
sensors

Article

Semantic Registration and Discovery System of
Subsystems and Services within an Interoperable
Coordination Platform in Smart Cities
Gregorio Rubio *,†, José Fernán Martínez †, David Gómez † and Xin Li †

Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad (CITSEM),
Universidad Politécnica de Madrid (UPM), Edificio La Arboleda, Campus Sur UPM. Ctra. Valencia, Km 7,
28031 Madrid, Spain; jf.martinez@upm.es (J.F.M.); david.gomezs@upm.es (D.G.); xin.li@upm.es (X.L.)
* Correspondence: gregorio.rubio@upm.es; Tel.: +34-913-365-509; Fax: +34-913-367-821
† These authors contributed equally to this work.

Academic Editor: Gonzalo Pajares Martinsanz
Received: 5 February 2016; Accepted: 17 June 2016; Published: 24 June 2016

Abstract: Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built
in many urban areas, each with a set of services that are offered to citizens. These subsystems are
managed by self-contained embedded systems. However, coordination and cooperation between
them are scarce. An integration of these systems which truly represents a “system of systems”
could introduce more benefits, such as allowing the development of new applications and collective
optimization. The integration should allow maximum reusability of available services provided by
entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the
discovery and registration of available services and subsystems in an integrated way. Therefore,
an ontology-based and automatic system for subsystem and service registration and discovery is
presented. Using this proposed system, heterogeneous subsystems and services could be registered
and discovered in a dynamic manner with additional semantic annotations. In this way, users are
able to build customized applications across different subsystems by using available services. The
proposed system has been fully implemented and a case study is presented to show the usefulness of
the proposed method.

Keywords: subsystem registry; subsystem discovery; service registry; service discovery; semantic
interoperability; ontology; system of systems

1. Introduction

A diversity of urban subsystems, such as Intelligent Transport Management systems [1,2], Smart
Buildings systems [3], Smart Gird systems [4–6], Smart Outdoor Lighting systems [7] and Smart Home
systems [8] are maturely developed in urban areas. Basically, each of them is managed by self-contained
embedded systems and connected with Wireless Sensor and Actuator Networks (WSANs). Different
smart subsystems can work effectively providing domain-specific services to citizens, but in an isolated
manner. Unfortunately, collaborations and coordination between diverse smart subsystems are missing,
even though they could potentially provide more citizen-friendly services by using data/services
provided by different subsystems. This implies that cities are facing an unprecedented challenge,
which is integrating fragmented smart subsystems and enabling cross-domain usages of services.
A paradigm shift from conventional cities to “Smart Cities” has attracted a lot of interest from the
research community, governments, and industry. This is an ongoing change that has been undertaken
in many cities. For instance, in Spain, there are 65 cities integrated in RECI [9] which is the Spanish
Network of Smart Cities. To turn conventional cities into smart ones, a system-thinking approach
is needed to facilitate interconnections between different subsystems. A new platform aiming to

Sensors 2016, 16, 955; doi:10.3390/s16070955 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 955 2 of 26

connect different subsystems and represent a true “system of systems” integration has been developed
in the Adaptive Cooperative Control in Urban (sub)Systems (ACCUS) project [10]. This platform,
called Integration and Coordination Platform (ICP), emphasizes how to integrate different subsystems
and enables the development of new applications across subsystems without interfering individual
updates and internal policies.

The ICP is capable of providing a variety of functionalities in order to optimize combined
performance of different subsystems, thus achieving more flexible, more efficient and more robust
integrated urban systems and managing different emergent behaviors. The platform is conceived as a
distributed and layered architecture which offers three main groups of functions:

‚ Core functions: they are referred to generic platform functionalities which are offered by
the Runtime Environment of the ICP. Core functions are provided by the following software
components: applications servers, service broker, service repository, service bus, data broker and
management, policy management, security management, workflow engine, security management
and message broker and database.

‚ Extension functions: they are referred to ICP specific functionalities that can be used by other
services and applications. Extension functions are offered by info broker, control broker, subsystem
monitoring, subsystems adaptors, ontology connector, programming API and ICP ontology.

‚ City configurations functions: these are city specific generic functionalities available for other ICP
services and applications. They are provided by event detection, location detection, data analytics,
situation awareness, and reasoning.

To ensure that the ICP could fulfill the aforementioned capabilities, a key premise is to address
the heterogeneity (e.g., data formats and protocols) inherent to subsystems and services provided by
different subsystems and provide a unified interface of reference for available subsystems and services
within the ICP. With this reference, maximum reusability of available services provided by entities (e.g.,
sensors, or Wireless Sensor Networks) could be enabled so as to develop new cross-domain applications.
Thus, an ontology-based and automatic system for registering and discovering subsystems and services
is presented in this paper. This proposed system can be embedded into the ICP in order to discover and
register available heterogeneous services and subsystems in a dynamic manner. The proposed system
for subsystems and services registration and discovery is able to adapt to any change that occurs
in subsystems and services. Additionally, in order to abstract the heterogeneity of subsystems and
services and provide a common understanding to the ICP, this proposed system employs an ontological
approach to provide a formalized model, named new Subsystem and Service Oriented Ontology (nSSOO),
for the registry and discovery process. Thus, different subsystems and services could be semantically
annotated and understood by the ICP and users as well. The proposed system for subsystem and
service registration and discovery is playing an important role in ICP to enable the creation of real-time
collaborative applications across subsystems by employing services available in the city. The proposed
system is completely implemented and validated by using a traffic light control application use case.

This paper is organized as follows: Section 2 presents related work on existing platforms for
Smart Cities and their solutions to register and discover subsystems and services within them. The
proposed system for registry and discovery of subsystems and services within the ICP is shown in
Section 3. Specifically, Section 3.1 highlights the main contributions that are provided by this paper.
Section 3.2 shows system integration regarding Semantic Interoperability right afterwards. The newly
proposed nSSOO ontology used to model the registry and discovery information base is introduced
in Section 3.3. Section 3.4 provides a holistic view of the system and elaborates the specific software
components that are involved. Workflow for the subsystem and service discovery and registration
procedures is detailed in Section 3.5. Section 4 presents a use case about the traffic light control to
validate the proposed system. Finally, in Section 5, conclusions are given and future work is pointed
out as well.

Sensors 2016, 16, 955 3 of 26

2. Related Work

Technical interoperability levels have progressed in the last years with already mature solutions.
However, semantic interoperability [11] remains as a key obstacle to the seamless exchange of data
between services, applications or systems. However, some European projects are making significant
progress in the development of platforms of interconnection, using Service Oriented Architecture (SOA)
and semantic technologies to get semantic interoperability as a key factor of seamless interconnection
and interoperability.

European FP7 projects that have worked on developing SOA-based platforms are as follows:
SOA4ALL [12] proposed a framework and software infrastructure that aims at integrating SOA

and four complementary and evolutionary technical advances (Web, context-aware technologies,
Web 2.0 and Semantic Web) into a coherent and domain-independent worldwide service delivery
platform. Also, some semantic source components have been developed and the concept of “linked
services” which is Semantic Web services building on the success of the Linked Open Data initiative.
So, they are services that can consume Resource Description Framework (RDF) from the Web of Data
and feed-back RDF to Web of Data. However, “linked services” is not the same concept as the services
with semantic interoperability, especially if there are services working together that have different
ontologies or no semantic representation at all.

TaToo [13] proposed a framework to allow third parties to discover environmental resources data
and services on the web and add valuable information in the form of semantic annotations to these
resources. This annotation allows improving the reasoning and inference power of the ontologies
to create richer resource annotations. This process has the goal of optimizing discovery process of
services, but not improving interoperability.

Cloud4SOA [14] proposed a solution based on the concept of using cloud computing under the
paradigm of PaaS [15] to resolve the interoperability and portability issues that exist in current cloud
infrastructures using the same technological providing a user-centric approach for applications that
are built upon and deployed by means of Cloud resources.

SemanticHealthNet [16] proposed a set of resources to support semantic interoperability process
for clinical and biomedical knowledge, but it cannot be considered as a platform.

LifeWear [17] proposed a middleware platform to interconnect wearable devices and sensors of a
WSN using services semantically annotated in a compliant way to an ad-hoc ontology. The system
shown in this manuscript is an important evolution of the results of this project.

Not only European projects have proposed platforms; Ryu proposed in [18] an Integrated Semantic
Service Platform (ISSP) with IoT-based service support in a Smart City, addressing ontological models
in various domains of a Smart City.

Hussian et al. [19] presented an integrated platform to be deployed in a Smart City. This platform
could enable a unified and and people-centric access to all services provided by the Smart City.
However, this proposed platform emphasized the integration of various healthcare systems within the
Smart Cities. Thus, it lacks generality and it is not applicable while attempting to integrate a diversity
of smart subsystems beyond healthcare systems.

A distributed platform called “Kalimucho” [20] was built to enable the design of context-aware
applications based on heterogeneous devices in Smart Cities. This platform is ambitious in the
sense that provides a tight collaboration between different subsystems, such as transportation and
logistics, healthcare, and smart environments. The platform is conceived as “everything-as-a-service”
which regards subsystems and services provided by corresponding subsystems as independent
services. However, all those services are pre-registered in the platform. Dynamicity of registering
and discovering new services is missing; also, semantic annotation for the different services is not
considered in this proposal.

Furthermore, there have been efforts related to integration, in different ways, using semantic
technics WSAN and services, as antecessors to the whole platform: Rodriguez-Molina et al. [21]
proposed a semantic middleware for Wireless Sensor Networks, in order to provide integration

Sensors 2016, 16, 955 4 of 26

of sensors in a body area network with other WSAN present in a smart city. Bispo et al. [22]
proposed a more advanced model in Semantic Infrastructure for Wireless Sensors Networks (SITRUS)
with semantic information processing to generate a semantic database focused on determining the
reconfiguration of a WSAN combined with a message-oriented communication service and another
one used for reconfiguration. Camarhina-Matos et al. [23] proposed using the concept of collaborative
network for the integration of networks or WSAN belonging to different organizations, that involves
mutual engagement of participants to solve a problem together, thus implying mutual trust and
taking time, effort, and dedication. In this proposals, the network of each organization can be
considered a subsystem and each application a service. Last years, with the rise of Software Defined
Networks (SDNs) [24], there have been efforts bent on enhancing interoperability among the various
heterogeneous wireless networks when control and information levels are separated. Kosmides [25]
showed a system with a centralized network controller based in SDN applied to social networks as case
of study, where the Smart City was divided in geographical zones, and each zone was considered as a
subsystem. However, the concept of semantic registration and discovery of subsystems and services is
not embedded in the development works implemented using SDN or Collaborative Networks.

3. Proposed System for Registration and Discovery of Subsystems and Services within ICP

In this section, a new proposal for a system made for semantic registration and discovery of
subsystems and services within ICP is presented. Specifically, the main contributions that are provided
by this paper are listed in Section 3.1. The integration system offering semantic interoperability is
shown in Section 3.2. Section 3.3 is devoted to introducing the newly proposed nSSOO ontology. The
system architecture of subsystems and service registration and discovery are described in Section 3.4.
Finally, the specific procedures to facilitate the registration and discovery of subsystems and services
are elaborated in Section 3.5.

