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Abstract: The tightly coupled strapdown inertial navigation system (SINS)/global position system
(GPS) has been widely used. The system observability determines whether the system state can be
estimated by a filter efficiently or not. In this paper, the observability analysis of a two-channel and
a three-channel tightly coupled SINS/GPS are performed, respectively, during arbitrary translational
maneuvers and angle maneuvers, where the translational maneuver and angle maneuver are modeled.
A novel instantaneous observability matrix (IOM) based on a reconstructed psi-angle model is
proposed to make the theoretical analysis simpler, which starts from the observability definition
directly. Based on the IOM, a series of theoretical analysis are performed. Analysis results show that
almost all kinds of translational maneuver and angle maneuver can make a three-channel system
instantaneously observable, but there is no one translational maneuver or angle maneuver can make
a two-channel system instantaneously observable. The system’s performance is investigated when the
system is not instantaneously observable. A series of simulation studies based on EKF are performed
to confirm the analytic conclusions.

Keywords: SINS; GPS; instantaneous observability matrix (IOM); reconstructed psi-angle model;
translational maneuver; angle maneuver; three-channel system; two-channel system

1. Introduction

The system observability is an important property of a dynamic system. The observability
determines whether a system state can be estimated by filters or not. It is well known that the
observability would be improved during maneuvers [1–5]. The reason is speculated that the
system state elements that cannot be observed at a low-dynamic environment are stimulated by
time-varying nature of the error model. In theory, it is very difficult to analyze the observability of
a time-varying system.

In an integrated strapdown inertial navigation system (SINS)/global position system (GPS),
the property of the SINS and GPS is complementary. The SINS is a self-contained system and can
provide continuous available navigation information at a relative high update rate. The measurements
provided by the GPS receiver are used for the information fusion process to prevent the growth of
navigation errors with time. Moreover, the biases of the inertial measurement unit (IMU) can be
estimated, which will improve the inertial navigation performance during the periods when the
satellite signals are jammed [6,7].

In a loosely coupled system, the position and velocity information provided by a GPS receiver
are used. In a tightly coupled system, the data fusion algorithm processes the pseudorange and
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deltarange measurements provided by a GPS receiver directly. The system state consists of SINS
errors, i.e., position errors, velocity errors, attitude errors, and biases of the IMU. After finishing the
initial alignment of a SINS, the system errors are small. A linear psi-angle model is well suited for
describing the SINS error propagation [7], while the pseudorange and deltarange measurement models
are still nonlinear.

There are many kinds of nonlinear filters that can be applied for the data fusion progress of
pseudorange and deltarange measurements with SINS information. However, the measurement
models are either very complex (e.g., Extended Kalman Filter (EKF)) or do not existent (e.g., Unscented
Kalman Filter (UKF); Cubature Kalman Filter (CKF)). Compared with a loosely coupled system whose
measurement model is a linear time-invariant system, this property makes it difficult to analyze the
effect of maneuvers on the observability of a tightly coupled system.

In [1,2], the observability of an integrated navigation system is analyzed from a global perspective.
However, such a method is very complex. Moreover, maneuvers are performed in a short time interval,
we are more concerned with the observability of a system during the time intervals of maneuvers.
Thus, the instantaneous observability analysis of a system is performed. If a system is instantaneously
observable at every time points in a time interval, the system state can be well estimated in this interval.

In [8], Goshen-Meskin, and Bar-Itzhack, presented a method for analyzing the observability
of a nonlinear system which can be modeled as a piece-wise constant system (PWCS). A stripped
observability matrix (SOM) was introduced for simplifying the observability analysis. Based on
this, in reference [9], the motion consisted of several different predetermined maneuvers, and then
the time-varying system was modeled as a PWCS. Then the observability analysis of the in-flight
alignment is performed. However, the method is not suited for a tightly coupled system, because the
measurement matrix of a tightly coupled SINS/GPS is either complex or not existent at all [10,11].
Likewise, references [3–5,12–14] also need a measurement matrix.

In [15], the covariance matrix of a filter is used to analyze the observability. However, this covariance
matrix is not equal to the actual covariance matrix, and the covariance matrix of a EKF is even not
“consistent” with the actual covariance matrix [10,11]. Thus, this method is not suitable for a tightly
coupled SINS/GPS. In addition, the observability should be the inherent property of a dynamic system,
and the observability analysis should be performed on the system model rather than others.

References [3–5,16] investigate general observability properties during a class of vehicle motions,
but those maneuvers are relatively simple, and even do not conform to practical motions. In this paper,
an arbitrary translational maneuver and an arbitrary angle maneuver are modeled by the method used
in SINS’s mechanization, which are closer to practical motions. Based on the IOM, we analyze the
instantaneous observability of a three/two-channel system during an arbitrary translational/angle
maneuver, and investigate the filter’s performance when a system is not instantaneously observable.
Our contribution can be briefly divided into two parts:

(1) A novel instantaneous observability matrix (IOM) based on a reconstructed psi-angle model
is proposed.

(2) An arbitrary translational/angle maneuver is modeled in a sufficient small time interval; this
idea is roused by strapdown inertial navigation system mechanization.

A series of simulation studies based on EKF are performed to confirm the theoretical
analysis conclusions.

This paper is organized as follows: Section 2 reconstructs a psi-angle model; Section 3 proposes
a novel instantaneous observability matrix based on the reconstructed psi-angle model; Section 4
models an arbitrary translational/angle maneuver in a sufficient small time interval and analyzes the
instantaneous observability of a three/two channel system during maneuvers; Section 5 carries out
extensive simulation studies for verifying the validity of the theoretical analyses; and conclusions are
made in Section 6.
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2. The Reconstructed Model

As the basis of observability analysis, the reconstructed psi-angle error model of SINS must
be rigorously derived. After the initial alignment process, the magnitudes of the system error state
elements are small; thus, a linear psi-angle model is well qualified for describing error propagation of
a SINS. In order to prevent the error growth of an unaided SINS, the IMU sensors’ biases are modeled.
The choice of an appropriate model for sensors’ bias is dependent on the IMU that is used [6]. In this
paper, the biases of IMU are modeled as random constants. Thus, the error model of a SINS is given as follows.

