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Abstract:



The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme.
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1. Introduction


The Segway is a vehicle extended from the inverted-pendulum system and balancing robot. It can go anywhere and is easy to manipulate. Thus, the Segway is becoming more prevalent on urban sidewalks and the stable controller is essential for human safety. In order to design the controller for the Segway, the linear controllers such as proportional-integral-derivative (PID) [1] and linear quadratic regulator (LQR) [2] were firstly proposed. The structure of these linear controllers is simple and it is easy to analyze the stability. However, they require the linearized model of the Segway to design the controller. This implies that there is a limit due to the narrow operating range. To solve this problem, various nonlinear control methods such as sliding mode control [3,4] and adaptive control [5,6] based on the backstepping technique [7] were proposed. It is well known that the backstepping technique requires the differentiation of the virtual control and this complicates the controller. Although the dynamic surface control method [8] can remove the disadvantage of the backstepping technique, it is still complex because it should use the adaptive technique [9,10], neural network [11,12,13], and fuzzy logic [14,15] to deal with the uncertainties.



To reduce the complexity of the nonlinear control methods, a low complexity control method was recently proposed [16]. By using the prescribed performance function, it can adjust the transient and steady-state responses. Further, it does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Hence, the controller can be implemented more simply. In this regard, several controllers for various applications were presented using this method. In [17], the adaptive dynamic surface control for nonlinear time-varying system was proposed. The output feedback controller for interconnected time-delay systems was presented in [18]. The robust formation controller for nonlinear multi-agent systems was proposed in [19]. However, all these works assume that the control coefficient is known or constant if it is unknown. This assumption is not applicable to the Segway because the control coefficient is time-varying and unknown. Therefore, we need to relax this assumption. Furthermore, the Segway is an underactuated system which has only one control input. Thus, it is difficult to design the controller because we should control the angle and velocity of the Segway, simultaneously.



Motivated by these observations, we propose a robust control method for the Segway in the presence of the unknown control coefficient and model uncertainties. Firstly, we employ the Nussbaum gain technique [20] to deal with the unknown time-varying control coefficient. Then, the robust controller using the prescribed performance function and the auxiliary variable is designed to compensate the uncertainties and solve the underactuated problem. For the stability of the proposed scheme, we prove that all error signals of the closed-loop control system are bounded using the Lyapunov stability theory. Finally, the simulation results are provided to demonstrate the effectiveness of the proposed control method. Compared with previous methods for the Segway, the main contribution of this paper is as follows: (i) The proposed approach can provide the desired performance of the tracking error without knowing the time-varying control coefficient; (ii) adaptive technique, neural network, and fuzzy logic, which make the controller complex, are not required to compensate the uncertainties and thus, the proposed scheme can be simple; (iii) by introducing an auxiliary variable, we can solve the underactuated problem.



The rest of this paper is organized as follows. The problem formulation is introduced in Section 2. In Section 3, the approximation-free control for the Segway is presented. In Section 4, the effectiveness of the proposed scheme is validated through simulation results. Finally, we conclude the paper in Section 5.




2. Problem Formulation


Consider the Segway model shown in Figure 1. The dynamics of the Segway is as follows [21].


[image: there is no content]



(1)




where


m11=(m+M)r2+Iwm12=mlrm22=ml2+IbGb=mgl








here, m is the mass of the body that is composed of the Segway base and the passenger, M is the mass of the wheel, l is the length between the wheel axle and the center of gravity of the body, [image: there is no content] and θ are wheel’s rotation angle and the inclination angle of the body, respectively, [image: there is no content] and [image: there is no content] are the moments of inertia of the body and the wheel, respectively, r is the radius of the wheel, and τ is the control torque applied to the wheels of the Segway.


Figure 1. Segway model [22].
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From Equation Equation (1), it follows that


[image: there is no content]



(2)




where


M1=m11+m12cosθM2=m22+m12cosθ











To make the state model of the Segway, we define the state variable as [image: there is no content] and [image: there is no content]. From Equation (2), we can represent Equation (1) as follows:


[image: there is no content]



(3)




where


f(x1,x2)={(m12-(m12x2)2cosx1sinx1+m11Gbsinx1}/M¯(x1)b(x1)=M1(x1)/M¯(x1)M¯(x1)=m11m22-(m12cosx1)2











In Equation (3), the velocity model of the Segway is omitted. This is because the Segway is underactuated. However, it is necessary to control the angular velocity of the wheel as well as the inclination angle. It will be solved by introducing an auxiliary variable.



Assumption 1. 

The angle [image: there is no content] satisfies [image: there is no content].





Assumption 2. 