3.1. Innovations

Some works shown in the previous section use registration systems developed ad-hoc or
integrated in Application Servers as WildFly [26] or WSO2 [27], that they have their own registration
service. However, to satisfy the registration and discovery system that ACCUS ICP needs, it is
necessary to add three innovations.

The first innovation of the proposed semantic subsystem and service registration and discovery
system is that it contributes to the integration and coordination of urban systems, connected to the
ACCUS ICP, to build applications like monitoring, management and control that can reach beyond the
borders of the individual subsystems and services. The proposed system contributes to cross-domain
and cross-layer cooperation of urban subsystems and services by addressing different interoperability
aspects, such as semantic interoperability.

Semantic interoperability provides means for seamlessly integrating urban subsystems,
composing more complex functionalities from already existing subsystems and deploying converged
scenarios. It will also enable the integration and deployment of present and future urban subsystems
and processes in urban environments with little involvement from the side of either the developers or
operators, in an automated way, based on common agreed ontologies and semantic artefacts.

Another aspect of interoperability addressed by the proposed system is the information and
knowledge discovery. It enables every subsystem, service or application connected to the ACCUS ICP,
to discover registered subsystems, services or applications, and obtain information about them, by
sending a query request to the ACCUS ICP. It will respond, after giving authorization to the subsystem,
with the information requested according to the defined subsystems and services ontology.

Information and knowledge discovery enables, in turn, the development of applications that
combine the information about services and subsystems provided by the ACCUS ICP with the purpose
of offering more complex services able to provide functionalities that subsystems and services cannot
provide separately, and facilitating, thus, service composition.

Sensors 2016, 16, 955 5 of 26

The second innovation of the proposed semantic subsystem and service registry and discovery
procedure, is its capability of enabling a distributed control, management and optimization
infrastructure, along with the algorithms and tools required to create highly advanced urban control
functions, which will be implemented through the introduction of cooperation extension over multiple
urban subsystems, system layers and domains. This will improve the performance of combined urban
systems at run time.

The third innovation of the proposed system is that it ensures the development and application
of methodologies and tools for the implementation of real-time collaborative applications for system
of systems. The methodology and tool innovation covers the entire life-cycle (i.e., from design to
operation, maintenance and possibly retrofitting) of the applications developed for the integrated
urban subsystems domain.

3.2. Seamless Interconnection and Semantic Interoperability

In system of systems, interoperability is the ability of two or more subsystems or components
to exchange information and to use what has been interchanged [28]. According to the features
shown in this paper about the ICP, the most accurate model is the Level of Conceptual Interoperability
Model (LCIM) [29] because it provides a framework that divides interoperability problems into
different levels; at each level, interoperability problems can be settled and a solution can be
developed to solve interoperability problems that belong to that level. It contains seven levels:
Level 0—No interoperability; Level 1—Technical interoperability: networks and standard
communication protocols enable the interchange of data between systems; Level 2—Syntactic
interoperability: adds a common structure and data format to the data interchanged in an unambiguous
way; Level 3—Semantic Interoperability: adds a common interpretation of data interchanged,
the meaning of information exchanged between systems is defined in an unambiguous way;
Level 4—Pragmatic Interoperability: systems are aware of the specific use of exchanged data by
other systems; Level 5—Dynamic Interoperability: systems are able to understand the change of states
in each element depending on the decisions taken according to the use of data; Level 6—Conceptual
Interoperability: global interoperability.

The system of registration and discovery proposed in this paper allows the ICP to solve technical,
syntactic and semantic interoperability issues. When the meaning of data is shared among services the
content of the information exchange among them is unambiguously defined, so common interpretation
of the data is guaranteed. ICP uses data from several different data sources, various sensors are
connected to these data sources and each sensor uses different data format, which is further processed.
Various types of data are used, creating a system able to combine these data. With the data integration
system it is possible to connect several heterogeneous systems and create one large system. Getting
is relatively simple when the integration platform is created before the services. However, when
subsystems and services are already installed and were designed without knowledge that in the future
they would be integrated in an ICP merging all of them in a single platform can be a challenging task.

Another important achievement of semantic interoperability made through ICP is achieving
semantic interoperability without the need to change anything regarding the mode of operation,
communication, data management subsystems and services already installed in the city.

As data sources are highly heterogeneous, the ICP uses a Common Data Model as a common
layer to interchange information among data sources (namely, services and subsystems).

The Common Data Model uses a shared ontology with adaptation of the information provided by
subsystems and services, as each of them can provide the information in their own ontology or even in
their own format, which might be non-compliant with any ontology.

Using the schemas depicted in Figures 1 and 2, all subsystems and services can be registered,
discovered and used with the semantic capabilities established in the shared ICP Ontology. In this way,
semantic interoperability is guaranteed, but with the advantage of not requiring any of the systems
and services included in the smart city to modify their own syntax.

Sensors 2016, 16, 955 6 of 26

This shared ICP Ontology has a part specifically developed to register and discover subsystems
and services in the ICP. It is specified in the next section.Sensors 2016, 16, 955 6 of 26

Figure 1. Common data model.

Figure 2. Integration system regarding Semantic Interoperability.

3.3. Ontology Specifications

When attempting to provide an interoperable and formalized knowledge model for subsystem,
service registration and discovery processes, the new Subsystem and Service Oriented Ontology
(nSSOO) is proposed. The nSSOO is conceived to comprehensively and semantically describe a
variety of features about subsystems and services owned by the complex urban system. This proposed
ontology makes possible the integration and registration of information provided by sensors or
subsystems. Originally thought for services offered by low capability devices (sensors, PDAs, RFID
tags, etc.), this ontology can also be applied to services based on normal devices or subsystems (Smart
Home subsystem, Smart Traffic subsystem, etc.), as in the ACCUS project.

Figure 3. Proposal of nSSOO.

Figure 3 shows the hierarchical composition of the proposed nSSOO. Generally speaking, a few
concepts of nSSOO are inherited from three existing and widely used ontologies which are Semantic
Markup for Web Services (OWL-S) [30], City Geography Markup Language (CityGML) [31] and
Security Ontology for Annotating Resources (NRL) [32]. The reusability of OWL-S, CityGML and

Figure 1. Common data model.

Sensors 2016, 16, 955 6 of 26

Figure 1. Common data model.

Figure 2. Integration system regarding Semantic Interoperability.

3.3. Ontology Specifications

When attempting to provide an interoperable and formalized knowledge model for subsystem,
service registration and discovery processes, the new Subsystem and Service Oriented Ontology
(nSSOO) is proposed. The nSSOO is conceived to comprehensively and semantically describe a
variety of features about subsystems and services owned by the complex urban system. This proposed
ontology makes possible the integration and registration of information provided by sensors or
subsystems. Originally thought for services offered by low capability devices (sensors, PDAs, RFID
tags, etc.), this ontology can also be applied to services based on normal devices or subsystems (Smart
Home subsystem, Smart Traffic subsystem, etc.), as in the ACCUS project.

Figure 3. Proposal of nSSOO.

Figure 3 shows the hierarchical composition of the proposed nSSOO. Generally speaking, a few
concepts of nSSOO are inherited from three existing and widely used ontologies which are Semantic
Markup for Web Services (OWL-S) [30], City Geography Markup Language (CityGML) [31] and
Security Ontology for Annotating Resources (NRL) [32]. The reusability of OWL-S, CityGML and

Figure 2. Integration system regarding Semantic Interoperability.

3.3. Ontology Specifications

When attempting to provide an interoperable and formalized knowledge model for subsystem,
service registration and discovery processes, the new Subsystem and Service Oriented Ontology
(nSSOO) is proposed. The nSSOO is conceived to comprehensively and semantically describe a variety
of features about subsystems and services owned by the complex urban system. This proposed
ontology makes possible the integration and registration of information provided by sensors or
subsystems. Originally thought for services offered by low capability devices (sensors, PDAs, RFID
tags, etc.), this ontology can also be applied to services based on normal devices or subsystems (Smart
Home subsystem, Smart Traffic subsystem, etc.), as in the ACCUS project.

Sensors 2016, 16, 955 6 of 26

Figure 1. Common data model.

Figure 2. Integration system regarding Semantic Interoperability.

3.3. Ontology Specifications

When attempting to provide an interoperable and formalized knowledge model for subsystem,
service registration and discovery processes, the new Subsystem and Service Oriented Ontology
(nSSOO) is proposed. The nSSOO is conceived to comprehensively and semantically describe a
variety of features about subsystems and services owned by the complex urban system. This proposed
ontology makes possible the integration and registration of information provided by sensors or
subsystems. Originally thought for services offered by low capability devices (sensors, PDAs, RFID
tags, etc.), this ontology can also be applied to services based on normal devices or subsystems (Smart
Home subsystem, Smart Traffic subsystem, etc.), as in the ACCUS project.

Figure 3. Proposal of nSSOO.

Figure 3 shows the hierarchical composition of the proposed nSSOO. Generally speaking, a few
concepts of nSSOO are inherited from three existing and widely used ontologies which are Semantic
Markup for Web Services (OWL-S) [30], City Geography Markup Language (CityGML) [31] and
Security Ontology for Annotating Resources (NRL) [32]. The reusability of OWL-S, CityGML and

Figure 3. Proposal of nSSOO.

Sensors 2016, 16, 955 7 of 26

Figure 3 shows the hierarchical composition of the proposed nSSOO. Generally speaking, a few
concepts of nSSOO are inherited from three existing and widely used ontologies which are Semantic
Markup for Web Services (OWL-S) [30], City Geography Markup Language (CityGML) [31] and
Security Ontology for Annotating Resources (NRL) [32]. The reusability of OWL-S, CityGML and
NRL reduces the workload of developing the nSSOO and further expands its interoperability to a
higher level.

The software tools used here are as follows:

‚ OWL-S. This ontology is used to describe semantic web services. It enables users and software
agents to automatically discover, invoke and compose web resources while offering services.

‚ CityGML. This ontology models 3D cities taking into account multiple features, such as city
geometry, topology, semantic features, and appearance characteristics. The ultimate aim of the
development of CityGML is providing a common understanding for the basic entities, attributes,
and relations of a 3D city model.

‚ NRL. It describes different types of security information including mechanisms, protocols,
objectives, algorithms and credentials in various levels of detail and specificity. NRL is
comprehensive, well-organized and expressive enough to describe security policies.

The most coarse-grained concepts are Subsystem and Service, which form the entire nSSOO
ontology. In the following, the top-level concepts of Subsystem and Service, as shown in Figure 4,
are broken down and their associated subclasses are explained in detail, along with descriptions for
relationships/object properties which reflect the connections between them with the aim of providing
a better understanding of the whole proposal. The primary principle of designing the nSSOO ontology
is assigning different concepts with intuitive terms so that their meanings and intentions can be easily
revealed. To make a clear distinction between service- and subsystem-owned ontology elements,
prefixes “S_” and “SS_”, as abbreviations of service and subsystem, are attached to the corresponding
ontology elements.