δ
.
rc
“ δvc ´ rωc

ecˆsδrc (1a)

δ
.
vc
“ ´rp2ωc

ie `ωc
ecqˆsδvc`

pΓc
s ´ rω

c
ieˆsrω

c
ieˆsqδrc+[ f cˆ

‰

ψc ` Tc
b∇

b (1b)

.
ψ

c
“ ´rpωc

ie `ωc
ecqˆsψ

c ` Tc
bεb (1c)

.
∇

b
“ 0

εb “ 0
(1d)

where Γc
s is earth tensorial matrix of gravitation calculated by navigation computer [17].

Most GPS receivers are equipped with low-cost crystal oscillators [6], so the clock error is relatively
big. We denote the receiver clock error and clock error drift as δt and δ f , respectively, then, the
pseudorange measurement rρi from the SINS to the i-th satellite is modeled as Equation (2)

ρipxq “ ||rc
i,sat ´ r̂sins ` δrc|| ` cδt (2a)

rρi “ ρ̂i,k`1{k ` Hρi

´

xk`1 ´ x̂k`1{kq `wρi (2b)

where ri,sat is the i-th satellite’s position vector relative to the Earth center, it can be received from GPS
satellite ephemeris; x “ rδrc δvc δt δ f sT consists of eight variables; ρ̂i,k`1{k “ ρipx̂k`1{kq, ρ̂i,k`1{k is the
prediction of ρi at the time point k, and x̂k`1{k is a part of the prediction of the system state provided

by the nonlinear filter; Hρi “ pBρi{BxT
q

ˇ

ˇ

ˇ

x̂k`1{k
is a Jacobian associated with ρi; r̂sins is a position vector

updated by the SINS’s navigation computer; and wρi is the pseudorange measurement noise.
The deltarange measurement rηi from the SINS to the i-th satellite, which is measured by the

Doppler shift of the carrier wave, is modeled as Equation (3)

ηi “
prc

i,sat ´ r̂sins ` δrcqT

||rc
i,sat ´ r̂sins ` δrc||

pvc
i,sat ´ v̂sins ` δvcq ` cT0δ f (3a)

rηi “ η̂i,k`1{k ` Hηipxk`1 ´ x̂k`1{kq `wηi (3b)

where vc
i,sat is the i-th satellite’s velocity vector relative to the Earth, which can be received from GPS

satellite ephemeris; T0 is the period of the satellites’ electromagnetic wave signal; v̂sins is the velocity
vector updated by the SINS’s navigation computer; η̂i,k`1{k “ ηipx̂k`1{kq is the prediction of ηi at

the time point k; Hηi “ pBηi{BxT
q

ˇ

ˇ

ˇ

x̂k`1{k
is a Jacobian associated with ηi; and wηi is the deltarange

measurement noise.
If four or more satellites are visible, there are eight or more constraint equations composed of

Equations (2b) and (3b). The measurements of a tightly coupled SINS/GPS can be rewritten as follows
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»

—

—

—

—

—

–

...
rρi ´ ρ̂i,k`1{k ` Hρi x̂k`1{k

...
rηi ´ η̂i,k`1{k ` Hηi x̂k`1{k

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

...
Hρi

...
Hηi

fi

ffi

ffi

ffi

ffi

ffi

fl

xk`1 `

»

—

—

—

—

—

–

...
wρi

...
wηi

fi

ffi

ffi

ffi

ffi

ffi

fl

“ Dxk`1 `wk`1 “ uk`1 (4a)

Rewriting Equation (4a) in a compact form as

´

DTD
¯´1

DTuk`1 “ xk`1 `w˚k`1 (4b)

where i = 1, 2, 3, 4 (or more), D is full rank [18], and w˚k`1=(DTD
¯´1

DTwk`1.
Equation (4b) possesses the same measurement matrix form as the measurement matrix of

a loosely coupled system. Through Equation (4), we can draw a conclusion that a loosely coupled
SINS/GPS is equivalent to a tightly coupled SINS/GPS essentially when the number of visible satellites
is four or more. x can be calculated accurately after each measurement; in other word, x can be observed
directly all the time. The analogous idea can be found in references [1,2,9,19]. Then, the filter can
estimate the other elements of the system state based on the estimated values of δrc and δvc. If the
measurement data provided by a GPS receiver are not precise, δrc and δvc cannot be estimated precisely,
and then the other elements will be contaminated.

In this paper, we analyze the instantaneous observability under the premise that four or more
satellites are visible, and the measurement data provided by the GPS receiver is precise.

Rewriting Equation (1b) as

δ
.
vc
` rp2ωc

ie `ωc
ecqˆsδvc ´ pΓc

s ´ pω
c
ieˆqpω

c
ieˆqqδrc=[ f cˆsψc ` Tc

b∇
b (5)

The left side of Equation (5) is a known value to the filter. We denote the left side of Equation (6)
as z, and yield

zc “ r f cˆsψc ` Tc
b∇

b (6)

where zc “
“

zc
1 zc

2 zc
3
‰T, which can be treated as a measurement.

The angular rate ωc
ec stimulated by a motion is far less than ωc

ie; specifically, this phenomenon
is more applicable for a low-speed vehicle [16], e.g., a ship or car. Thus, ωc

ec ˆψ
c can be omitted in

Equation (1c), the resulting simplified model is given as follows:

.
ψc “ ´rωc

ieˆsψ
c ` Tc

bεb

.
ε

b
“ 03ˆ1,

.
∇

b
“ 03ˆ1

zc “ r f cˆsψc ` Tc
b∇

b

(7)

We denote the simplified error state as yc “ rpψcq
T
pεbq

T
p∇bq

T
sT, rewriting Equation (7) in

a compact form as
ŷc “ Ayc, zc “ Cyc (8)

where

A “

»

—

–

´rωc
ieˆs Tc

b 03ˆ3

03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3

fi

ffi

fl

C “
”

r f cˆs 03ˆ3 Tc
b

ı

(9)
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Compared with the original model, the reconstructed model is a linear time-varying system and
has a simple structure, which is easier to use for performing observability analysis.

For a two-channel system, the altitude channel is eliminated from the SINS’s mechanization
equations (but a three-channel system possesses this altitude channel). It is useless to reserve the
altitude channel errors (i.e., δvU and δrU) in the reconstructed model. Therefore, the last row of the
reconstructed measurement matrix (C) is eliminated.

3. Instantaneous Observability Matrix

In this section, the instantaneous observability analysis of a tightly coupled SINS/GPS is
introduced. Observability determines the efficiency of a nonlinear filter designed to estimate the
system state [8]. Based on the reconstructed model, we design an instantaneous observability matrix
(IOM) directly through the following observability definition.