The state variables [image: there is no content], [image: there is no content], and [image: there is no content] are measurable exactly by sensors such as accelerometer and gyroscope [23,24].





Remark 1. 

In practice the sensor noise is inevitable. Thus, various techniques such as the Kalman filter [25] and state estimation [26] are used to reduce the effect of the sensor noise. However, the related technique for noise is another problem in view of the controller design. Therefore, we design the controller under Assumption 2.





In Equation (3), we assume [image: there is no content] and [image: there is no content] are unknown. Further, [image: there is no content] is time-varying. Therefore, [image: there is no content] and [image: there is no content] denote model uncertainties and unknown time-varying control coefficient, respectively. The control objective is to design the controller so that [image: there is no content] tracks its desired value [image: there is no content] while the control errors remain within the prescribed performance bounds even though there exist the unknown time-varying control coefficient and model uncertainties.




3. Controller Design


In this section, an approximation-free controller is designed step by step for the Segway with unknown time-varying control coefficient and model uncertainties. Define the errors as


ϵ1=ln1+z11-z1,ϵ2=ln1+z21-z2



(4)




where


z1=x1ρ1,z2=x2-α-μρ2








here, α is a virtual control, μ is an auxiliary variable, and [image: there is no content] and [image: there is no content] are performance functions defined by


[image: there is no content]



(5)




where [image: there is no content] and [image: there is no content] are initial values of ρ-functions, [image: there is no content] and [image: there is no content] are gains of ρ-functions, [image: there is no content] and [image: there is no content] are final values of ρ-functions, [image: there is no content] is the initial value of the virtual control input α. In Equation (4), [image: there is no content] where [image: there is no content]. Thus, if [image: there is no content] is bounded, [image: there is no content] satisfies [image: there is no content]. This means that the tracking error is bounded such that [image: there is no content].



Remark 2. 

As stated, it is difficult to control the inclination angle θ of the body and angular velocity [image: there is no content] of the wheel simultaneously because there is only one control torque. However, we need to control the angular velocity of the wheel as well as the inclination angle of the body. To solve this problem, we introduce an auxiliary variable μ satisfying the differential equation


[image: there is no content]



(6)




where [image: there is no content] and [image: there is no content] are positive constants. From Equation (6), one can easily show that the auxiliary variable μ is bounded.





Using Equations (3), (4) and (6), the error dynamics of [image: there is no content] and [image: there is no content] can be written as


[image: there is no content]



(7)







To deal with the unknown time-varying control coefficient [image: there is no content], we employ the Nussbaum gain technique [20]. A function [image: there is no content] is called a Nussbaum function if it has the following properties.


[image: there is no content]











In this paper, the Nussbaum function [image: there is no content] is considered and the following lemma is used to analyze the stability.



Lemma 1. 

Let [image: there is no content] and [image: there is no content] be smooth functions defined on [image: there is no content] with [image: there is no content], [image: there is no content]. For [image: there is no content], if the following inequality holds [27]:


[image: there is no content]



(8)




where [image: there is no content] and [image: there is no content] are bounded constants, and b is unknown time-varying control coefficient, then [image: there is no content], ζ and [image: there is no content] are bounded on [image: there is no content]. According to [28], if the solution of the resulting closed-loop is bounded, then [image: there is no content].





Proof of Lemma 1. 

See Theorem 1 in [27]. ☐





Remark 3. 

Lemma 1 means that if the condition Equation (8) is satisfied, the tracking error of the closed-loop system is bounded on [image: there is no content]. Furthermore, it can be extended for [image: there is no content]. Therefore, we will design the controller to satisfy the condition Equation (8).





Now the controller is designed step by step using the backstepping technique. Note that the backstepping technique has the disadvantage that requires the differentiation of the virtual control. However, the prescribed performance function based controller does not require the differentiation of the virtual control and thus, we can reduce the complexity of the controller.



Step 1: Consider the following Lyapunov function candidate for [image: there is no content]


[image: there is no content]



(9)







The time derivative of Equation (9) along with Equation (7) is


[image: there is no content]



(10)




where [image: there is no content]. The virtual control law α is chosen as


[image: there is no content]



(11)




where [image: there is no content] is a positive constant. Substituting Equation (11) into Equation (10) yields


[image: there is no content]



(12)







By the definition of Equation (5), [image: there is no content] and [image: there is no content] are bounded. This means that there exists a positive constant [image: there is no content] such that [image: there is no content]. Thus Equation (12) can be rewritten as


[image: there is no content]



(13)







If [image: there is no content], then [image: there is no content]. Therefore, we can conclude that [image: there is no content] where [image: there is no content], and [image: there is no content] satisfies [image: there is no content]. Furthermore, the boundedness of [image: there is no content] and μ implies that α is bounded, and thus, [image: there is no content] and [image: there is no content] are bounded. From Equations (6) and (7), [image: there is no content] is also bounded.