Sensors 2016, 16, 955 7 of 26

NRL reduces the workload of developing the nSSOO and further expands its interoperability to a
higher level.

The software tools used here are as follows:

 OWL-S. This ontology is used to describe semantic web services. It enables users and software
agents to automatically discover, invoke and compose web resources while offering services.

 CityGML. This ontology models 3D cities taking into account multiple features, such as city
geometry, topology, semantic features, and appearance characteristics. The ultimate aim of the
development of CityGML is providing a common understanding for the basic entities, attributes,
and relations of a 3D city model.

 NRL. It describes different types of security information including mechanisms, protocols, objectives,
algorithms and credentials in various levels of detail and specificity. NRL is comprehensive, well-
organized and expressive enough to describe security policies.

The most coarse-grained concepts are Subsystem and Service, which form the entire nSSOO
ontology. In the following, the top-level concepts of Subsystem and Service, as shown in Figure 4, are
broken down and their associated subclasses are explained in detail, along with descriptions for
relationships/object properties which reflect the connections between them with the aim of providing a
better understanding of the whole proposal. The primary principle of designing the nSSOO ontology is
assigning different concepts with intuitive terms so that their meanings and intentions can be easily
revealed. To make a clear distinction between service- and subsystem-owned ontology elements, prefixes
“S_” and “SS_”, as abbreviations of service and subsystem, are attached to the corresponding
ontology elements.

Figure 4. The visualized overall structure of nSSOO.

Figure 4. The visualized overall structure of nSSOO.

Sensors 2016, 16, 955 8 of 26

3.3.1. Subsystem-Related Ontology Part

The concept of Subsystem represents the collection of city-owned subsystems that makes
measurements and provides data about specific domains (e.g., weather subsystem, smart home
subsystem, intelligent transport system etc.).

Subsystem class can be unfolded into four main subclasses (see Figure 5, where the internal
composition of Subsystem is presented with intuitive names for subclasses and relationships):

‚ SubsystemContext: the conditions in which the subsystem is provided. It is linked with Subsystem
by an object property named hasSSContext.

‚ SubsystemProfile: descriptive information about the subsystem such as functionality, cost, provider,
owner or usage policies. The Subsystem is interrelated with this class by using a hasSSProfile
relationship. It is worth mentioning that the concepts of SS_Geolocation and SS_Policies are extracted
from CityGML and NRL, respectively.

‚ SS_HealthState: information about the current health state of the subsystem. This class is connected
with Subsystem via a hasSSHealthState relationship. Four different states (as potential individuals
of SS_HealthState) are defined to describe the real status of a subsystem: Installed (it implies the
subsystem is installed and ready to start once it receives an authorized command), Active (it
states the subsystem is effectively running), Suspended (if subsystems are not required to run
continuously, it is possible to make requests to pause them at any time during the active state) and
Stopped (all the operations are stopped).

‚ IDSubsystem: a unique identification number to distinguish the subsystem. A pair of inversive
(owl:InversiveOf) relationships (namely, hasSSID and isSSIDOf) dynamically links Subsystem
with IDSubsystem.

Sensors 2016, 16, 955 8 of 26

3.3.1. Subsystem-Related Ontology Part

The concept of Subsystem represents the collection of city-owned subsystems that makes
measurements and provides data about specific domains (e.g., weather subsystem, smart home
subsystem, intelligent transport system etc.).

Subsystem class can be unfolded into four main subclasses (see Figure 5, where the internal
composition of Subsystem is presented with intuitive names for subclasses and relationships):

 SubsystemContext: the conditions in which the subsystem is provided. It is linked with Subsystem
by an object property named hasSSContext.

 SubsystemProfile: descriptive information about the subsystem such as functionality, cost,
provider, owner or usage policies. The Subsystem is interrelated with this class by using a
hasSSProfile relationship. It is worth mentioning that the concepts of SS_Geolocation and
SS_Policies are extracted from CityGML and NRL, respectively.

 SS_HealthState: information about the current health state of the subsystem. This class is
connected with Subsystem via a hasSSHealthState relationship. Four different states (as potential
individuals of SS_HealthState) are defined to describe the real status of a subsystem: Installed (it
implies the subsystem is installed and ready to start once it receives an authorized command),
Active (it states the subsystem is effectively running), Suspended (if subsystems are not required
to run continuously, it is possible to make requests to pause them at any time during the active
state) and Stopped (all the operations are stopped).

 IDSubsystem: a unique identification number to distinguish the subsystem. A pair of inversive
(owl:InversiveOf) relationships (namely, hasSSID and isSSIDOf) dynamically links Subsystem with
IDSubsystem.

Figure 5. The internal structure of Subsystem.

3.3.2. Service-Related Ontology Part

The concept of Service denotes all kinds of services available within the urban system, either
provided by subsystems or the ACCUS ICP platform. Service can be classified into six major
categorizations which are S_Cost, S_Context, S_Process, ServiceType, S_HealthState, and S_Profile, as
shown in Figure 6. Each subclass describes the feature of Service from a different point of view so that
the definition of Service can be comprehensively represented in this model. In the following section,
the breakdown of each classification will be presented.

Figure 5. The internal structure of Subsystem.

3.3.2. Service-Related Ontology Part

The concept of Service denotes all kinds of services available within the urban system, either
provided by subsystems or the ACCUS ICP platform. Service can be classified into six major
categorizations which are S_Cost, S_Context, S_Process, ServiceType, S_HealthState, and S_Profile, as
shown in Figure 6. Each subclass describes the feature of Service from a different point of view so that
the definition of Service can be comprehensively represented in this model. In the following section,
the breakdown of each classification will be presented.

Sensors 2016, 16, 955 9 of 26
Sensors 2016, 16, 955 9 of 26

Figure 6. Top Level hierarchy of Service.

The elements that make the top level hierarchy of service are:

 S_Cost. It is interrelating with Service via a hasSCost relationship; this class indicates the fee to be
charged to users for using the service.

 S_Context. Service is connected with this class by a hasSContext object property. It expresses the
environmental conditions involved to provide the service. More details can be visualized in
Figure 7. For instance, if the service is Static, its functionality is always provided in the same
location. Otherwise, if it is Dynamic, such as in the case of services provided by wearable devices
where the location can change, it also contains information about the ContextCriticality declaring
whether the context is critical for the service operation or not. The S_Location of the service
depicts whether it is provided at an indoor or an outdoor location (split into IndoorLocation and
OutdoorLocation classes respectively). The S_Geocoordinates of the service and Smartspace are able
to provide a unique identifier of the service context.

 S_Process. The element Service is connected with this class that provides a complete description
for the logic of Service, via a hasSProcess relationship. More details can be visualized in Figure 8.
The S_Process class is refined into atomic and aggregated/complex processes. An atomic process
(SimpleProcess) directly takes the information generated by the environment and executes the
appropriated treatment to provide the functionality. On the contrary, the aggregated process
(CompositeProcess) provides the new functionality by composing several atomic processes.
Besides, the term Operation makes additional descriptions for service operations. More specifically,
it provides a description of the methods the service provides (OperationDescription), an ID for each
operation (OperationID), and information about used parameters including input and output
parameters (ParameterInput and ParameterOutput, respectively) as well as the parameter
preconditions (ParameterPrecondition).

 ServiceType. This concept aims to specify the concrete type of service. This classification considers
service from its source, either provided by subsystems or by the ACCUS ICP. The connection
between Service and ServiceType is established by an object property named hasSServiceType.

 S_HealthState. Similar as SS_HealthState, the class of S_HealthState, linking with Service by a
hasSHealthsate relationship, describes the current state of Service.

 S_Profile. Service is interrelated with the S_Profile class via hasSProfile and isProfileOf
relationships. Different features of the service are described and attributed in S_Profile. As shown

Figure 6. Top Level hierarchy of Service.

The elements that make the top level hierarchy of service are:

‚ S_Cost. It is interrelating with Service via a hasSCost relationship; this class indicates the fee to be
charged to users for using the service.

‚ S_Context. Service is connected with this class by a hasSContext object property. It expresses the
environmental conditions involved to provide the service. More details can be visualized in
Figure 7. For instance, if the service is Static, its functionality is always provided in the same
location. Otherwise, if it is Dynamic, such as in the case of services provided by wearable devices
where the location can change, it also contains information about the ContextCriticality declaring
whether the context is critical for the service operation or not. The S_Location of the service
depicts whether it is provided at an indoor or an outdoor location (split into IndoorLocation and
OutdoorLocation classes respectively). The S_Geocoordinates of the service and Smartspace are able to
provide a unique identifier of the service context.

‚ S_Process. The element Service is connected with this class that provides a complete description
for the logic of Service, via a hasSProcess relationship. More details can be visualized in Figure 8.
The S_Process class is refined into atomic and aggregated/complex processes. An atomic process
(SimpleProcess) directly takes the information generated by the environment and executes the
appropriated treatment to provide the functionality. On the contrary, the aggregated process
(CompositeProcess) provides the new functionality by composing several atomic processes. Besides,
the term Operation makes additional descriptions for service operations. More specifically, it
provides a description of the methods the service provides (OperationDescription), an ID for
each operation (OperationID), and information about used parameters including input and
output parameters (ParameterInput and ParameterOutput, respectively) as well as the parameter
preconditions (ParameterPrecondition).

‚ ServiceType. This concept aims to specify the concrete type of service. This classification considers
service from its source, either provided by subsystems or by the ACCUS ICP. The connection
between Service and ServiceType is established by an object property named hasSServiceType.

‚ S_HealthState. Similar as SS_HealthState, the class of S_HealthState, linking with Service by a
hasSHealthsate relationship, describes the current state of Service.

Sensors 2016, 16, 955 10 of 26

‚ S_Profile. Service is interrelated with the S_Profile class via hasSProfile and isProfileOf relationships.
Different features of the service are described and attributed in S_Profile. As shown in Figure 9,
S_Profile states the ServiceID (a unique identifier for distinguishing the service), the ServiceKind
(a more detailed specification for the type of service which differentiates it from the ontology's
point of view, being either ACCUS-compliant or non-compliant, having the service using another
ontology or not), the ServiceFunctionality (description of what the service is capable of doing), the
SecurityProfile (description of the security features under which the service will be provided; this
concept can be further extended by NRL), and Grounding (particular protocols used between
the service and service consumers). Regarding the Grounding concept, it contains a more
specific description (GroundingDescription) of the protocol, the URI (GroundingURI) and the
protocol (GroundingProtocol) of the endpoint where the application is running and also the input
(GroundingInputMessage) and output (GroundingOutputMessage) messages exchanged between the
service and service consumers (see Figure 9).

Sensors 2016, 16, 955 10 of 26

in Figure 9, S_Profile states the ServiceID (a unique identifier for distinguishing the service), the
ServiceKind (a more detailed specification for the type of service which differentiates it from the
ontology's point of view, being either ACCUS-compliant or non-compliant, having the service
using another ontology or not), the ServiceFunctionality (description of what the service is capable
of doing), the SecurityProfile (description of the security features under which the service will be
provided; this concept can be further extended by NRL), and Grounding (particular protocols used
between the service and service consumers). Regarding the Grounding concept, it contains a more
specific description (GroundingDescription) of the protocol, the URI (GroundingURI) and the
protocol (GroundingProtocol) of the endpoint where the application is running and also the input
(GroundingInputMessage) and output (GroundingOutputMessage) messages exchanged between the
service and service consumers (see Figure 9).