Definition 1 [2,17]: A system is said to be observable if for any unknown initial state xpt0q, there exists a finite
t1 ą t0 such that the knowledge of the input and output over rt0, t1s suffices to uniquely determine the initial
state xpt0q. Otherwise, the system is said to be unobservable.

The above definition indicates that a system state is said to be observable if the initial system state
xpt0q can be determined uniquely by the measurements during the time interval rt0, t1s. Meanwhile,
we should also notice that the measurement data can be used to construct difference equations. If the
time interval rt0, t1s is small enough, the i-th-order difference equation is identical to the i-th-order
derivative (i = 1, 2, 3, ...) at the initial time t0. Therefore, both of them involve equivalent information
that can be used to derive the system initial state xpt0q. In other words, we can use the derivatives of
the measurement at initial time t0 to perform observability analysis. The initial time can be selected as
any specific time point. The observability at a time point is regarded as instantaneous observability.

The derivatives of the new measurement respective to time t at a specific time point are listed
as follows

zc “ Cyc

.
zc
“

.
Cyc `C

.
yc
“ p

.
C`CAqyc “ N1yc

..
zc
“

.
N1yc ` N1

.
yc
“ p

.
N1 ` N1Aqyc “ N2yc

...
pkq
zc “

.
Nk´1yc ` Nk´1

.
yc
“ p

.
Nk´1 ` Nk´1Aqyc “ Nkyc

(10)

where Nk describes the relation between y and the k-th-order derivative of z. The recursive form of Nk
is given as follows

N0 “ C
Nk “

.
Nk´1 ` Nk´1A

(11)

where k “ 1, 2, 3 ¨ ¨ ¨ .
Rewriting Equation (13) in a compact form as

Zc “ Θcyc (12)

where
Θc “ rNT

0 NT
1 ¨ ¨ ¨N

T
k s

T

Zc “ rpzcqT p
.
zc
q

T
¨ ¨ ¨

piq

pzcqTsT
(13)

We denote Θc as an Instantaneous Observability Matrix (IOM), the IOM is closely related to
maneuvers. Maneuvers are performed in a short time interval, so the instantaneous observability is
an important property for a system. If the rank of Θc is full, y can be determined uniquely by z and its
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derivatives. If a system is instantaneously observable at all time points in time interval rt0, t1s, y will
be estimated efficiently and tends to converge in rt0, t1s.

For a two-channel SINS/GPS system, the 3i-th, (i = 1, 2, 3, . . . ) row are eliminated from Θc.

4. Instantaneous Observability Analysis

In a sufficiently small time interval rt0, t1s, the angular rate ωt
tb and the acceleration ac change

linearly [19], we have
a “ a0 ` a1pt´ t0q, t P rt0, t1s (14a)

ωcb “ ω0 `ω1pt´ t0q, t P rt0, t1s (14b)

where ω0, ω1, a0 and a1 are constant vectors in this small time interval rt0, t1s, and the magnitude of
ω0 and ω1 are relatively small in practice. The derivatives of Tc

b and f c are derived as follows

.
T

c
b “ rω

c
cbˆsT

c
b

..
T

c
b “ rω

c
1ˆsT

c
b

piq
Tc

b « 03ˆ3 , i “ 3, 4, 5, . . . (15a)

f c “ ac ` 2rωc
iesv

c ´ gc
.
f

c
“ a1 ` 2rωc

iesa
c

..
f

c
“ 2rωc

iesa
c
1

piq
f c “ 03ˆ1 , i “ 3, 4, 5, . . .

(15b)

It is more clear and intuitive that those parameters of a maneuver are projected into t-frame, so
the similarity transformation theorem of the skew symmetric matrix is introduced for transforming V
from c-frame to t-frame, as follows

rVtˆs “ Tt
c rV

cˆs Tc
t (16)

where V is an arbitrary three-dimensional vector.
Substituting Equations (15a), (15b) and (16) into Equation (13) yields

Θc “

»

—

—

—

—

–

Tc
t
“

f t‰ Tt
c 03ˆ3 Tc

b

Tc
t r

.
f

t
ˆs´ Tc

t r f
tˆsrωt

ieˆsT
t
c Tc

t r f
tˆsTt

cTc
b Tc

t
“

ωtˆ
‰

Tt
cTc

b

Tc
t r

..
f

t
ˆs´ Tc

t r
.
f

t
ˆsrωt

ieˆsT
t
c 2Tc

t r
.
f

t
ˆsTt

c ´ Tc
t r f

tˆsrωt
ieˆsT

t
c ` Tc

t r f
tˆs

“

ωtˆ
‰

Tt
cTc

b Tc
t
“

ωt
1ˆ

‰

Tt
cTc

b

03ˆ3 3Tc
t r

..
f

t
ˆsTt

c ´ 3Tc
t r

.
f

t
ˆsrωt

ieˆsT
t
c ` 3Tc

t r
.
f

t
ˆs

“

ωtˆ
‰

Tt
cTc

b 03ˆ3

fi

ffi

ffi

ffi

ffi

fl

(17)

Substituting Equation (17) into Equation (12) yields

Zc “ Θcyc “

»

—

–

Tc
t 03ˆ3 03ˆ3

03ˆ3 Tc
t 03ˆ3

03ˆ3 03ˆ3 Tc
t

fi

ffi

fl

Θt

»

—

–

Tt
c 03ˆ3 03ˆ3

03ˆ3 Tt
b 03ˆ3

03ˆ3 03ˆ3 Tt
b

fi

ffi

fl

yc (18)

Rewriting Equation (18)
Zt “ Θtyt (19)

where

Zt “ rpztqT p
.
zt
q

T
¨ ¨ ¨

piq
`

zt˘T
sT

zt “ rz1 z2 z3s
T

(20a)

and
yt “ rpψtq

T
pεtq

T
p∇tq

T
sT

∇t “ Tt
b∇

b “ r∇E ∇N ∇Us
T

εT “ Tt
bεb “ rεE εN εUs

T
(20b)

and
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Θt “

»

—

—

—

—

–

“

f t‰ 03ˆ3 I3ˆ3

r
.
f

t
ˆs´ r f tˆsrωt

ieˆs r f tˆs
“

ωtˆ
‰

r
..
f

t
ˆs´ r

.
f

t
ˆsrωt

ieˆs 2r
.
f

t
ˆs´ r f tˆsrωt

ieˆs` r f
tˆs rωˆs

“

ωt
1ˆ

‰

03ˆ3 3r
..
f

t
ˆs´ 3r

.
f

t
ˆsrωt

ieˆs` 3r
.
f

t
ˆs rωˆs` r f tˆs rω1ˆs 03ˆ3

fi

ffi

ffi

ffi

ffi

fl

(21)

Equation (17) is equivalent to Equation (21), but Equation (21) has more concise form; thus, it is
suited to be used for analyzing the instantaneous observability.

