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Abstract: The present work studies the effect of three insect-proof screens with different geometrical
and aerodynamic characteristics on the air velocity and temperature inside a Mediterranean
multi-span greenhouse with three roof vents and without crops, divided into two independent
sectors. First, the insect-proof screens were characterised geometrically by analysing digital images
and testing in a low velocity wind tunnel. The wind tunnel tests gave screen discharge coefficient
values of Cd,φ of 0.207 for screen 1 (10 ˆ 20 threads¨ cm´2; porosity φ = 35.0%), 0.151 for screen 2
(13 ˆ 30 threads¨ cm´2; φ = 26.3%) and 0.325 for screen 3 (10 ˆ 20 threads¨ cm´2; porosity φ = 36.0%),
at an air velocity of 0.25 m¨ s´1. Secondly, when screens were installed in the greenhouse, we
observed a statistical proportionality between the discharge coefficient at the openings and the
air velocity ui measured in the centre of the greenhouse, ui = 0.856 Cd + 0.062 (R2 = 0.68 and
p-value = 0.012). The inside-outside temperature difference ∆Tio diminishes when the inside velocity
increases following the statistically significant relationship ∆Tio = (´135.85 + 57.88/ui)0.5 (R2 = 0.85
and p-value = 0.0011). Different thread diameters and tension affects the screen thickness, and means
that similar porosities may well be associated with very different aerodynamic characteristics. Screens
must be characterised by a theoretical function Cd,φ = [(2eµ/Kpρ)¨ (1/us) + (2eY/Kp

0.5)]´0.5 that relates
the discharge coefficient of the screen Cd,φ with the air velocity us. This relationship depends on
the three parameters that define the aerodynamic behaviour of porous medium: permeability Kp,
inertial factor Y and screen thickness e (and on air temperature that determine its density ρ and
viscosity µ). However, for a determined temperature of air, the pressure drop-velocity relationship
can be characterised only with two parameters: ∆P = aus

2 + bus.
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1. Introduction

In a recent research work, Valera et al. [1] analysed the technological level of greenhouses in
the province of Almería (Spain), observing that the main climate control system employed is natural
ventilation, as 98.6% and 95.3% of the growers use side and roof vents, respectively. Only 4.2% of
farmers use mechanical ventilation, 19.3% evaporative cooling systems and 8.4% heating systems.
These data highlight the importance of natural ventilation in greenhouses in warm climates such as in
the province of Almería. Natural ventilation is very important for optimal plant growth during the
summer in Mediterranean countries [2]. For most of the year, a good natural ventilation system will
allow growers to maintain suitable microclimate conditions inside the greenhouse for the crops [2–4].
However, Valera et al. [1] point out that the 14.4% average ventilation surface (ratio of total vent surface
divided by total greenhouse surface, SV/SA) in Almería’s greenhouses is well below the minimum
recommended value of 15%–30% [2,3,5–8].
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In the province of Almería 99.1% of growers use insect-proof screens on the side vents and
95.4% have installed them on roof vents. In the case of the side vents, 58.3% of insect-proof
screens are 15 ˆ 30 threads¨ cm´2, while 25.6% are 10 ˆ 20 threads¨ cm´2. The figures are similar
for roof vents, 56.0% of which use screens of 15 ˆ 30 threads¨ cm´2 as compared to 22.5%
with 10 ˆ 20 threads¨ cm´2 [1]. The porosity of these screens may vary considerably. Álvarez [9],
for instance, analysed 14 commercial insect-proof screens of 10 ˆ 20 threads¨ cm´2 and found that the
thread diameter and the real density of the screens resulted in a porosity φ range of 31.1% to 40.3%.

The use of insect-proof screens in greenhouses is considered essential to reduce the incidence
of pests on the one hand [10,11] and on the other, to maintain those beneficial insects necessary for
the crop inside the greenhouse [12]. Nevertheless, the screens clearly have a negative effect on the
greenhouse microclimate by: (i) reducing the natural ventilation capacity [4,13–15]; and (ii) causing
higher inside temperatures [3,4,16–18]. Although the negative effects of installing insect-proof screens
have been studied previously, the results obtained by different authors vary greatly. Insect-proof
screens with porosities from 25% to 53% were found to reduce the ventilation rate in comparison to a
greenhouse without such screens between 77% and 16% [15,19–25].

Certain research works have analysed the aerodynamic characteristics of insect-proof screens
and their influence on the natural ventilation and microclimate of greenhouses using Computer
Fluid Dynamics (CFD) simulations [3,13,17,19,20,24–27]. The results obtained in these works vary
significantly depending on whether the simulations were carried out on the real structure of the
insect-proof screen or taking the screen as a porous structure [28]. Other works have analysed the
natural ventilation of greenhouses using the gas tracer method [17,21,22,29–34]. However, depending
on the positioning of the sensors, this technique may give rise to errors of up to 86% [35]. As a result, the
literature presents varied and often conflicting results describing the influence of insect-proof screens
on greenhouse microclimate and only in two works were the studied screens installed simultaneously
in real greenhouses [16,18].