Figure 7. Internal structure of S_Context.

Figure 8. Internal structure of S_Process.

Figure 7. Internal structure of S_Context.

Sensors 2016, 16, 955 10 of 26

in Figure 9, S_Profile states the ServiceID (a unique identifier for distinguishing the service), the
ServiceKind (a more detailed specification for the type of service which differentiates it from the
ontology's point of view, being either ACCUS-compliant or non-compliant, having the service
using another ontology or not), the ServiceFunctionality (description of what the service is capable
of doing), the SecurityProfile (description of the security features under which the service will be
provided; this concept can be further extended by NRL), and Grounding (particular protocols used
between the service and service consumers). Regarding the Grounding concept, it contains a more
specific description (GroundingDescription) of the protocol, the URI (GroundingURI) and the
protocol (GroundingProtocol) of the endpoint where the application is running and also the input
(GroundingInputMessage) and output (GroundingOutputMessage) messages exchanged between the
service and service consumers (see Figure 9).

Figure 7. Internal structure of S_Context.

Figure 8. Internal structure of S_Process.
Figure 8. Internal structure of S_Process.

Sensors 2016, 16, 955 11 of 26
Sensors 2016, 16, 955 11 of 26

Figure 9. Internal structure of S_Profile.

3.4. Architecture of the Proposed System and Component Specifications

The ICP must provide a set of functionalities so that all subsystems belonging to a city will be
properly operated. Also, it should support the development and deployment of (cross-domain) Smart
City applications in any urban environment to enable the user to generate new services and applications
which, in turn, will be integrated in the ICP. To achieve this, it is necessary to execute the next sequence
of actions: (1) identification of ACCUS subsystems, services and applications; (2) identification and
availability of external systems; (3) identification and availability of required infrastructure; (4)
identification of information interchanged between ACCUS ICP and subsystems and services and (5)
information provided by ACCUS ICP to cross-domain applications.

Taking into account the previously mentioned characteristics and the analysis of the information
of different subsystems and services in the city, six technical features have been considered in an ICP:
(1) Information and interaction, since ICP must provide services (annotated in an ICP ontology-compliant
way) to enable the interaction among applications, applications and subsystems, and finally among
subsystems if necessary. Two interfaces support that interaction: (a) Interface Applications—ICP,
used to identify all requirements associated with the interaction among applications and ICP, considering
that the information exchanged among them must be compatible with the ACCUS ontology with the idea
of guaranteeing interoperability and an easy and seamless connection/disconnection of applications to the
ICP. The features related with these requirements are communication with applications, an API provided
to the applications and the relation with City State Database, CSDB, that stores all measurements and
configuration of all WSANs and all sensors available in all subsystems deployed upon the Smart City;
(b) Interface ICP-Subsystems, used to identify all requirements associated with the interaction among
ACCUS ICP and subsystems; this interaction includes getting and sending information from/to the
subsystem, as well as managing and controlling it, taking into account that not all subsystems are able
to use the ACCUS ontology. Both interfaces must be used in the registration and discovery system,
since all services and subsystems are registered and discovered by ICP while, on the other hand the
cross domain application generated by users discovers the information of the services throught the
semantic register and must be registered in this system, to let it be discovered by other cross domain
applications; (2) Adaptive control, as the running and operating circumstances of services, subsystems
applications and the own platform may vary over time, is also born in mind. The ICP has to adapt its
operation to such changes; also, the control of all aspects related with the subsystems and services
involved in the city is a key characteristic. Therefore, the control of the whole city depends on the
ICP. What is more; (3) Security and Safety are a major concern, since the ICP is exposed to many
security threats due to the security breaches likely to appear because of its dynamic and
heterogeneous nature, as well as the fact that it is going to be usually operated by non-professional

Figure 9. Internal structure of S_Profile.

3.4. Architecture of the Proposed System and Component Specifications

The ICP must provide a set of functionalities so that all subsystems belonging to a city will
be properly operated. Also, it should support the development and deployment of (cross-domain)
Smart City applications in any urban environment to enable the user to generate new services and
applications which, in turn, will be integrated in the ICP. To achieve this, it is necessary to execute
the next sequence of actions: (1) identification of ACCUS subsystems, services and applications;
(2) identification and availability of external systems; (3) identification and availability of required
infrastructure; (4) identification of information interchanged between ACCUS ICP and subsystems
and services and (5) information provided by ACCUS ICP to cross-domain applications.

Taking into account the previously mentioned characteristics and the analysis of the information
of different subsystems and services in the city, six technical features have been considered in
an ICP: (1) Information and interaction, since ICP must provide services (annotated in an ICP
ontology-compliant way) to enable the interaction among applications, applications and subsystems,
and finally among subsystems if necessary. Two interfaces support that interaction: (a) Interface
Applications—ICP, used to identify all requirements associated with the interaction among applications
and ICP, considering that the information exchanged among them must be compatible with
the ACCUS ontology with the idea of guaranteeing interoperability and an easy and seamless
connection/disconnection of applications to the ICP. The features related with these requirements are
communication with applications, an API provided to the applications and the relation with City State
Database, CSDB, that stores all measurements and configuration of all WSANs and all sensors available
in all subsystems deployed upon the Smart City; (b) Interface ICP-Subsystems, used to identify all
requirements associated with the interaction among ACCUS ICP and subsystems; this interaction
includes getting and sending information from/to the subsystem, as well as managing and controlling
it, taking into account that not all subsystems are able to use the ACCUS ontology. Both interfaces
must be used in the registration and discovery system, since all services and subsystems are registered
and discovered by ICP while, on the other hand the cross domain application generated by users
discovers the information of the services throught the semantic register and must be registered in this
system, to let it be discovered by other cross domain applications; (2) Adaptive control, as the running
and operating circumstances of services, subsystems applications and the own platform may vary
over time, is also born in mind. The ICP has to adapt its operation to such changes; also, the control
of all aspects related with the subsystems and services involved in the city is a key characteristic.
Therefore, the control of the whole city depends on the ICP. What is more; (3) Security and Safety are a
major concern, since the ICP is exposed to many security threats due to the security breaches likely
to appear because of its dynamic and heterogeneous nature, as well as the fact that it is going to be

Sensors 2016, 16, 955 12 of 26

usually operated by non-professional users in security issues; (4) Management to provide integrated
management capabilities has also been conceived, as it allows both the platform as a whole and
each of its software components to be managed. Applications, services and subsystems that make
up the platform to suit the city are in permanent evolution too, so all the software updates and the
connection/disconnection of functionalities should be done with a minimal impact on the normal
operation of the platform when a new version is updated. In any case, it must be possible to return to
a stable version, should significant problems appear in some updated components; (5) Development is
eased by a virtual environment provided to simulate the real behaviour of the ICP. In this way, users can
test the functionality of their new services or applications in a simulation environment before moving
them to the operational phase; (6) Dependability [33] is employed to establish availability, reliability,
safety, integrity and maintainability as its key aspects. In order to achieve this, the ICP provides
self-monitoring, application state replication, plug-and-play and dynamic resource assignment.

As ICP should interconnect different city-owned subsystems where many services and
applications are available but use different data formats, ICP has to create “a concept of system”
which is able to combine all data formats to provide only a generic interface to applications. Therefore,
the ICP must provide LCIM 3 (semantic interoperability), thus offering knowledge inference from
heterogeneous data, storage of semantically enhanced data of legacy services and subsystems,
integration of data and usage of data in cross-domain applications.

In order to provide semantic interoperability it is proposed that the ICP applies a global ontology,
showed in Figure 10. In terms of semantic interoperability, the ontology defines the vocabulary to
exchange queries and assertions among applications. Ontological commitments are agreements to use
the shared vocabulary in a coherent and consistent manner [11]. Services and applications sharing a
vocabulary do not need to share a knowledge base. It is not necessary to know all the characteristics of
the remaining components.

Sensors 2016, 16, 955 12 of 26

users in security issues; (4) Management to provide integrated management capabilities has also been
conceived, as it allows both the platform as a whole and each of its software components to be
managed. Applications, services and subsystems that make up the platform to suit the city are in
permanent evolution too, so all the software updates and the connection/disconnection of
functionalities should be done with a minimal impact on the normal operation of the platform when
a new version is updated. In any case, it must be possible to return to a stable version, should
significant problems appear in some updated components; (5) Development is eased by a virtual
environment provided to simulate the real behaviour of the ICP. In this way, users can test the
functionality of their new services or applications in a simulation environment before moving them
to the operational phase; (6) Dependability [33] is employed to establish availability, reliability,
safety, integrity and maintainability as its key aspects. In order to achieve this, the ICP provides self-
monitoring, application state replication, plug-and-play and dynamic resource assignment.

As ICP should interconnect different city-owned subsystems where many services and applications
are available but use different data formats, ICP has to create “a concept of system” which is able to
combine all data formats to provide only a generic interface to applications. Therefore, the ICP must
provide LCIM 3 (semantic interoperability), thus offering knowledge inference from heterogeneous
data, storage of semantically enhanced data of legacy services and subsystems, integration of data and
usage of data in cross-domain applications.

In order to provide semantic interoperability it is proposed that the ICP applies a global ontology,
showed in Figure 10. In terms of semantic interoperability, the ontology defines the vocabulary to
exchange queries and assertions among applications. Ontological commitments are agreements to use
the shared vocabulary in a coherent and consistent manner [11]. Services and applications sharing a
vocabulary do not need to share a knowledge base. It is not necessary to know all the characteristics
of the remaining components.

Figure 10. Proposed Integration and Coordination Platform regarding Semantic Interoperability. Figure 10. Proposed Integration and Coordination Platform regarding Semantic Interoperability.

Sensors 2016, 16, 955 13 of 26

If all the functions described above are to be performed, the first action to be taken is ensuring
interoperability among all the Smart City systems and applications. It is strictly necessary, first of
all, that the ICP itself has its own complete system of registration and discovery of subsystems and
services, which it is proposed in this paper. Figure 10 shows the architecture of the whole system of
ICP related to registry and discovery.