4.1. Stationary or Constant Velocity

When a vehicle is stationary or is kept constant velocity motion, and the attitude does not change,
we have

f “ ´g,
piq
f “ 03ˆ1, ω0 “ 03ˆ1, ω1 “ 03ˆ1, i “ 1, 2, 3, ¨ ¨ ¨ (22)

Substituting Equation (22) into Equation (21) yields

sta{conv_v

Θt
three´channel

“

»

—

–

´rgtˆs 03ˆ3 I3ˆ3

rgtˆsrωt
ieˆs ´rgtˆs 03ˆ3

03ˆ3 rgtˆsrωt
ieˆs 03ˆ3

fi

ffi

fl

(23)

Performing row and column elementary operations on Equation (23) yields rank

˜

sta{conv_v

Θt
three´channel

¸

“ 7 ă 9.

In this case, the system is not instantaneously observable at all time points, the simplified error
state y can not be determined uniquely by z all the time; thus, y cannot be estimated accurately by
a filter.

It is useful to analyze the performance of a system in a not instantaneously observable time
interval. Substituting Equation (23) into Equation (19) yields

ψE “
1
g

z2 ´
1
g
∇N (24a)

ψN “ ´
1
g

z1 `
1
g
∇E (24b)

ψU “ ´
tanϕ

g
z1 ´

1
gΩcosϕ

.
z2 `

2
gΩ2sin2ϕ

..
z1 `

tanϕ

g
∇E (24c)

εE “
1

gΩsinϕ

..
z1 (24d)

εN “
Ωsinϕ

g
z2 ´

1
g

.
z1 ´

Ωsinϕ

g
∇N (24e)

εU “ pΩsinϕtanϕqz2 ´ tanϕ
.
z1 ´

1
gΩcosϕ

..
z2 ´ pΩsinϕtanϕq∇N (24f)

∇U “ z3 (24g)

Herein, ∇U is only coupled with the measurement z and its derivatives, so it can be estimated
efficiently. And, εE is only coupled with

..
z1, but the coupling coefficient gΩsinϕ is too small, so εE can

not be estimated effificenly. ψE, ψN, ψU, εN, εU, ∇E and ∇N are coupled with each other, those terms
can not be distinguished efficiently.

For a two-channel system, the rank of its IOM is 6, and ∇U is not coupled with measurement and
other terms, so ∇U cannot be observed. Other terms have the same form with Equation (24).
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4.2. Maneuvers

It is very difficult to analyze the instantaneous observability of a system during
arbitrary maneuvers. In this paper, the observability analysises during angle maneuvers and
translational maneuvers are performed, respectively. This section shows why most kinds of
translational/angle maneuver can make a system instantaneously observable and finds the exceptions
of translational/angle maneuvers that cannot make a system instantaneously observable. First, we
present a lemma, which is used later.

Lemma 1: F is a nˆ n invertible matrix, G is a mˆm matrix, E is a nˆm matrix, H is a mˆ n matrix,
m, n “ 1, 2, 3, . . ., there exist

n` rankpG´ HF´1Eq “ rank

˜«

F E
H G

ff¸

(25)

Proof of Lemma 1: Because F is a nˆ n invertible matrix, we have
«

Inˆn 0nˆm

´HF´1 Imˆm

ff«

F E
H G

ff«

F 0nˆm

0 Imˆm

ff

“

«

Inˆn E
0 G´ HF´1E

ff

and

rank

˜«

F E
H G

ff¸

“ rank

˜«

I 0
´HF´1 I

ff«

F E
H G

ff«

F 0
0 I

ff¸

“ rank

˜«

I E
0 G´ HF´1E

ff¸

“ rankpFq ` rankpG´ HF´1Eq “ n` rankpG´ HF´1Eq

Therfore, Lemma 1 is true.
According to Lemma 1, we have

rankpΘtq “ 3` rankpΘt
subq (26)

where

Θt
sub “

»

—

—

–

r
.
f

t
s ´ r f tsrωt

ies ´
“

ωtsr f t‰ r f tˆs

r
..
f

t
s ´ r

.
f

t
srωt

ies ´
“

ωt
1sr f

t‰ 2r
.
f

t
s ´ r f tsrωt

ies ` r f
ts
“

ωt‰

0 3r
..
f

t
s ´ 3r

.
f

t
srωt

ies ` 3r
.
f

t
s
“

ωt‰` r f cs
“

ωt
1
‰

fi

ffi

ffi

fl

(27)

4.2.1. Angle Maneuver

In this case, the acceleration is very small and can be neglected, for example, a SINS spins on
a spot, we have

a « 03ˆ1, f « ´g (28)

Substituting Equations (14b) and (28) into Equation (21) yields

angle´maneu

Θt
sub

three´channel
“

»

—

–

rgtsrωt
ies `

“

ωtsrgt‰ ´rgts
“

ωt
1srg

t‰ rgtsrωt
ies ´ rg

ts
“

ωt‰

0 ´rgts
“

ωt
1
‰

fi

ffi

fl

(29)

The rank of Equation (29) is investigated by checking its null space. If the dimension of its null
space is not zero, the system is not instantaneously observable.
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Let Y “ rpY1q
T
pY2q

T
s
T

be an element of the null space of Equation (29), we have

angle´maneu

Θt
sub

three´channel
Y “ 0 (30)

(1) Assuming: ωt
1 ‰ 03ˆ1 and ωt

1 is neither perpendicular nor parallel to gt, this assumption is
valid in practice

Substituting Equation (29) into Equation (30) yields

03ˆ1 “ gt ˆY2 (31a)

03ˆ1 “ gt ˆ pωt
1 ˆY2q (31b)

03ˆ1 “ ωt
1 ˆ pg

t ˆY1q (31c)

03ˆ1 “ gt ˆ pωt
ie ˆY1q `ωt ˆ pgt ˆY1q (31d)

It is inferred from Equation (31a) that

Y2 “ b2gt, b2 P R (32)

