA).

Given that the spirit of CS2-collector is to use 2DCS to compress sensor data in both spatial
and temporal domains, we consider comparing it with other two benchmark methods applying
traditional 1DCS to compress the sensor data in spatial or temporal domain, respectively, and a most
related state-of-the-art, which also exploits the temporal-spatial sparsity. We term CS in the spatial
domain as Spatial 1DCS and CS in the temporal domain as Temporal 1DCS. In the Spatial 1DCS
approach, the base station randomly selects a small subset of sensors to submit their sensor data at
each time slot and applies ℓ1 optimization to reconstruct the full profile by exploiting the sparsity
existing among different sensors adjacent to each other. While in Temporal 1DCS, each sensor data
collects a long data vector, compresses it locally and transmits the compressed data vector to the base
station. The base station reconstruct the compressed data vector from each sensor by exploiting the
temporal sparsity existing in the time-series data collected consecutively. We also compare our work
with the most related state-of-the-art, the balanced temporal-spatial CS proposed in [25]. They apply
a different sparsity model, i.e., a Joint Sparsity Model, to improve the reconstruction accuracy of the
temporal-spatial profile of WSNs. As it is different from our work by exploiting Joint Sparsity Model
(JSM), we term it as JSM in the following statements. To make a fair comparison, the compression
ratio for those three methods are identical during evaluations.

In this paper, we use the Mean Squared Error (MSE) as a performance metric to demonstrate the
reconstruction accuracy. The MSE is defined as

MSE =
||D − D̂||2F

MN
, (13)

where || · ||F is the Frobenius norm of the error matrix. We express the reconstruction accuracy of
different data compression methods as MSEs under different compression ratios, where lower MSE
stands for higher reconstruction accuracy achieved. The compression ratio is defined as

η =
(N −M)

N , (14)

where N is the number of elements in the original data matrix, and M is the number of elements in
the compressed data matrix.

5.2. Numerical Simulations

We have proposed that CS2-collector is able to further compress the sensors’ data obtained from
WSNs while accurately reconstructing the temporal-spatial profile of the physical phenomena, or, in
other words, under the same compression ratio, CS2-collector is able to achieve higher reconstruction
accuracy. In order to verify this proposition, we first evaluate the performance of CS2-collector,
temporal 1DCS and spatial 1DCS under the ideal condition by generating a 50 × 50 sparse matrix
whose non-zero elements are sparse in all columns and rows. The transform bases P and Q are DCT
bases. Then, the simulated data matrix D = PSQT . In the data matrix D, a column stands for the
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time-series data from one sensor. To compress the data matrix, we randomly generate the Gaussian
projection matrix A and the sparse projection matrix B. The compression ratio is determined by
the number of rows in matrices A and B. We gradually change the compression ratio to evaluate
the reconstruction accuracy of different data compression methods. From the results shown in
Figure 2, we can observe that our proposed CS2-collector (based on 2DCS) produces significantly
lower MSE compared with traditional 1DCS approaches, especially when the compression ratio is
high. In plain words, CS2-collector can provide accurate reconstruction for the temporal-spatial
profile of the physical phenomenon with significantly less amount of data transmitted to the base
station, which results in energy efficiency and longer lifespan of the WSN.

0 0.2 0.4 0.6 0.8 1
Compression Ratio

0.1

0.2

0.3

0.4

0.5

M
S

E

Temporal 1DCS
Spatial 1DCS
2DCS

Figure 2. Performance of 2DCS and 1DCS on random sparse matrix with value of non-zero
elements is 1.

5.3. Performance Evaluations on Real Dataset

5.3.1. Intel Berkley Lab WSN Dataset

Figure 3 shows a wireless sensor network composed of 54 sensors deployed at the Intel Berkeley
Lab (Berkeley, CA, USA) monitoring temperature, humidity, lighting conditions of the surrounding
environment as well as voltage of each sensor. Each sensor monitors and submits a package
containing the above information once every 31 s. The dataset is available online. In this section,
we evaluate the performance of our proposed CS2-collector on the four different types of sensors’
data in a practical dataset to provide more convincing evidence that the performance of our proposed
method is singificantly better than traditional 1DCS based approaches and the JSM based approach.

Figure 3. Intel Berkeley Lab sensor network.
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5.3.2. Dataset Preprocessing

The raw data in the Intel Berkley Lab dataset can not be directly used to evaluate the CS-based
data compression methods as it is faulty and noisy. To reduce erroneous and missing data, we select
50 sensors to form the new WSN and split the dataset by every 50 time slots. Therefore, the size of
each data matrix will be 50 × 50. Then, we remove the erroneous data and apply linear interpolation
to fill in the missing data points to obtain a clean dataset. Then, we conduct performance evaluations
on the four types of sensors’ data, respectively, and the results are as below.

5.3.3. Temperature Data

We first evaluate the performance of CS2-collector on the data matrix obtained by temperature
sensors in the Intel Berkley Lab WSN and compare it with two other 1DCS based approaches and JSM.
The 1DCS benchmarks compress the sensor data in the temporal or spatial domains; therefore, they
are termed as Temporal 1DCS and Spatial 1DCS, respectively. We first investigative the three types of
sparsity of the data matrix, which are Temporal sparsity, Spatial sparsity and 2D-sparsity. We select
DCT as the sparsifying basis, which is demonstrated to be a pervasively effective transform basis for
most of the WSN sensors’ data [6,37].