The first step to discover all subsystems connected to ICP and the services provided by each
subsystem is taken by the component Subsystem and Service Registry and Discovery through Interface
ICP—Subsystems. A key point is that this component works in real time. Later, each service or
subsystem will provide their own description in a compliant way to nSSOO or not. Regardless
of what is used, ICP provides semantic interoperability and seamless interconnection between
applications and services embedded in subsystems. In order to perform semantic mapping for
data interoperability enabling the transparent sharing of information among subsystems in the smart
city, the mail requirement is the translation of the output of subsystems and services that are going
to interchange information among them. The translations of this service are used for the registration
and discovery of services and subsystems in the service repository. This fact can be achieved by
parsing XML data to RDF. This way, semantic experts can define the XML to RDF mapping and
non-semantic experts can work with XML files avoiding the effort of analysing ontologies for each
subsystem. The service is provided by the components Subsystem adaptor and Ontology Connector.
The first one facilitates the connection of subsystems and their services, and provides all necessary
functions of adaptation and coordination. It is a very relevant component since it is in charge of
the transformation of the information provided by services and subsystems to the ICP. The second
one handles the translations of the data format which will be added to the Semantic Repository,
when data are delivered in a known XML-like format [34]. These translations from XMLs to OWL or
RDFs will be made using a mapping file which describes the transformation between the elements
of source XML to an instance of the global ontology. A mapping file must be defined for each type
of XML instance. When the description of the service or subsystem is available for the Subsystem
and Service Registry and Discovery, it will establish a connection trough the Enterprise Service Bus
with the component Semantic Subsystem and Service Repository to store the semantic description of
services and subsystems registered in the ICP, according to the global ontology defined for the system.
When a new subsystem or service is discovered by the Subsystem and Service Discovery component,
its semantic description (profile) will be stored in this repository. Enterprise Service Bus provides
interconnection and cooperation of the components based on a paradigm of message interchange;
the ESB selected in ACCUS ICP is JBoss [35], which was preferred over two competitive alternatives:
WSO2 and MULE [36]. Obviously, the component Service broker is necessary to orchestrate services
and mediate between different software protocols if necessary.

Once all services and subsystems are registered, the Cross-domain Applications through the
Interface Applications-ICP can execute SPARQL [37] queries and get their needed results in order to
generate new applications or services, that, at the same time, will be registered.

This mode of operation allows the permanent update of all services, subsystems and applications
of the Smart City.

3.5. Procedure Specifications: The Specific Workflow of Registering and Discovering Services and Subsystems

In this section, the specific process to register and discover subsystems and services is introduced.

3.5.1. Subsystems Registration

Once all subsystems and ACCUS ICP are up, subsystems must start with the registration
procedure one by one. As shown in Figure 11, first, each subsystem sends a registration request
to the ACCUS ICP which includes the subsystem profile in an XML document. The subsystem profile
contains information to identify itself, such as functionality, geolocation, health state, provider or input
and output parameters. This information is not compliant with the ACCUS ontology and therefore, it

Sensors 2016, 16, 955 14 of 26

must be adapted to the ACCUS ontology for the registration subsystem and stored in the CSDB. This
adaptation is done using the ontology connector service of the ACCUS ICP, which provides as output
a RDF file with the information of the subsystem according to the nSSOO.

When the ACCUS ICP registers the information about the subsystem in the semantic subsystem
and service repository, it automatically assigns and sends an identification number (ID) for the
registered subsystem.

The information contained in SRegistryRequest will include information to identify the subsystem
such as its geolocation, functionality, provider, owner, cost or security policies. This information can
be sent in some machine-readable format such as XML or JSON.

Sensors 2016, 16, 955 14 of 26

adaptation is done using the ontology connector service of the ACCUS ICP, which provides as output
a RDF file with the information of the subsystem according to the nSSOO.

When the ACCUS ICP registers the information about the subsystem in the semantic subsystem
and service repository, it automatically assigns and sends an identification number (ID) for the
registered subsystem.

The information contained in SRegistryRequest will include information to identify the subsystem
such as its geolocation, functionality, provider, owner, cost or security policies. This information can be
sent in some machine-readable format such as XML or JSON.

Figure 11. Subsystem registratiom sequence diagram.

3.5.2. Services Registration

Figure 12. Service registration sequence diagram.

When a subsystem becomes registered in the ACCUS ICP, all legacy applications and services
provided by the subsystem must be registered. As shown in Figure 12, first, each legacy application
or service sends a registry request to the ACCUS ICP which includes the service profile in an XML
document. Service profile contains information about the service or legacy application, such as service

Figure 11. Subsystem registratiom sequence diagram.

3.5.2. Services Registration

When a subsystem becomes registered in the ACCUS ICP, all legacy applications and services
provided by the subsystem must be registered. As shown in Figure 12, first, each legacy application
or service sends a registry request to the ACCUS ICP which includes the service profile in an XML
document. Service profile contains information about the service or legacy application, such as service
type, functionality or information about the operations that the service can do, along with the input
and output parameters involved in each operation. This information is not compliant with the ACCUS
ontology, so it must be adapted to the ACCUS ontology for the service registration to have it stored in
the semantic service repository as well as in the CSDB.

Once the ACCUS ICP registers the information about the service or legacy application in the
semantic subsystem and service repository, it will automatically assign and send an identification
number (ID) for the registered service or legacy application, as well as for each one of the operations
it provides.

The information contained in RegistryRequest will include information to identify the service
or legacy application about its profile, business logic and context. As in subsystems registry, this
information can be sent in some machine-readable format such as XML or JSON.

Sensors 2016, 16, 955 15 of 26

Sensors 2016, 16, 955 14 of 26

adaptation is done using the ontology connector service of the ACCUS ICP, which provides as output
a RDF file with the information of the subsystem according to the nSSOO.

When the ACCUS ICP registers the information about the subsystem in the semantic subsystem
and service repository, it automatically assigns and sends an identification number (ID) for the
registered subsystem.

The information contained in SRegistryRequest will include information to identify the subsystem
such as its geolocation, functionality, provider, owner, cost or security policies. This information can be
sent in some machine-readable format such as XML or JSON.

Figure 11. Subsystem registratiom sequence diagram.

3.5.2. Services Registration

Figure 12. Service registration sequence diagram.

When a subsystem becomes registered in the ACCUS ICP, all legacy applications and services
provided by the subsystem must be registered. As shown in Figure 12, first, each legacy application
or service sends a registry request to the ACCUS ICP which includes the service profile in an XML
document. Service profile contains information about the service or legacy application, such as service

Figure 12. Service registration sequence diagram.

3.5.3. Subsystem and Service Discovery

When a subsystem, service or application wants to know about other legacy applications, services
or subsystems registered in ACCUS ICP, as shown in Figure 13, it will send a SPARQL query request
towards the ACCUS ICP and the ACCUS ICP will send the query request towards the Semantic
Subsystem and Service Repository. Semantic Subsystem and Service Repository in the ACCUS ICP will
respond with the set of results of the query in XML format. These results depend on the query executed
towards the Semantic Subsystem and Service Repository. There could be different types of queries
depending on the information that subsystems or applications want to obtain, e.g., list all registered
subsystems, list all registered services, list all services of a specific subsystem, retrieve all the information about a
specific subsystem or service or just retrieve some specific data.

Sensors 2016, 16, 955 15 of 26

type, functionality or information about the operations that the service can do, along with the input and
output parameters involved in each operation. This information is not compliant with the ACCUS
ontology, so it must be adapted to the ACCUS ontology for the service registration to have it stored
in the semantic service repository as well as in the CSDB.

Once the ACCUS ICP registers the information about the service or legacy application in the
semantic subsystem and service repository, it will automatically assign and send an identification
number (ID) for the registered service or legacy application, as well as for each one of the operations
it provides.

The information contained in RegistryRequest will include information to identify the service or
legacy application about its profile, business logic and context. As in subsystems registry, this information
can be sent in some machine-readable format such as XML or JSON.

3.5.3. Subsystem and Service Discovery

When a subsystem, service or application wants to know about other legacy applications, services
or subsystems registered in ACCUS ICP, as shown in Figure 13, it will send a SPARQL query request
towards the ACCUS ICP and the ACCUS ICP will send the query request towards the Semantic
Subsystem and Service Repository. Semantic Subsystem and Service Repository in the ACCUS ICP
will respond with the set of results of the query in XML format. These results depend on the query
executed towards the Semantic Subsystem and Service Repository. There could be different types of
queries depending on the information that subsystems or applications want to obtain, e.g., list all
registered subsystems, list all registered services, list all services of a specific subsystem, retrieve all the
information about a specific subsystem or service or just retrieve some specific data.

Figure 13. Discovery sequence diagram.

4. Example and Validation of Subsystem and Service Registration and Discovery

In this section, a complete example of a subsystem and a service registration and discovery is
presented, based on the implementation done for the Semantic Subsystem and Service Repository of
the ACCUS ICP. More specifically, using an example, the whole registration and discovery procedures
will be shown, both for subsystems and services focusing on the input and output data formats, with
the advantage of using specific data. Finally, validation done for evaluating the implementation will
be also displayed.

4.1. Description of a Use Case Example

The proposed scenario involves a traffic control urban subsystem, which provides a traffic lights
control service for managing the traffic lights cycles, along with information about the traffic density

Figure 13. Discovery sequence diagram.

4. Example and Validation of Subsystem and Service Registration and Discovery

In this section, a complete example of a subsystem and a service registration and discovery is
presented, based on the implementation done for the Semantic Subsystem and Service Repository of
the ACCUS ICP. More specifically, using an example, the whole registration and discovery procedures

Sensors 2016, 16, 955 16 of 26

will be shown, both for subsystems and services focusing on the input and output data formats, with
the advantage of using specific data. Finally, validation done for evaluating the implementation will
be also displayed.

4.1. Description of a Use Case Example

The proposed scenario involves a traffic control urban subsystem, which provides a traffic lights
control service for managing the traffic lights cycles, along with information about the traffic density
in several road intersections of a city. A smart mobility application uses the information provided by
the traffic control subsystem in order to adapt traffic lights cycles to reduce and avoid traffic jams in
the city.

Information provided by the traffic control subsystem is obtained by means of a Wireless Sensor
Network, whose nodes will be deployed in road intersections of the city. The measurements taken
by the sensors are sent via radio from the mesh network to the gateway, which comes with a special
wireless node performing the base station role. This gateway is in charge of gathering data from the
sensors and storing data until it is sent to the server and acts as an interface between ACCUS ICP and
the Wireless Sensor Network. Then, the server, where all the data provided from the different sensors
is collected and permanently stored, serves the data to the ACCUS ICP per request.

Both smart mobility application and traffic control subsystems are connected to the ACCUS ICP,
which facilitates the communication between them with the services the platform provides. In order to
enable this communication, traffic control subsystem must be registered in the ACCUS ICP first, so
that it can be discovered and used by the smart mobility application.

Once the traffic control subsystem is connected, it sends a registration request, along with
information about the subsystem, to the ACCUS ICP by means of its Subsystem Adaptor, using
the corresponding method provided by the Application Interface. This method uses the Ontology
Connector service to adapt the subsystem data sent in the request to an ACCUS ICP compliant format.
Then, the Enterprise Service Bus locates and sends the request to the Semantic Subsystem and Service
Repository, which registers the subsystem information received in a semantic repository, assigns an ID
to the subsystem and returns it to the subsystem.

After subsystem registration, the traffic lights control service the subsystem provides is registered
following the abovementioned procedure. When the service registration is completed, a smart mobility
application can discover both the registered subsystem and service by querying Semantic Subsystem
and Service Repository with SPARQL queries. In that case, information about the registered subsystem
and service is returned to the smart mobility application in XML format.

Sensors 2016, 16, 955 16 of 26

in several road intersections of a city. A smart mobility application uses the information provided by
the traffic control subsystem in order to adapt traffic lights cycles to reduce and avoid traffic jams in
the city.