Substituting Equation (32) into Equation (31b) yields

03ˆ1 “ b2gt ˆ pωt
1 ˆ gtq (33)

Thus, b2 “ 0 and Y2 “ 03ˆ1.
If Y1 ‰ 03ˆ1, Equation (31c) implies that Y1 “ b1gt, b1 P R or ωt

1 “ b˚1 Y1 ˆ gt, b˚1 ‰ 0, b˚1 P R.
(a) If Y1 “ b1gt, substituting it into Equation (31d), we have

03ˆ1 “ b1gt ˆ pωt
ie ˆ gtq (34)

Thus, b1 “ 0 and Y1 “ 03ˆ1.
(b) If ωt

1 “ b˚1 gt ˆY1, b˚1 ‰ 0, b˚1 P R, substituting it into Equation (31d), we have

03ˆ1 “ gt ˆ pωt
ie ˆY1q `ωt ˆ pgt ˆY1q (35)

where gt ˆ pωt
ie ˆY1q is parallel to plane-(ωt

ie, Y1) and perpendicular to gt; ωt ˆ pgt ˆY1q is parallel to
plane-(gt, Y1) and perpendicular to ωt;plane-(ωt

ie, Y1) and plane-(gt, Y1) intersect on Y1. If Equation (35)
is valid, gt ˆ pωt

ie ˆ Y1q is parallel to ωt ˆ pgt ˆ Y1q, then, gt ˆ pωt
ie ˆ Y1q, ωt ˆ pgt ˆ Y1q and Y1 are

parallel to each other. Then, we have Y1 is perpendicular to gt and ωt, thus, Y1 “ b˚˚1 gt ˆωt, b˚˚1 ‰ 0,
b˚˚1 P R. Combining Y1 with ωt

1 “ b˚1 gt ˆY1, we have

ω1 “ b˚1 b˚˚1 gt ˆ pgt ˆωtq (36)

Equation (36) implies that ωt
1 is perpendicular to gt, this result is contradict the assumption (1).

Therefore, ωt
1 “ b˚1 gt ˆY1, b˚1 ‰ 0, b˚1 P R is not valid, thus Y1 “ 03ˆ1. The dimension of the null space

of Equation (29) is zero, the rank of Equation (29) is full, and the system is instantaneously observable
at all time points.

(2) Assuming: ωt
1 ‰ 03ˆ1 and ωt

1Kgt

Substituting Equation (29) into Equation (30) yields

03ˆ1 “ gt ˆY2 (37a)

03ˆ1 “ gt ˆ pωt
1 ˆY2q (37b)
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03ˆ1 “ Θ11Y1 “
`

rgtsrωt
ies `

“

ωtsrgtsqY1 (37c)

03ˆ1 “ Θ21Y1 “
“

ωt
1srg

t‰Y1 (37d)

It is inferred from Equations (37a) and (37b) that Y2 “ 03ˆ1. Because of ωt
1Kgt, ωt is variable and

not parallel to gt at almost all time points. We set

ωt “ rωt
E ωt

N ωt
Us

T, ωt
1 “ rω

t
1,E ωt

1,N 0sT (38)

where ωT
E and ωT

N should not be zero at the same time. ωt
1,E and ωt

1,N also should not be zero at the
same time. Substituting Equation (38) into Equations (37c) and (37d) yields

Θ11 “

»

—

–

gpΩsinϕ`ωt
Uq 0 0

0 gpΩsinϕ`ωt
Uq ´gΩcosϕ

´gωt
E ´gωt

N 0

fi

ffi

fl

,

Θ21 “

»

—

–

0 0 0
0 0 0

´gωt
1,E gωt

1,N 0

fi

ffi

fl

(39)

We have
«

Θ11

Θ21

ff

Y1 “ Θ˚Y1 “ 06ˆ1 (40)

The rank of Θ˚ is equivalent to the rank of Θ˚˚ in Equation (41), as follows

Θ˚˚ “

»

—

–

2 0
0 ωt

N
0 ωt

1,N

fi

ffi

fl

(41)

If ωt
N and ωt

1,N are equivalent to zero at the same time, i.e., ωt
N “ ωt

1,N “ 0, we have

rankpΘ˚q ă 3 (42)

the system is not instantaneously observable at all time points, in this case, ωt and ωt
1 have the

following form
ωt “ rωt

E 0 ωt
Us

T, ωt
1 “ rω

t
1,E 0 0sT (43)

In the other cases, the system is instantaneously observable.
(3) Assuming: ωt

1 ‰ 03ˆ1 and ωt
1 is parallel to gt, we set ωt

1 “ b1gt, b1 ‰ 0, b1 P R
Substituting Equation (29) into Equation (30) yields

03ˆ1 “ gt ˆ p
`

ωt
ie ´ωt˘ˆY2q (44a)

03ˆ1 “ b1gt ˆ pgt ˆY1q (44b)

03ˆ1 “ gt ˆ pωt
ie ˆY1q `ωt ˆ pgt ˆY1q (44c)

ωt is variable and not equivalent to ωt
ie at almost any time points. It is inferred from Equation (44a)

that Y2 “ 03ˆ1.
If Y1 ‰ 03ˆ1, then, Equation (44b) implies that Y1 “ b˚1 gt, b˚1 ‰ 0, b˚1 P R, substituting it into

Equation (44c), we have
03ˆ1 “ b˚1 gt ˆ pωt

ie ˆ gtq (45)

Equation (45) is invalid; therefore, Y1 “ 03ˆ1, and the system is instantaneously observable at all
time points.
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(4) Assuming: ωt
1 “ 03ˆ1, we have

angle´maneu

Θt
sub

three´channel
“

»

—

–

rgtsrωt
ies `

“

ωt
0srg

t‰ ´rgts

03ˆ3 rgtsrωt
ies ´ rg

ts
“

ωt
0
‰

03ˆ3 03ˆ3

fi

ffi

fl

(46)

Substituting Equation (46) into Equation (30) yields

03ˆ1 “ gt ˆY2 (47)

03ˆ1 “ gt ˆ p
`

ωt
ie ´ωt

0
˘

ˆY2q (48)

03ˆ1 “ Θ11Y1 “ prgtsrωt
ies `

“

ωt
0srg

t‰qY1 (49)

If ωt
0 “ ωt

ie, there exists Y2 “ b1gt, b1 ‰ 0, b1 P R. In this case, the system is not instantaneously
observable all the time.