Figure 4 presents the original data matrix (Figure 4a), the temporal sparse coefficients
(Figure 4b), spatial sparse coefficients (Figure 4c and 2D-sparse coefficients Figure 4d). As the results
show in Figure 4b,c, we can find that the dominant elements (corresponding to the non-zeros in
sparsity definition) are concentrated on the edge of the DCT coefficients matrices along the sensors
ID (temporal sparsity) and the time slots (spatial sparsity), respectively. It indicates the sensor values
collected from the same sensor (different time slots) or from the same time slot (different sensors) are
both sparse in the DCT domain. Then, Figure 4d shows the distribution of 2D-sparsity where only
few dominant elements concentrate at the corner of DCT coefficients matrix. Therefore, the original
temperature data matrix collected from a WSN are 2D-sparse in the DCT domain.
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Figure 4. Sparsity of the temperature data matrix in DCT domain.
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After verifying the three types of sparsity of the temperature data matrix in the DCT domain, we
compare the reconstruction accuracy of the four CS-based schemes. We apply ℓ1magic to solve the
corresponding ℓ1 optimization problems because it has been compared with different state-of-the-art
ℓ1 solvers in [38], and the results demonstrate that it provides the best reconstruction accuracy. We
gradually change the compression ratio from 0.1 to 0.9 and use MSE as the performance evaluation
metric. The trials are repeated 30 times and different random projection matrices are generated for
each trial. Then, the average MSE over the 30 trials are computed, and the results are shown in
Figure 5. We can observe from Figure 5 that CS2-collector, based on 2DCS, reduces the average
MSE compared with the other two 1DCS approaches and JSM. The performance gain increases
dramatically when the compression ratio is high. In other words, with the same goal of reconstruction
accuracy at the base station, CS2-collector is able to reduce the data transmitted (corresponding to the
high compression ratio) through the network so that the overall energy consumption can be reduced,
and the lifespan of the WSN is increased.
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Figure 5. Reconstruction accuracy of CS-based approaches with temperature data.

5.3.4. Humidity Data and Voltage Data

We then evaluate the performance of the four CS-based approaches on the humidity data and
voltage data. Again, we first examine the three types of sparsity of the sensors’ data in the DCT
domain then evaluate the reconstruction accuracy of the four CS-based approaches. The results of
humidity are shown in Figures 6 and 7 while the results of voltage data are shown in Figure 8 and 9.

From the results we can find, similar to the results of the temperature data, the humidity data
matrix and voltage data matrix are also temporal sparse, spatial sparse and 2D-sparse. In the
evaluation of the reconstruction accuracy of the four CS-based approaches, we follow the same
settings and steps as the evaluations on the temperature data. Again, CS2-collector achieves the
highest reconstruction accuracy, and the performance gain is significant when the compression ratio
is high.
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Figure 6. Compressibility of the humidity data matrix in the DCT domain.
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Figure 8. Compressibility of the voltage data matrix in the DCT domain.
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Figure 9. Reconstruction accuracy of CS-based approaches with voltage data.

5.3.5. Lighting Data

Finally, we evaluate the performance of the CS2-collector on the data matrices obtained from
lighting sensors. Different from the results from the other three types of sensors’ data, lighting data
is not spatially sparse, therefore not 2D-sparse as shown in Figure 10c. This is because lighting
is a kind of line-of-sight signal and is highly irregular and easily affected by artificial lighting;
occlusions from the objects in the indoor environment will also influence the values of lighting data
significantly even though the sensors are adjacently placed. Therefore, lighting sensors’ values are
not spatially continuous.
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The reconstruction accuracy results shown in Figure 11 also coincide with our observations
from the sparsity evaluations: temporal 1DCS produces the lowest MSE because the lighting data
is only temporally sparse, while our proposed CS2-collector and JSM are worse than temporal
1DCS but better than spatial 1DCS because the non-sparsity of the spatial dimension influences
their performance.
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Figure 10. Compressibility of the light data matrix in the DCT domain.
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Figure 11. Reconstruction accuracy of CS-based approaches with lighting data.

Therefore, we should investigate the sparsity property of the sensors data before determining
which data collection strategy should be adopted. This can be easily achieved by collecting some data
samples and conducting some simulations beforehand. Then, the 2DCS based CS2-collector should
be selected when the sensors’ data satisfies 2D-sparsity.
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6. Conclusions

In this paper, we consider improving the tradeoff between the energy consumption and
reconstruction accuracy of the WSNs. We propose a data collection strategy CS2-collector based on
2DCS to exploit the 2D-sparsity existing in the temporal-spatial profile of the physical phenomena
monitored by most of the WSNs. According to the numerical simulations and real dataset evaluations,
our proposed CS2-collector achieves significantly higher reconstruction accuracy than the traditional
1DCS based approaches and the JSM based approach, especially when the compression ratio is
relatively high, which indicates that the overall energy consumption can be significantly reduced
and a longer lifespan of WSNs are enabled by the CS2-collector.

In the future, we plan to improve the CS2-collector in two aspects. In the algorithm aspect,
the JSM model can be incorporated in the 2DCS data collection scheme to further improve the
reconstruction accuracy at a base station. Meanwhile, in the system aspect, we plan to implement our
system on a testbed and evaluate its practical performance in real-world experimental environments.
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