

Correction

Correction: Vázquez-Arellano, M., et al. 3-D Imaging Systems for Agricultural Applications—A Review. *Sensors* 2016, 16, 618

Manuel Vázquez-Arellano *, Hans W. Griepentrog, David Reiser and Dimitris S. Paraforos

Institute of Agricultural Engineering, University of Hohenheim, Garbenstrasse 9, Stuttgart 70599, Germany; hw.griepentrog@uni-hohenheim.de (H.W.G.); dreiser@uni-hohenheim.de (D.R.); d.paraforos@uni-hohenheim.de (D.S.P.)

* Correspondence: mvazquez@uni-hohenheim.de; Tel.: +49-711-4592-4554

Academic Editor: Simon X. Yang

Received: 28 June 2016; Accepted: 1 July 2016; Published: 5 July 2016

The authors wish to make the following corrections to Table 1 of the title paper [1]: the working environment of the PlantEye platform should be changed from "Greenhouse" to "Open field, Greenhouse" and the shadowing device of the Scanalyzer platform should be changed from " $\sqrt{}$ " to " \times ". The full corrected table is given below.

Table 1. Autonomous platforms for reducing the time-consuming and repetitive phenotyping practice.

Platform	Basic Principle	Shadowing Device	Environment	Institution	Type
Becam [73]	Triangulation		Open field	UMR-ITAP	Research
BoniRob [74]	TOF	$\sqrt{}$	Open field	Deepfield Robotics	Commercial
BredVision [75]	TOF	\checkmark	Open field	University of Applied Sciences Osnabrück	Research
Heliaphen [76]	Triangulation	×	Greenhouse	Optimalog	Research
Ladybird [77]	TOF and Triangulation	\checkmark	Open field	University of Sidney	Research
Marvin [78]	Triangulation	$\sqrt{}$	Greenhouse	Wageningen University	Research
PhenoArch [79]	Triangulation	\checkmark	Greenhouse	INRA-LEPSE (by LemnaTec)	Research
Phenobot [80]	TOF and Triangulation	×	Greenhouse	Wageningen University	Research
PlantEye [81]	Triangulation	×	Open field, Greenhouse	Phenospex	Commercial
Robot gardener [82]	Triangulation	×	Indoor	GARNICS project	Research
SAS [83]	Triangulation	×	Greenhouse	Alci	Commercial
Scanalyzer [84]	Triangulation	×	Open field, Greenhouse	LemnaTec	Commercial
Spy-See [85]	TOF and Triangulation	×	Greenhouse	Wageningen University	Research
Zea [86]	Triangulation	$\sqrt{}$	Open field	Blue River	Commercial

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vázquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D Imaging Systems for Agricultural Applications—A Review. *Sensors* **2016**, *16*, 618. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).