If ωt
0 ‰ ωt

ie, we set ωt
0 as follows

ωt
0 “ rω

t
0,E ωt

0,N ωt
0,Us

T (50)

Substituting Equation (50) into Equation (49) yields

Θ11 “

»

—

–

gpΩsinϕ`ωt
0,Uq 0 0

0 gpΩsinϕ`ωt
0,Uq ´gΩcosϕ

´gωt
0,E ´gωt

0,N 0

fi

ffi

fl

(51)

If ωt
0,N “ 0, there exist ωt “ rωt

0,E 0 ωt
0,Us

T, and rankpΘ11q ă 3. In this case, the system is not
instantaneously observable all the time. In the other cases, the system is instantaneously observable.

It is highly likely that Assumptions (2)–(4) are invalid in practice, and Assumption (1) matches the
practice better. Thus, we can say that the system is instantaneously observable during angle maneuver.

We analyze the observability properties of a two-channel system under the first assumption.
In this case, the rank of the IOM is 8, and this system is not instantaneously observable at all time
points. ωt and ωt

1 are set as follows

ωt “ rωt
E ωt

N ωt
Us

T, ωT
1 “ rω

t
1,E ωt

1,N ωt
1,Us

T (52)

and

f t « ´gt,
piq

f t “ 03ˆ1 (53)

Substituting Equations (52) and (53) into Equation (21) yields

ψE “
1
g

z2 ´
1
g
∇N (54a)

ψN “ ´
1
g

z1 `
1
g
∇E (54b)

ψU “ ´
tanϕ

g
z1 ´

1
gΩcosϕ

.
z2 `

1
Ωcosϕ

εE ´
ωt

E
gΩcosϕ

∇U `
Ωsinϕ`ωt

U
gΩcosϕ

∇E (54c)

εN “
Ωsinϕ

g
z2 ´

1
g

.
z1 ´

Ωsinϕ`ωt
U

g
∇N `

ωN

g
∇U (54d)

ωt
1,EεU ´ωt

1,UεE “
1
g

;z1 (54e)
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ωt
1,NεU ´ωt

1,UεN “
1
g

;z2 (54f)

pΩsinϕ´ωt
UqεE `ωt

EεU ´
ωt

1,U

g
∇N `

ωt
1,N

g
∇U “

1
g

..
z1 (54g)

pΩsinϕ´ωt
UqεN ´ pΩcosϕ`ωt

NqεU `
ωt

1,U

g
∇E ´

ωt
1,E

g
∇U “

..
z2 (54h)

All elements of the system state are coupled with each other, the filter can not distiguish them, so,
the system state can not be estimated accurately. All the estimated elements interact.

4.2.2. Translational Maneuver

In this case, the attitude is almost unchangeable, for example, a car accelerates, decelerates, or
horizontally drifts. We have

ωcb « 03ˆ1 (55)

Substituting Equations (14a) and (15b) into Equation (27) yields

trans-maneu
Θt

sub
three-channel

“

»

—

–

ra1 ` 2ωt
ie ˆ as ´ r f tsrωt

ies r f tˆs

2rωt
ie ˆ a1s ´ ra1srω

t
ies 2ra1 ` 2ωt

ie ˆ as ´ r f tsrωt
ies

0 6rωt
ie ˆ a1s ´ 3ra1srω

t
ies

fi

ffi

fl

(56)

Let X be an element of the null space of Equation (56), we have

X=

«

X1

X2

ff

,
trans-maneu

Θt
sub

3-channel
X “ 0 (57)

(1) Assuming: a1 ‰ 0, a1 is neither parallel nor perpendicular to ωt
ie. This assumption is to be

satisfied practically.
Substituting Equation (56) into Equation (57) yields

03ˆ1 “ 2pωt
ie ˆ a1q ˆ X1 ´ a1 ˆ pω

t
ie ˆ X1q (58)

03ˆ1 “ 2pωt
ie ˆ a1q ˆ X2 ´ a1 ˆ pω

t
ie ˆ X2q (59)

Equations (58) and (59) have the same form, we just need to analysis one of them. Equation (58)
can be rewritten as

2X1 ˆ pω
t
ie ˆ a1q ` a1 ˆ pω

t
ie ˆ X1q “ 03ˆ1 (60)

where X1 ˆ pω
t
ie ˆ a1q is parallel to plane-

`

ωt
ie, a1

˘

and perpendicular to X1; a1 ˆ pω
t
ie ˆ X1q is

parallel to plane-
`

ωt
ie, X1

˘

and perpendicular to a1; plane-
`

ωt
ie, a1

˘

and plane-
`

ωt
ie, X1

˘

intersect on ωt
ie.

If Equation (60) is valid, we have X1 ˆ pω
t
ie ˆ a1q and a1 ˆ pω

t
ie ˆ X1q are parallel to each other, and

them would be parallel to ωt
ie, then, we conclude that ωt

ie is perpendicular to a1. However, the verdict
appears to contradict the assumption that a1 is not perpendicular to ωt

ie. Therefore, X1ˆ pω
t
ieˆ a1q and

a1 ˆ pω
t
ie ˆ X1q are not parallel to each other. Combining this with ωt

ie ˆ a1 ‰ 03ˆ1, ra1srω
t
ies ‰ 03ˆ3,

we have
X1 “ 03ˆ1, X2 “ 03ˆ1 (61)

Under this assumption, the dimension of the null space of Equation (56) is zero, the rank of
Equation (56) is full, the system is instantaneously observable at all time points.
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(2) Assuming: a1 “ 0, and at
0 is neither parallel nor perpendicular to ωt

ie, we have

trans-maneu
Θt

sub
three-channel

“

»

—

–

2rωt
ie ˆ as ´ r f tsrωt

ies r f tˆs

0 4rωt
ie ˆ as ´ r f tsrωt

ies

0 0

fi

ffi

fl

(62)

Substituting Equation (57) into Equation (62) yields

2(ωt
ie ˆ a0

˘

ˆ X2 ´ f t ˆ pωt
ie ˆ X2q “ 03ˆ1 (63)

4(ωt
ie ˆ a0

˘

ˆ X2 ´ f t ˆ pωt
ie ˆ X2q “ 03ˆ1 (64)

Using the analytical method, which is similar to the methods used in Equation (58) and (59),
we have

X1 “ 03ˆ1, X2 “ 03ˆ1 (65)

Under this assumption, the dimension of the null space of Equation (60) is zero, the rank of
Equation (60) is full, the system is instantaneously observable, and the system state can be distinguished
and estimated efficiently by a filter.