Step 2: Consider the following Lyapunov function candidate for [image: there is no content].


[image: there is no content]



(14)







The time derivative of Equation (14) along with Equation (7) is


V˙2=δ2ρ2ϵ2{f(x1,x2)+b(x1)τ-α˙+kμμ-γ1tanh(θ˙w)-tanh(ϵ2/2)ρ˙2}=δ2ρ2ϵ2{f(tanh(ϵ1/2)ρ1,tanh(ϵ2/2)ρ2)+b(x1)τ-α˙+kμμ-tanh(θ˙w)-tanh(ϵ2/2)ρ˙2}



(15)




where [image: there is no content]. The actual control law τ is chosen as


[image: there is no content]



(16)




where [image: there is no content] and [image: there is no content] are positive constants.



Remark 4. 

In Equation (16), the actual control law does not require any function approximations to compensate the uncertainties. Further, the differentiation of the virtual control is not required in spite of using the backstepping technique. Therefore, the controller is simple compared with previous results for the Segway.





Substituting Equation (16) into Equation (15) yields


[image: there is no content]



(17)







In Step 1, the boundedness of [image: there is no content] and [image: there is no content] is proved. Since [image: there is no content] is composed of [image: there is no content] and [image: there is no content], it is bounded. Then, there exists a positive constant [image: there is no content] satisfying [image: there is no content]. Thus Equation (17) can be expressed as


[image: there is no content]



(18)







Note that [image: there is no content]. Adding and subtracting [image: there is no content] in the right side of Equation (18), we have


[image: there is no content]



(19)







By the inequality,


[image: there is no content]











Then, Equation (19) can be rewritten as


[image: there is no content]



(20)




where [image: there is no content] and [image: there is no content]. Multiplying [image: there is no content] on both sides of Equation (20) yields,


[image: there is no content]



(21)







Integrating Equation (21) on [image: there is no content], we have


V2(t)≤V2(0)e-c0t+∫0t{bN(ζ)+1}ζ˙e-c0(t-ϱ)dϱ+∫0tc1e-c0(t-ϱ)dϱ≤c2+e-c0t∫0tbN(ζ)ζ˙ec0ϱdϱ+e-c0t∫0tζ˙ec0ϱdϱ



(22)




where [image: there is no content]. Note that [image: there is no content] and [image: there is no content] are positive. By Lemma 1, we can conclude that [image: there is no content], ζ and [image: there is no content] are bounded on [image: there is no content]. The boundedness of [image: there is no content] implies that [image: there is no content] satisfies [image: there is no content]. According to [28], the boundedness of these signals ensures [image: there is no content].



Theorem 1. 

For the Segway Equation (3) with completely unknown time-varying control coefficient and model uncertainties, if we apply the controller Equation (16), then the solution of the closed-loop system is bounded. Furthermore, the errors remain within their prescribed performance functions such that [image: there is no content] and [image: there is no content].





Proof of Theorem 1. 

By the previous design procedures from Step 1 to Step 2, it is proved that [image: there is no content] and [image: there is no content] are bounded. Thus, [image: there is no content] and [image: there is no content]. This means that [image: there is no content] and [image: there is no content]. ☐





It is necessary to prove the convergence of [image: there is no content]. For the simplicity, assume that [image: there is no content] and [image: there is no content] converge to zero. Since the bounds of [image: there is no content] and [image: there is no content] are depend on [image: there is no content] and [image: there is no content], the bounds of them can converge to nearby zero if we increase [image: there is no content] and [image: there is no content]. The convergence of [image: there is no content] and [image: there is no content] leads to the convergence of [image: there is no content] and [image: there is no content]. From Equations (4) and (11), [image: there is no content] and [image: there is no content] also converge to zero. This implies that [image: there is no content] and [image: there is no content] are zero, and thus, control torque τ is zero from Equation (3). Then, from Equation (16), η is zero because ζ is bounded due to [image: there is no content]. Since η is composed of [image: there is no content] and μ in Equation (16), μ converge to zero. If μ is bounded and converges to zero as [image: there is no content], the angular velocity [image: there is no content] of the wheel converges to zero by Equation (6) and Lemma 2 presented in [7].



Remark 5. 