Information provided by the traffic control subsystem is obtained by means of a Wireless Sensor
Network, whose nodes will be deployed in road intersections of the city. The measurements taken
by the sensors are sent via radio from the mesh network to the gateway, which comes with a special
wireless node performing the base station role. This gateway is in charge of gathering data from the
sensors and storing data until it is sent to the server and acts as an interface between ACCUS ICP and
the Wireless Sensor Network. Then, the server, where all the data provided from the different sensors
is collected and permanently stored, serves the data to the ACCUS ICP per request.

Both smart mobility application and traffic control subsystems are connected to the ACCUS ICP,
which facilitates the communication between them with the services the platform provides. In order
to enable this communication, traffic control subsystem must be registered in the ACCUS ICP first,
so that it can be discovered and used by the smart mobility application.

Once the traffic control subsystem is connected, it sends a registration request, along with
information about the subsystem, to the ACCUS ICP by means of its Subsystem Adaptor, using the
corresponding method provided by the Application Interface. This method uses the Ontology
Connector service to adapt the subsystem data sent in the request to an ACCUS ICP compliant
format. Then, the Enterprise Service Bus locates and sends the request to the Semantic Subsystem
and Service Repository, which registers the subsystem information received in a semantic repository,
assigns an ID to the subsystem and returns it to the subsystem.

After subsystem registration, the traffic lights control service the subsystem provides is registered
following the abovementioned procedure. When the service registration is completed, a smart
mobility application can discover both the registered subsystem and service by querying Semantic
Subsystem and Service Repository with SPARQL queries. In that case, information about the registered
subsystem and service is returned to the smart mobility application in XML format.

Figure 14 shows the use case example, the whole registration and discovery processes as well as
the interactions among the subsystem, the smart mobility application and the ACCUS ICP components
involved in these processes.

Figure 14. Example use case and registration and discovery processes.

4.2. Example of Subsystem and Service Registration and Discovery

Following the use case example presented in the previous section, and assuming that a) there is
a traffic control subsystem that provides a traffic lights control service that b) has been just connected
to the ACCUS ICP, two actions are carried out. As shown in Figure 15, first, the subsystem is

Figure 14. Example use case and registration and discovery processes.

Sensors 2016, 16, 955 17 of 26

Figure 14 shows the use case example, the whole registration and discovery processes as well as
the interactions among the subsystem, the smart mobility application and the ACCUS ICP components
involved in these processes.

4.2. Example of Subsystem and Service Registration and Discovery

Following the use case example presented in the previous section, and assuming that a) there is a
traffic control subsystem that provides a traffic lights control service that b) has been just connected to
the ACCUS ICP, two actions are carried out. As shown in Figure 15, first, the subsystem is discovered
by the ICP and secondly, the subsystem sends a registration request to the ICP with information about
it. Table 1 shows the information sent by the subsystem as well as the semantic annotations that the
Semantic Subsystem and Service Repository will use to store that information.

Sensors 2016, 16, 955 17 of 26

discovered by the ICP and secondly, the subsystem sends a registration request to the ICP with
information about it. Table 1 shows the information sent by the subsystem as well as the semantic
annotations that the Semantic Subsystem and Service Repository will use to store that information.

Table 1. Subsystem data and semantic annotations.

Semantic Annotations Subsystem Data
SS_Geolocation Latitude: 54.3521 Longitude: 18.64637
SS_HealthState Active

SubsystemFunctionality Traffic Control Subsystem
SS_Provider ACCUS
SS_Owner Company1

SS_Cost Free
SS_Policies Policy1, Policy2

Again, this information can be sent in some machine readable format as, for example, in XML
or JSON. ACCUS ICP receives this data via a REST interface, and Semantic Subsystem and Service
Repository converts the input data into semantically annotated data formatted in RDF. To do so, Jena
API methods are used in order to obtain the classes defined in the ontology graph and stored in an
.owl file, as well as to instantiate them with the values of the input data. Finally, the data is stored in
a triple store database provided by Jena, called Jena TDB, and a unique ID is assigned to the
subsystem and returned to it through the REST interface. This interface is also used whenever a
subsystem, service or application connected to the ACCUS ICP wants to discover another subsystem,
service or application registered in the ICP.

Figure 15. Semantic Subsystem and Service Repository Registration diagram.

Once the traffic control subsystem has been registered, the traffic lights control service it
provides is registered and, for that purpose, it sends a registration request to the ACCUS ICP with
the information about it. Table 2 shows the information sent by the service as well as the semantic
annotations that the Semantic Subsystem and Service Repository will use to store that information.

Then, when the ACCUS ICP receives the data, Semantic Subsystem and Service Repository
registers the service, following the same procedure as for the subsystem, and finally an ID is assigned
to the subsystem’s service.

As soon as the subsystem and the service it provides have been registered, they can be
discovered by any subsystem, service or application connected to the ACCUS ICP, thus obtaining
information about them. To do so, they can query the Semantic Subsystem and Service Repository,
using one of the methods that this service API provides. The results will be output in a document XML.

For example, if the smart mobility application wants to discover the traffic control subsystem
previously registered, it can call listAllSubsystems method, which returns a list of all registered
subsystems, or also it can call subsystemInfo method, which returns the information about the
subsystem whose ID matches the one passed as an input parameter.

Figure 15. Semantic Subsystem and Service Repository Registration diagram.

Table 1. Subsystem data and semantic annotations.

Semantic Annotations Subsystem Data

SS_Geolocation Latitude: 54.3521 Longitude: 18.64637
SS_HealthState Active

SubsystemFunctionality Traffic Control Subsystem
SS_Provider ACCUS
SS_Owner Company1

SS_Cost Free
SS_Policies Policy1, Policy2

Again, this information can be sent in some machine readable format as, for example, in XML
or JSON. ACCUS ICP receives this data via a REST interface, and Semantic Subsystem and Service
Repository converts the input data into semantically annotated data formatted in RDF. To do so, Jena
API methods are used in order to obtain the classes defined in the ontology graph and stored in an .owl
file, as well as to instantiate them with the values of the input data. Finally, the data is stored in a triple
store database provided by Jena, called Jena TDB, and a unique ID is assigned to the subsystem and
returned to it through the REST interface. This interface is also used whenever a subsystem, service or
application connected to the ACCUS ICP wants to discover another subsystem, service or application
registered in the ICP.

Once the traffic control subsystem has been registered, the traffic lights control service it provides is
registered and, for that purpose, it sends a registration request to the ACCUS ICP with the information
about it. Table 2 shows the information sent by the service as well as the semantic annotations that the
Semantic Subsystem and Service Repository will use to store that information.

Sensors 2016, 16, 955 18 of 26

Table 2. Subsystem data and semantic annotations.

Semantic Annotations Service Data Semantic Annotations Service Data

ServiceType Subsystem service OperationDescription
changeState: provides the

change and duration of the
new state

S_HealthState Active ParameterPrecondition initialState

S_Cost Free ParameterInput dataTimeInterval

ServiceKind ACCUS compliant ParameterOutput lightValue

ServiceFunctionality Traffic lights control Static Static

SecurityProfile securityProfile1 Dynamic Non dynamic

GroundingDescription change state IndoorLocation Non indoor

GroundingInputMessage none OutdoorLocation Outdoor

GroundingOutputMessage changes done ContextCriticality Critical

GroundingURI ACCUS/trafficLightsControl Smartspace SS2

GroundingProtocol REST S_Latitude 54.3521

SimpleProcess Simple S_Longitude 18.64637

Then, when the ACCUS ICP receives the data, Semantic Subsystem and Service Repository
registers the service, following the same procedure as for the subsystem, and finally an ID is assigned
to the subsystem’s service.

As soon as the subsystem and the service it provides have been registered, they can be discovered
by any subsystem, service or application connected to the ACCUS ICP, thus obtaining information
about them. To do so, they can query the Semantic Subsystem and Service Repository, using one of the
methods that this service API provides. The results will be output in a document XML.

For example, if the smart mobility application wants to discover the traffic control subsystem
previously registered, it can call listAllSubsystems method, which returns a list of all registered
subsystems, or also it can call subsystemInfo method, which returns the information about the
subsystem whose ID matches the one passed as an input parameter.

Therefore, calling, for example, the latter method using the traffic control subsystem ID, the
following SPARQL query is executed:

PREFIX ns: <http://www.semanticweb.org/ACCUS/1.1#>

SELECT ?subsystemID ?subsystemFunctionality ?subsystemHealthState ?subsystemGeolocation

?subsystemProvider ?subsystemOwner ?subsystemCost ?subsystemPolicies

WHERE {ns:@id@ ns:isSSIDOf ?subsystem.

?subsystem ns:hasSSID ?subsystemID.

?subsystem ns:hasSSHealthState ?subsystemHealthState.

?subsystem ns:hasSSContext ?subsystemContext.

?subsystemContext ns:hasSSGeoLocation ?subsystemGeolocation.

?subsystem ns:hasSSProfile ?subsystemProfile.

?subsystemProfile ns:hasSSFunctions ?subsystemFunctionality.

?subsystemProfile ns:hasSSCost ?subsystemCost.

?subsystemProfile ns:hasSSPolicies ?subsystemPolicies.

?subsystemProfile ns:hasSSOwner ?subsystemOwner.

?subsystemProfile ns:hasSSProvider ?subsystemProvider.}

And the following output will be returned:

Sensors 2016, 16, 955 19 of 26

<?xml version="1.0"?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>

<variable name="subsystemID"/>

<variable name="subsystemFunctionality"/>

<variable name="subsystemHealthState"/>

<variable name="subsystemGeolocation"/>

<variable name="subsystemProvider"/>

<variable name="subsystemOwner"/>

<variable name="subsystemCost"/>

<variable name="subsystemPolicies"/>

</head>

<results>

<result>

<binding name="subsystemID">

<uri>http://www.semanticweb.org/ACCUS/1.1#3309</uri>

</binding>

<binding name="subsystemFunctionality">

<uri>

http://www.semanticweb.org/ACCUS/1.1#Traffic Control Subsystem

</uri>

</binding>

<binding name="subsystemHealthState">

<uri>http://www.semanticweb.org/ACCUS/1.1#Active</uri>

</binding>

<binding name="subsystemGeolocation">

<uri>

http://www.semanticweb.org/ACCUS/1.1#Latitude: 54.3521 Longitude:

18.64637

</uri>

</binding>

<binding name="subsystemProvider">

<uri>http://www.semanticweb.org/ACCUS/1.1#ACCUS</uri>

</binding>

<binding name="subsystemOwner">

<uri>http://www.semanticweb.org/ACCUS/1.1#Company1</uri>

</binding>

<binding name="subsystemCost">

<uri>http://www.semanticweb.org/ACCUS/1.1#Free</uri>

</binding>

<binding name="subsystemPolicies">

<uri>http://www.semanticweb.org/ACCUS/1.1#Policy1, Policy2</uri>

</binding>

</result>

</results>

</sparql>

Similarly, if an application, subsystem or service wants to discover the traffic lights control service
previously registered, it can call, the listAllServices method which returns a list of all registered services,
or also the serviceInfo method, which returns information about the service whose ID matches the one

Sensors 2016, 16, 955 20 of 26

passed as an input parameter. In the first case, the SPARQL query executed for listing all the registered
services is the following:

PREFIX ns: <http://www.semanticweb.org/ACCUS/1.1#>

SELECT ?serviceID ?serviceFunctionality ?serviceType ?serviceHealthState ?serviceKind ?

serviceCost ?securityProfile

WHERE {?Resource ns:hasSServiceType ?serviceType.