The observability analysis of a two-channel system is performed under the above assumptions.
In this case, the rank of its IOM is 8, and, the last three columns of Equation (21) are list as follows

trans-maneu
Θt

subpc7, c8, c9q
three-channel

“

»

—

—

—

—

—

—

–

1 0 0
0
0
...
0

1
0
...
0

0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(66)

∇U is neither coupled with measurements nor other elements of the simplified error state. Thus,
∇U can not be observed by a filter, the other elements can be distinguished and estimated accurately.

5. Simulations and Results

To evaluate the observability analysis conclusions in Section 4, a series of numerical simulations
based on a EKF are performed in this section. The accelerometer constant bias and gyroscope constant
drift is set as 10´3 g and 0.1˝/h, respectively; all measurement noise are treated as Gaussian noise, the
standard derivations of acceleration measurement noise is set as 5 ˆ 10´4 g; the standard derivations
of gyroscope measurement noise is set as 0.05˝/h; and the standard derivations of pseudorange
measurement noise and delta pseudorange measurement noise are set as 0.5 m and 0.01 m/s,
respectively. The initial attitude angle error vector is [20.6265” 22.6891” 196.6309”].

ψ defines the attitude of p-frame relative to c-frame, δθ defines the attitude of c-frame relative to
t-frame, and

δθc “ rδrE{r´δrN{r´δrEtanϕ̂{rsT (67)

where r “ Re ` h, so the small rotation vector defines the attitude of c-frame relative to t-frame is
φ “ δθ ` ψ.

5.1. Simulation 1: Stationary

In simulation 1, we test and investigate the performance of a filter designed for a tightly coupled
SINS/GPS with a stationary condition. Simulation figures are list as follows

(a) Three-channnel system
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In Figure 1e, the equivalent Easten Gyroscope Constant Drift εE can not be well estimated;
In Figure 1f, the equivalent Altitude Accelerometer Constant Bias ∇U can be well estimated. The above
two simulation results are consistent with the theoretical analysis. And, the convergence rate of
∇U is very fast, this result is also consistent with the previous theoretical analysis (Section 4.2.2).
It seems that the equivalent Altitude Gyroscope Constant Drift εU can also be estimated by the filter,
which seems to breach the previous theoretical analysis (Section 4.2.2). This is because the coefficient
Ωsin2 ϕ∇N{cosϕ in Equation (24f) is negligibly small, on the order of 10´8; thus, Equation (24f) can be
rewritten as follows

εU “
Ωsin2 ϕ

cosϕ
z2 ´ tanϕ

.
z1 ´

1
gΩcosϕ

..
z2 (68)
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filter, which seems to breach the previous theoretical analysis (Section 4.2.2). This is because the 
coefficient 2

Nsin cos    in Equation (24f) is negligibly small, on the order of 10−8; thus, 
Equation (24f) can be rewritten as follows 

2

U 2 1 2

sin 1
tan

cos cos
z z z

g


 

 


  


   (68) 

Herein, the U  is only coupled with the measurement z  and its derivatives, so it can be 
estimated. This result also supports the previous theoretical analysis. In Equation (29e), the 
coefficient Nsin g   is negligibly small, on the order of 10−9 ; thus, Equation (29e) can be 
rewritten as follows 

N 2 1

sin 1
z z

g g





    (69) 

the coefficients 1 g  and sin g  in Equation (69) are much less than the coefficients in 

Equation (68), so the coupling between N  and 2z , 1z  are much weaker, and the convergence 

rate of N  is much slower than U . 
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(b) Two-channnel system 

In Figure 2f, the equivalent Altitude Accelerometer Constant Bias ( U ) cannot be estimated 
efficiently, the other elements show on the same behaviors as the counterparts in a three-channel 
system. These results are consistent with the previous theoretical analysis (Section 4.2.2). 
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Herein, the εU is only coupled with the measurement z and its derivatives, so it can be estimated.
This result also supports the previous theoretical analysis. In Equation (29e), the coefficient Ωsinϕ∇N{g
is negligibly small, on the order of 10´9; thus, Equation (29e) can be rewritten as follows

εN “
Ωsinϕ

g
z2 ´

1
g

.
z1 (69)

the coefficients ´1{g and Ωsinϕ{g in Equation (69) are much less than the coefficients in Equation (68),
so the coupling between εN and z2,

.
z1 are much weaker, and the convergence rate of εN is much slower than εU.

(b) Two-channnel system

In Figure 2f, the equivalent Altitude Accelerometer Constant Bias (∇U) cannot be estimated
efficiently, the other elements show on the same behaviors as the counterparts in a three-channel
system. These results are consistent with the previous theoretical analysis (Section 4.2.2).
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5.2. Simulation 2: Translational maneuver

In simulation 2, we test and investigate its performance during a slop acceleraton maneuver.
The relative parameters of this translational maneuver are listed in Table 1.

Table 1. The parameters of the translational maneuver

Execution Time (Ttra_maneu) Motion a1 (m/s3)

The other time stationary [0, 0, 0]
[1200 s, 1235 s], [1550 s, 1585 s], slope [0.1, 0.1, 0]T

[1375 s, 1410 s], [1725 s, 1760 s]. acceleration ´[0.1, 0.1, 0]T

Simulation figures are listed as follows:

(a) Three-channnel system

According to the theoretical analysis in Section 4.2.2, the system is instantaneously observable
at any time point during Ttra_maneu. All elements of the system state have been well estimated, as
shown in Figure 3, and all of them only converge quickly during Ttra_maneu. This simulation result is
consistent with the theoretical analysis (Section 4.2.2).Sensors 2016, 16, 765 18 of 25 
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(b) Two-channnel system

Figure 4f shows ∇U can not be estimated efficiently, which is consistent with the theoretical
analysis (Section 4.2.2). It seems that ∇E, ∇N and φN have not been estimated well during the
first translational maneuver. They just “jump” to a wrong direction. This is because the filter takes
time to adjust, since the previous estimated system state is not precise, and a two-channel system
has less constraint conditions than a three-channel system, which can be seen from, compared with
a three-channel system, the 3i-th rows (i = 1, 2, 3, . . . ) of a two-channel system’s IOM are eliminated.
Therefore, the filter takes more time to adjust, which causes that “jump”. These simulation results are
consistent with the theoretical analysis (Section 4.2.2).
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5.3. Simulation 3: Angle Maneuver

In simulation 3, we test and investigate the system’s performance during a triangle angle
velocity maneuver. It is set that the b-frame is alligned to the t-frame at the initial time point, i.e.,
Tt

bpt0q “ I3ˆ3, t0 “ 0. The relative parameters of this angle manerver are listed in Table 2.