The design procedure is as follows: (i) select [image: there is no content] to satisfy the condition such that [image: there is no content]; (ii) select [image: there is no content] and [image: there is no content] to satisfy the convergence rate and robustness for the external disturbance after it is stabilized, respectively; (iii) calculate [image: there is no content] using Equation (4); (iv) select [image: there is no content] properly. The error [image: there is no content] will be decreased as [image: there is no content] is increased. Calculate the virtual control α using Equation (11); (v) select [image: there is no content] to satisfy the condition such that [image: there is no content]; (vi) select [image: there is no content] and [image: there is no content] to satisfy the convergence rate and robustness for the external disturbance, respectively; (vii) calculate [image: there is no content] using Equation (4); (viii) select [image: there is no content] properly. Increasing [image: there is no content] leads to the smaller error [image: there is no content]. Calculate the actual control τ using Equation (16).






4. Simulation Results


In this section, the simulation results are provided to illustrate the effectiveness of the proposed scheme. For the real application, we use the model parameters presented in [29]. These are only for the simulation. That is, the proposed control scheme does not require the exact information of model parameters for the application and the simulation results show the robustness against these model uncertainties. The control parameters are chosen as [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].



Simulation results are shown in Figure 2, Figure 3, Figure 4 and Figure 5. Figure 2 and Figure 3 show the simulation results for [image: there is no content] and [image: there is no content], respectively. Figure 2a,b show that the angle of the inclination and control torque converge to zero as times go on. This means that the proposed control scheme is well working for the Segway model. Figure 2b,c show the position and velocity of the Segway, respectively. As one can see, the velocity of the Segway converges to zero because the angle of the inclination is zero. Thus, we can know that the Segway does not move if the control objective, which should return to the vertical after the initial disturbance, is achieved. Figure 3 also show that the angle of the inclination converges to zero in the case of the opposite direction. Figure 4 depicts the control coefficient [image: there is no content] for both two cases. The control coefficients are time-varying while the angle of the inclination is not zero. On the other hand, these become constants because θ is time-invariant after the convergence. To show the effectiveness of the proposed control scheme even though a rider is changed, we simulate other model parameters such as [image: there is no content] kg and [image: there is no content] m. Figure 5 shows the simulation result. Compared with Figure 2a, there is no different in the performance between them.


Figure 2. Simulation result for [image: there is no content]: (a) angle θ; (b) linear velocity v; (c) position x; (d) torque τ.



[image: Sensors 16 01000 g002 1024]





Figure 3. Simulation result for [image: there is no content]: (a) angle θ; (b) linear velocity v; (c) position x; (d) torque τ.



[image: Sensors 16 01000 g003 1024]





Figure 4. Control coefficient [image: there is no content]: (a) [image: there is no content]; (b) [image: there is no content].



[image: Sensors 16 01000 g004 1024]





Figure 5. Angle of segway, m = 40 kg, l = 0.75 m.



[image: Sensors 16 01000 g005 1024]






To compared with previous results, we simulate using LQR method presented in [22] under the same model parameters. The simulation results are shown in Figure 6 and Figure 7. Figure 6 shows the angle of the Segway without disturbance for [image: there is no content] and [image: there is no content]. In [22], they use the linearized model, i.e., the Segway model is linearized at [image: there is no content]. Thus, there is no difference in the performance at [image: there is no content]. However, if the initial error is large enough, we can see that there is a performance difference between our method and [22]. Figure 6b shows this result. Figure 7 shows the angle of the Segway with disturbance. To show the robustness of the proposed scheme after it is stabilized, we apply the external disturbance to the Segway from time 15 to 16 s. As one can see, the proposed scheme is effective even though the external disturbance is applied to the Segway after it is stabilized. Therefore, we can conclude that the proposed scheme has the good performance even though there are unknown control coefficient and model uncertainties.


Figure 6. Angle of Segway without disturbance (solid : proposed method, dotted : LQR method): (a) [image: there is no content]; (b) [image: there is no content].



[image: Sensors 16 01000 g006 1024]





Figure 7. Angle of Segway with disturbance (solid : proposed method, dotted : LQR method): (a) [image: there is no content]; (b) [image: there is no content].



[image: Sensors 16 01000 g007 1024]







5. Conclusions


In this paper, a robust controller has been proposed for the Segway with unknown time-varying control coefficient and model uncertainties. To deal with unknown time-varying control coefficient and model uncertainties, we design the controller using the Nussbaum technique and prescribed performance function. Since the proposed control scheme does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties, the structure of the controller is simple. Furthermore, to solve the underactuated problem, we introduce the auxiliary variable that is used to control the velocity of the Segway. From the Lyapunov stability theory, we prove that all error signals of the closed-loop control system are bounded. Finally, the simulation results show that the proposed scheme has better performance compared with previous results.
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