?Resource ns:hasSCost ?serviceCost.

?Resource ns:hasSHealthstate ?serviceHealthState.

?Resource ns:hasSProfile ?serviceProfile.

?serviceProfile ns:hasSID ?serviceID.

?serviceProfile ns:hasServiceFunctionality ?serviceFunctionality.

?serviceProfile ns:hasSKind ?serviceKind.

?serviceProfile ns:hasSecurityProfile ?securityProfile.}

and the information returned will be the following:

<?xml version="1.0"?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>

<variable name="serviceID"/>

<variable name="serviceFunctionality"/>

<variable name="serviceType"/>

<variable name="serviceHealthState"/>

<variable name="serviceKind"/>

<variable name="serviceCost"/>

<variable name="securityProfile"/>

</head>

<results>

<result>

<binding name="serviceID">

<uri>http://www.semanticweb.org/ACCUS/1.1#4713</uri>

</binding>

<binding name="serviceFunctionality">

<uri>http://www.semanticweb.org/ACCUS/1.1#Subsystem and Service

Repository: an ontology translator for ACCUS ICP data treatment,

whenever the nSSOO ontology is required, that will be storing semantic

information related with subsystems and services connected to the ICP.

</uri>

</binding>

<binding name="serviceType">

<uri>http://www.semanticweb.org/ACCUS/1.1#ACCUS ICP service</uri>

</binding>

<binding name="serviceHealthState">

<uri>http://www.semanticweb.org/ACCUS/1.1#Active</uri>

</binding>

<binding name="serviceKind">

<uri>http://www.semanticweb.org/ACCUS/1.1#ACCUS compliant</uri>

</binding>

<binding name="serviceCost">

<uri>http://www.semanticweb.org/ACCUS/1.1#Free</uri>

</binding>

Sensors 2016, 16, 955 21 of 26

<binding name="securityProfile">

<uri>http://www.semanticweb.org/ACCUS/1.1#ACCUS security profile</uri>

</binding>

</result>

<result>

<binding name="serviceID">

<uri>http://www.semanticweb.org/ACCUS/1.1#8647</uri>

</binding>

<binding name="serviceFunctionality">

<uri>http://www.semanticweb.org/ACCUS/1.1#Traffic lights control </uri>

</binding>

<binding name="serviceType">

<uri>http://www.semanticweb.org/ACCUS/1.1#Subsystem service</uri>

</binding>

<binding name="serviceHealthState">

<uri>http://www.semanticweb.org/ACCUS/1.1#Active</uri>

</binding>

<binding name="serviceKind">

<uri>http://www.semanticweb.org/ACCUS/1.1#Not ACCUS compliant</uri>

</binding>

<binding name="serviceCost">

<uri>http://www.semanticweb.org/ACCUS/1.1#Free</uri>

</binding>

<binding name="securityProfile">

<uri>http://www.semanticweb.org/ACCUS/1.1#securityProfile1</uri>

</binding>

</result>

</result>......</result>

</result>......</result>

</results>

</sparql>

Note that, when listing all services, information about Semantic Subsystem and Service Repository
is also shown because internal ACCUS ICP active services are also registered in the semantic repository
once the ICP is up.

4.3. Validation

In order to validate the practical performance of the Semantic Subsystem and Service Repository
implementation, both the response time and the registration rate of the service have been tested. In
order to test the response time, the timespan used for the different operations that the service provides
to be executed has been measured. For each measurement, three samples have been taken in order
to obtain an average value of the response time. On the other hand, the registration rate refers to
the percentage of subsystems and services registered with regards to a certain number of registry
requests done.

Tests have been done using an Intel(R) Core(TM)2 Quad CPU Q6600 processor @ 2.40 GHz
equipped with 2.39 GHz and a RAM memory of 4 GB in a machine operating under the 64-bit
Windows 7 Professional operating system.

Sensors 2016, 16, 955 22 of 26

4.3.1. Response Time

When a request is done to the Semantic Subsystem and Service Repository for the first time, this
service must be initialized, so it takes more time than usual to execute the request. So, to begin with,
the response time required when a request is done to the semantic repository for the first time has been
measured. Results obtained are shown in Table 3.

Table 3. Response time when the first request is done to the semantic repository.

Operation T1 (ms) T2 (ms) T3 (ms) Average Time Elapsed (ms)

registerSubsystem 130 29 56 71.67
registerService 142 142 92 125.33

listAll 469 530 532 510.33
listAllSubsystems 450 447 463 453.33

listAllServices 476 490 460 475.33
getSubsystemInfo 464 498 476 479.33

getServiceInfo 815 578 564 652.33

Now, considering that the service has been initialized, the response time of the semantic repository
operations has been measured in three different cases: when the repository has 100, 500 and 1000
of subsystems and services registered. The purpose is to test the normal operation of the semantic
repository for different amounts of registered data. The results obtained are shown in Tables 4–6.

Table 4. Response time when there are 100 subsystems and services registered.

Operation T1 (ms) T2 (ms) T3 (ms) Average Time Elapsed (ms)

registerSubsystem 84 30 31 48.33
registerService 47 53 46 48.67

listAll 284 105 138 175.67
listAllSubsystems 67 100 74 80.33

listAllServices 20 17 18 18.33
getSubsystemInfo 8 5 5 6

getServiceInfo 99 42 27 56

Table 5. Response time when there are 500 subsystems and services registered.

Operation T1 (ms) T2 (ms) T3 (ms) Average Time Elapsed (ms)

registerSubsystem 67 66 28 53.67
registerService 76 75 41 64

listAll 603 246 158 335.67
listAllSubsystems 84 70 76 76.67

listAllServices 73 63 62 66
getSubsystemInfo 6 3 5 4.67

getServiceInfo 183 44 26 84.33

Table 6. Response time when there are 1000 subsystems and services registered.

Operation T1 (ms) T2 (ms) T3 (ms) Average Time Elapsed (ms)

registerSubsystem 78 27 35 46.67
registerService 145 42 42 76.33

listAll 398 368 771 512.33
listAllSubsystems 195 500 367 354

listAllServices 138 107 111 118.67
getSubsystemInfo 6 4 5 5

getServiceInfo 108 18 16 47.33

Sensors 2016, 16, 955 23 of 26

Analyzing the results obtained, several conclusions can be drawn. Besides the fact that the
response time is higher when the first request is done due to the initialization of the semantic repository,
it can also be appreciated that the response time increases with the amount of subsystems and
services stored.

Comparing the time response between the different operations, it can be seen that the time
response of listAll operation is considerably higher than in the other operations due to the higher
amount of data that must be retrieved, which are all the subsystems and services stored in the semantic
repository, while, for example, in listAllSubsystems and listAllServices only operation subsystems in the
first case, and services in the second case are shown. Regarding the last two operations mentioned, the
time response of listAllSubsystems is higher than the time response of listAllServices because in the first
operation more information is shown than in the second operation. For the same reason, time response
in registerService and getServiceInfo operations is higher than in registerSubsystem and getSubsystemInfo.
Finally, it can be appreciated that the time response of registerSubsystem, registerService, getSubsystemInfo,
getServiceInfo does not change significantly with the amount of data registered, because in these
operations just one subsystem or service is registered or queried so they are not affected by the amount
of data registered.

4.3.2. Registration Rate

For testing the registration rate, 5000 subsystem and service registry requests were done towards
the Semantic Subsystem and Service Repository, and all the requests were successfully executed,
registering the 100% of subsystems and services that requested registration.

5. Conclusions and Future Work

This paper has presented an ontology-based and automatic system for subsystem and service
registry and discovery within the context of the ACCUS project. This proposed system, embedded in
ACCUS ICP, is able to dynamically register and discover heterogeneous subsystems and services
provided by subsystems within a Smart City so that cross-domain applications and collective
optimization can be built upon the ICP by using existing services. To address the heterogeneity
(e.g., data formats and protocols) of subsystems and services, a new ontology, named nSSOO, has
been proposed and employed by the system to provide a formalized vocabulary for the registration
and discovery processes. The nSSOO has been developed on the basis of three existing ontologies,
including OWL-S, CityGML, and NRL. By complying with this ontology, heterogeneous subsystems
and services provided by individual subsystems can share a same understanding which results in
a formal and homogeneous appearance of the ICP. The proposed ontology, from a global point of
view, is an important contribution to achieve semantic interoperability in the ICP and it has been
presented with detailed explanations for inner composition. In addition to that, different software
components which form the whole system have been shown with their main functionalities explained.
The proposed ontology-based scheme for subsystem and service discovery and registry has been
elaborated with a set of sequence diagrams that present the specific workflow of inner components
involved in this scheme. Furthermore, after presenting the specific procedures to ease the subsystem
and service discovery and registry, a complete example about discovering and registering a traffic
control system and a traffic lights control service has been provided to show the performance of the
proposed scheme. Different kinds of queries for information stored in ICP have also been introduced.

The system proposed to register and discover subsystems and services has been proven to
be useful to interconnect different subsystems and services. What is more, it could abstract the
heterogeneity of different subsystems and services so as to provide a homogeneous interface for
applications or other services inside the ICP. Though this scheme aims to create an accurate reference
framework for available information (e.g., subsystems, services, and applications) within the Smart
Cities, it could be also possible to adapt it to other domains, such as underwater robotics. Developers
can become aware of the services that are working in the Smart city, which are their features and how

Sensors 2016, 16, 955 24 of 26

can be accessed, to design their applications by making use of those services provided by subsystems.
Also, developers are isolated of the problem of transforming data protocols.

Future work could be focused on the following aspects:

‚ The proposed subsystem and service discovery and registry scheme should be tested in more
scenarios in a real city. In ACCUS project, the city that has been chosen to deploy the pilot is
Gdansk, in Poland.

‚ The relationships among different services are a crucial factor for application developers when
they design brand new applications. Future work should focus on examining the similarity
degree of different services. For instance, services able to provide similar functionalities can be
alternatives if the ideal service to be used is not available. A potential solution could be including
information about relationships of different services in relevant service profiles.

‚ The nSSOO ontology should evolve to richly describe more features of subsystems and services.
For example, it is possible to extend nSSOO with some new classes using FOAF [38] to include
additional aspects of information about people, such as roles like provider or owner. Another
potential extension of the ontology could be including concepts about event-driven services.

‚ Future emphasis can also be put on including decision-making related algorithms in the nSSOO
ontology. e.g., MADISE [39] ontology can be reused and integrated with the nSSOO ontology.