Table 2. The parameters of the angle manerver.

Execution Time (Taction) Motion ω1 (rad/s2)

The other time stationary [0, 0, 0]
[1000 s, 1060 s]; [1420 s, 1480 s]; [1720 s, 1780 s]; [2140 s, 2200 s]. tri-angle velocity [0, 0, 2.77 ˆ 10´3]T

[1060 s, 1120 s]; [1780 s, 1840s]; [1360 s, 1420s]; [2080 s, 2140 s]. ´[0, 0, 2.77 ˆ 10´3]T

Simulation figures are list as follows:

(a) Three-channnel system

According to the theoretical analysis in Section 4.2.1, the system is instantaneously observable at
any time point during Tang_maneu. All elements of the system state have been well estimated, as shown
in Figure 5. All of them converge to truth-value during Tang_maneu. The simulation result is consistent
with the theoretical analysis (Section 4.2.1).
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(b) Two-channnel system

Figure 6 shows that εU and ∇U cannot be estimated efficiently, but the other elements can be
well estimated by the filter. Theoretically, Equation (54) can be rewritten during this angle maneuver
as follows

ψE “
1
g

z2 ´
1
g
∇N (70a)

ψN “ ´
1
g

z1 `
1
g
∇E (70b)

ψU “ ´
tanϕ

g
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1
gΩcosϕ

.
z2 ´

1
Ωω1,Ugcosϕ
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Ωsinϕ`ωU

gΩcosϕ
∇E (70c)
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ω1,Ug
;z2 (70d)
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..
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Equations (70a), (70b) and (70d)–(70f) show that E , N , N , E  and N  are only 
relevant with the measurement and its derivatives, and that these terms can be well estimated. In 
Equation (70g), U 1,Ucosg    is very small, its magnitude is on the order of 10−7, so it can be 
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Therefore, U  and E  can be estimated efficiently. In a word, the above simulation results 
are consistent with the theoretical analysis (Section 4.2.1). 
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Equations (70a), (70b) and (70d)–(70f) show that ψE, ψN, εN, εE and ∇N are only relevant with the
measurement and its derivatives, and that these terms can be well estimated. In Equation (70g),
gΩcosϕεU{ω1,U is very small, its magnitude is on the order of 10´7, so it can be eliminated.
Equation (70g) can be rewritten as

∇E “
Ωsinϕ´ωU

ω1,Uω1,U
;z2 `

1
ω1,U

..
z2 (71)

Therefore, ψU and ∇E can be estimated efficiently. In a word, the above simulation results are
consistent with the theoretical analysis (Section 4.2.1).
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6. Conclusions

We analyze the instantaneous observability of a three/two channel tightly coupled
SINS/GPS navigation system, and investigate the performance of a filter when a system is not
instantaneously observable.

During a stationary mode or a constant velocity mode, the equivalent eastern/altitude gyroscope
constant drift and the equivalent altitude accelerometer constant bias of a three-channel system can
be estimated efficiently. However, for a two-channel system, only the equivalent eastern/altitude
gyroscope constant drift can be estimated well. Almost all kinds of translational maneuver can make
a three-channel system be instantaneously observable. For a two-channel system, the equivalent
altitude accelerometer constant bias cannot be observed during all kinds of translational maneuver.
Almost all kinds of angle maneuver can make a three-channel system be instantaneously observable.
Those exceptions that cannot make a three-channel system be instantaneously observable are
given in Section 4.2.2. For a two-channel system, all kinds of translational maneuver cannot
make it instantaneously observable; thus, its instantaneous analysis should be made according to
specific circumstance.

Based on this research, the IOM can be regarded as an efficient and proper approach for analyzing
the instantaneous observability of a tightly coupled SINS/GPS during translational/angle maneuver.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations:
SINS strapdown inertial navigation system;
GPS global position system;
IOM instantaneous observability matrix;
EKF Extended Kalman Filter;
CKF cubature Kalman filter;
UKF Unscented Kalman filter;
symbol:
A, A1-frame arbitrary coordinate frames;

TA1
A

direction cosine matrix that transforms a vector from its A-frame projection form to
its A1-frame projection form;

I identity matrix;
V arbitrary vector without specific coordinate frame designation;

VA
column matrix with elements equal to the projection of V on A-frame axis, and

VA “
”

VA
x VA

y VA
z s ;

rVAˆs

skew symmetric(or cross product)form of VA, represented by the square matrix,
»

—

–

0 ´VA
z VA

y
VA

z 0 ´VA
x

´VA
y VA

x 0

fi

ffi

fl

, matrix product of rVAˆs with another A-frame vectors

equals the cross product of VA with the vector in the A-frame;
||V|| norm of V;
ωAA1 angular rate of A1-frame relative to A-frame;
δr the position-error vector of a SINS;
δv the velocity-error vector of a SINS;
ψ the attitude-error vector of a SINS;
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∇ the constant-bias vector of an accelerometer;
ε the constant-drift vector of a gyroscope;
h altitude;
ϕ latitude;
ĥ computed altitude;
ϕ̂ computed latitude;
Re earth radius;
Ω Earth rotating rate;
rρi The pseudorange measurement from the SINS to the i-th satellite;
rηi The deltarange measurement from the SINS to the i-th satellite;
ri,sat The i-th satellite’s position vector relative to earth center;
vi,sat The i-th satellite’s velocity vector relative to earth;
r̂sins The position vector updated by navigation computer;
v̂sins The velocity vector updated by navigation computer;
The coordinate frames are defined as follows:

navigation frame
the navigation frame has its z axis parallel to the upward vertical at the local Earth
surface reference position location, x-axis is parallel to the EAST direction, y-axis is
parallel to the NORTH direction;

t-frame
navigation frame at the true Earth surface reference position location, we denote Vt

as Vt “ rVE VN VUs
T;

c-frame navigation frame at the computed Earth surface reference position location;
b-frame body frame;
i-frame inertial frame;

e-frame earth frame, it is the Earth fixed coordinate used for position location definition; its
z-axis is parallel to the polar axis;

p-frame platform frame.
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