Acknowledgments: This paper is a result of research made by the authors in the Adaptive and Cooperative
Control in Urban Subsystems (ACCUS) project, ARTEMIS 2012-1. SP1-JT1-ARTEMIS-2012-ASP7-Embedded
System supporting sustainable urban life, SP1-JT1-ARTEMIS-2012-ASP3: Embedded systems in Smart
environments. The authors would like to thank CITSEM (Research Center on Software Technologies and
Multimedia Systems for Sustainability, Centro de Investigación en Tecnologías Software y Sistemas Multimedia
para la Sostenibilidad) from the Technical University of Madrid (UPM).

Author Contributions: The research result presented in this article is a collaborative work of all authors. Rubio
has prepared the architecture of the ICP. Rubio, Gómez and Li have defined the ontology. Li has implemented the
ontology. Rubio and Gómez have defined the sequence of registering and discovering subsystems and service.
Gómez has prepared and implemented the SPARQL queries. Martínez has given technical and conceptual support
for the entire article. All authors have participated in writing this article. All of the authors have reviewed and
finally approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nellore, K.; Hancke, G. A Survey on Urban Traffic Management System Using Wireless Sensor Networks.
Sensors 2016, 16, 157. [CrossRef] [PubMed]

2. Moreno, A.; Perallos, A.; López-de-Ipiña, D.; Onieva, E.; Salaberria, I.; Masegosa, A. A Novel Software
Architecture for the Provision of Context-Aware Semantic Transport Information. Sensors 2015, 15,
12299–12322. [CrossRef] [PubMed]

3. Ghayvat, H.; Mukhopadhyay, S.; Gui, X.; Suryadevara, N. WSN- and IOT-Based Smart Homes and Their
Extension to Smart Buildings. Sensors 2015, 15, 10350–10379. [CrossRef] [PubMed]

4. Rodríguez-Molina, J.; Martínez, J.-F.; Castillejo, P.; de Diego, R. SMArc: A Proposal for a Smart, Semantic
Middleware Architecture Focused on Smart City Energy Management. Int. J. Distrib. Sens. Netw. 2013, 2013,
1–17. [CrossRef]

5. Zhou, L.; Rodrigues, J.J.P.C. Service-oriented middleware for smart grid: Principle, infrastructure,
and application. IEEE Commun. Mag. 2013, 51, 84–89. [CrossRef]

6. Hernandez, L.; Baladrón, C.; Aguiar, J.M.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Cook, D.J.;
Chinarro, D.; Gómez, J. A Study of the Relationship between Weather Variables and Electric Power Demand
inside a Smart Grid/Smart World Framework. Sensors 2012, 12, 11571–11591. [CrossRef]

7. Sung, W.-T.; Lin, J.-S. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive
Weighted Data Fusion Algorithm. Sensors 2013, 13, 16915–16939. [CrossRef]

8. Warriach, E.U.; Kaldeli, E.; Lazovik, A.; Aiello, M. An Interplatform Service-Oriented Middleware for the
Smart Home. Int. J. Smart Home 2013, 7, 115–142.

http://dx.doi.org/10.3390/s16020157
http://www.ncbi.nlm.nih.gov/pubmed/26828489
http://dx.doi.org/10.3390/s150612299
http://www.ncbi.nlm.nih.gov/pubmed/26016915
http://dx.doi.org/10.3390/s150510350
http://www.ncbi.nlm.nih.gov/pubmed/25946630
http://dx.doi.org/10.1155/2013/560418
http://dx.doi.org/10.1109/MCOM.2013.6400443
http://dx.doi.org/10.3390/s120911571
http://dx.doi.org/10.3390/s131216915

Sensors 2016, 16, 955 25 of 26

9. RECI. Red Española de Ciudades Inteligentes. Available online: http://www.redciudadesinteligentes.es
(accessed on 28 March 2016).

10. The ACCUS (Adaptive Cooperative Control in Urban (sub)Systems) Project. Available online: http://
projectaccus.eu/ (accessed on 31 March 2016).

11. Zang, M.A. Ontological Approaches for Semantic Interoperability. In Proceedings of the 5th Annual ONR
Workshop on Collaborative Decision-Support Systems, San Luis Obispo, CA, USA, 10–11 September 2003.

12. Services Oriented Architecture for All. Available online: http://www.soa4all.ue (accessed on 10 April 2016).
13. Tagging Tool Based on a Semantic Discovery Framework. Available online: www.tatoo-fp7.eu (accessed on

11 March 2016).
14. Cloud4SOA. Available online: http://www.cloud4soa.com (accessed on 10 March 2016).
15. Butler, B. PaaS Primer: What Is Platform as Services and Why Does It Matter?; Network World: Framingham,

MA, USA, 2013.
16. Semantichealthnet. Available online: http://www.semantichealthnet.eu (accessed on 27 March 2016).
17. Mobilized Lifestyle with Wearables (LifeWear). Available online: https://itea3.org/project/lifeware.html

(accesed 21 June 2016).
18. Ryu, M.; Kim, J.; Yun, J. Integrated semantics services platform for the internet of things: A case study of a

smart office. Sensors 2015, 15, 2137–2160. [CrossRef] [PubMed]
19. Hussain, A.; Wenbi, R.; da Silva, A.L.; Nadher, M.; Mudhish, M. Health and emergency-care platform for the

elderly and disabled people in the Smart City. J. Syst. Softw. 2015, 110, 253–263. [CrossRef]
20. Benhaourech, A.; Aaroud, A.; Roose, P.; Zine-Dine, K. Study and comparison of smart city dedicated

platforms: Case of the Kalimucho platform. In Proceedings of the 2014 5th Workshop on Codes,
Cryptography and Communication Systems (WCCCS), El Jadida, Morocco, 27–28 November 2014;
pp. 161–166.

21. Rodriguez-Molina, J.; Martinez, J.F.; Castillejo, P.; López, L. Combining Wireless Sensors networks ans
semantic middleware for an internet of things-based sportman/woman monitoring application. Sensors
2013, 13, 1787–1835. [CrossRef] [PubMed]

22. Bispo, K.A.; Rosa, N.S.; Cunha, P.R. SITRUS: Semantic Infraestructure for Wireless Sensor Networks. Sensors
2015, 15, 27436–27469. [CrossRef] [PubMed]

23. Camarinha-Matos, L.M.; Afsarmanesh, H.; Galeano, N.; Molina, A. Collaborative networked
organizations—Concepts and practice in manufacturing entreprises. Comput. Ind. Eng. 2009, 57, 46–60.
[CrossRef]

24. Li, C.-S.; Liao, W. Software Defined Networks. IEEE Commun. Mag. 2013, 51, 113–114. [CrossRef]
25. Kosmides, P.; Adamopoulo, E.; Demestichas, K.; Theologou, M.; Anagnostou, M.; Rouskas, A. Socially Aware

Heterogeneous Wirelees Networks. Sensors 2015, 15, 13705–13724. [CrossRef] [PubMed]
26. WildFly. Available online: http://www.wildfly.org (accessed on 25 May 2016).
27. WSO2: Open platform for your connected Bussiness. Available online: http://wso2.com (accessed on 25

May 2016).
28. Abel, D.J.; Ooi, B.C.; Tan, K.L.; Tan, S.H. Towards integrated geographical information processing. J. Geogr.

Inf. Sci. 1998, 12, 353–371. [CrossRef]
29. Turnitsa, C.D. Extending the levels of conceptual interoperability model. In Proceedings of the IEEE Summer

Computer Simulation Conference, Philadelphia, PA, USA, 24–28 July 2005.
30. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.;

Parsia, B.; Payne, T.; et al. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November 2004. Available online: http://www.w3.org/Submission/OWL-S (acceessed on 15 April 2015).

31. CityGML. Available online: http://www.opengeospatial.org/standards/citygml (accessed on 25 May 2016).
32. Kim, A.; Luo, J.; Kang, M. Security Ontology for Annotating Resources. In Proceedings of the 5th

International Conference on Ontology, Databases and Applications on Semantics (ODBASE; 05), Agia Napa,
Cyprus, 31 October–4 November 2005; pp. 1483–1499.

33. Avizienis, A.; Laprie, J.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]

34. Stoimenov, L.; Stanimirovic, A.; Dordevic-Kajan, S. Semantic interoperability using multiples ontologies.
In Proceedings of the AGILE 2005 8th AGILE Conference on GIScience, Estoril, Portugal, 26–28 May 2005;
pp. 261–270.

http://www.redciudadesinteligentes.es
http://projectaccus.eu/
http://projectaccus.eu/
http://www.soa4all.ue
www.tatoo-fp7.eu
http://www.cloud4soa.com
http://www.semantichealthnet.eu
https://itea3.org/project/lifeware.html
http://dx.doi.org/10.3390/s150102137
http://www.ncbi.nlm.nih.gov/pubmed/25608216
http://dx.doi.org/10.1016/j.jss.2015.08.041
http://dx.doi.org/10.3390/s130201787
http://www.ncbi.nlm.nih.gov/pubmed/23385405
http://dx.doi.org/10.3390/s151127436
http://www.ncbi.nlm.nih.gov/pubmed/26528974
http://dx.doi.org/10.1016/j.cie.2008.11.024
http://dx.doi.org/10.1109/MCOM.2013.6461194
http://dx.doi.org/10.3390/s150613705
http://www.ncbi.nlm.nih.gov/pubmed/26110402
http://www.wildfly.org
http://wso2.com
http://dx.doi.org/10.1080/136588198241833
http://www.w3.org/Submission/OWL-S
http://www.opengeospatial.org/standards/citygml
http://dx.doi.org/10.1109/TDSC.2004.2

Sensors 2016, 16, 955 26 of 26

35. Jbossdeveloper. Available online: http://www.jboss.org/products/fuse/overview (accessed on 25
May 2016).

36. Mulesoft. Available online: http://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
(accessed on 25 May 2016).

37. Prud’hommeaux, E.; Seaborne, A. SPARQL Query Lenguaje for RDF, W3C Recommendation 15 January
2008. Available online: http://www.w3.org/TR/rdf-sparql-query (acceessed on 25 March 2016).

38. Brickley, D.; Miller, L. FOAF Vocabulary Specification 0.99. Namespace Document 14 January
2014—Paddington Edition. Available online: http://xmlns.com/foaf/spec (accessed on 25 March 2016).

39. Kornyshova, E.; Denecker, R. Decision making method family madise: Validations within the Requirements
Engineering Domain. In Proceedings of the 6th International Conference on Research Challenges in
Information Science RCIS, Valencia, Spain, 1–10 May 2012; pp. 1–10.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.jboss.org/products/fuse/overview
http://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
http://www.w3.org/TR/rdf-sparql-query
http://xmlns.com/foaf/spec
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Proposed System for Registration and Discovery of Subsystems and Services within ICP
	Innovations
	Seamless Interconnection and Semantic Interoperability
	Ontology Specifications
	Subsystem-Related Ontology Part
	Service-Related Ontology Part

	Architecture of the Proposed System and Component Specifications
	Procedure Specifications: The Specific Workflow of Registering and Discovering Services and Subsystems
	Subsystems Registration
	Services Registration
	Subsystem and Service Discovery

	Example and Validation of Subsystem and Service Registration and Discovery
	Description of a Use Case Example
	Example of Subsystem and Service Registration and Discovery
	Validation
	Response Time
	Registration Rate

	Conclusions and Future Work