This work aims to characterise the aerodynamic behaviour of three insect-proof screens with
different geometrical characteristics and to quantify the effect on the air velocity and temperature
inside an empty Mediterranean multi-span greenhouse with roof ventilation, under summer climatic
conditions. At this moment of the year, outside temperatures reached their highest values and the low
developed crop transplanted in the greenhouses does not contribute significantly to the air cooling by
transpiration, being necessary to improve natural ventilation.

2. Materials and Methods

Three insect-proof screens were analysed—screens 1 and 3 (10 ˆ 20 threads¨ cm´2) and screen 2
(13 ˆ 30 threads¨ cm´2)—for their effect on the microclimate of a Mediterranean greenhouse: (i) the
geometric characteristics of each screen were determined in the laboratory; (ii) the screens were tested
in a low-velocity wind tunnel; (iii) the microclimate of an experimental greenhouse divided with an
inside plastic wall into two independent sectors was analysed. The comparison of screens 1 and 2 was
carried out over two days, installing screens in the three roof windows of each sector that made up
the experimental greenhouse. On the third day the screens were removed and replaced with screen
3 in both sectors of the greenhouse. Two days of experiments were again carried out with the same
screen in both sectors. This last data allows us to both verify the similarity of the sectors (when the
same screen was installed) and compare this third screen with the two previous ones.

2.1. Geometric Characterisation of the Insect-Proof Screens

The methodology used to characterise the geometry of the insect-proof screens was developed
at the University of Almería [36–38]. For each insect-proof screen, three samples of approximately
2.04 cm2 were analysed. Twenty-four images were taken of each sample using a microscope fitted with
a Motic DMWB1-223 digital camera (MoticSpain S.L., Barcelona, Spain) with a 4ˆ lens and a resolution
of 10.5 µm¨pixels´1. Figure 1 presents the geometric parameters that were determined, as well as the
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porosity and density of the threads. For further details on the methodology, see Álvarez et al. [37].
The following geometric parameters were obtained: thread density Dr (weft ˆ warp) (threads¨ cm´2);
porosity φ (%); weft pore length Lpx and warp pore length Lpy (µm); weft diameter Dhx and warp
diameter Dhy (µm); mean thread diameter Dh (µm); diameter of the circumference in the pore Di (µm);
and pore surface area Sp (mm2).
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Figure 1. Geometric parameters determined using the methodology developed at University of Almería.
Digital microscope images of screen 1 (a); screen 2 (b) and screen 3 (c).

The thickness of the insect-proof screens was measured using the non-contact optical measurement
equipment TESA-VISIO 300 (TESA SA, Renens, Switzerland) with a video camera of 0.05 µm resolution
and a measurement uncertainty of (3 + 10¨ e/1000) (µm), where e is the measured dimension, which for
the thickness of the screen resulted in a measurement uncertainty of less than 10 µm.

2.2. Aerodynamic Characterisation of the Insect-Proof Screens

The aerodynamic characteristics of the insect-proof screens were obtained using a low velocity
wind tunnel, designed and developed at the University of Almería [4,39,40], with an auto-tuning PI
automatic control system, using an open hardware and software platform [41]. In the wind tunnel,
we have measured with two Pitot tubes and with a differential pressure transducer the pressure
drop ∆P produced for different air velocities us measured with a hot-film anemometer [41]. We
have used a second-order polynomial ∆P = aus

2 + bus + c [22,42] to fit the experimental data. This
quadratic relationship is based on the theoretical Forchheimer equation [15] that uses two parameters
to characterise the behaviour of a porous medium: screen permeability Kp (m2) and the inertial factor
Y. These parameters were calculated comparing the coefficients a and b of the experimental polynomial
(zero order term c can be neglected compared with the other terms [42]) with the second- and first-order
terms a and b of the and Forchheimer’s equation [40] and using the measured screen thickness e [40].
Kp is a coefficient that depends on the geometry of the medium and is independent of the nature of the
fluid. Y is a dimensionless form-drag constant dependent on the nature of the porous medium [15].

2.3. Experimental Greenhouse

The experiments were carried out in an empty multi-span Mediterranean greenhouse (24ˆ 45 m2)
with three roof vents, located at the “Catedrático Eduardo Fernández” farm of the UAL-ANECOOP
Foundation (36˝511 N, 2˝161 W) in the province of Almería. The greenhouse is permanently divided
into two sectors by an interior plastic wall (Figure 2); sectors E (East) and W (West) measuring
24 ˆ 25 m2 and 24 ˆ 20 m2, respectively. The greenhouse is fitted with three roof vents measuring
40 ˆ 1 m2 each (22.5 ˆ 1 m2 in sector E and 17.5 ˆ 1 m2 in sector W), with the same orientation to the
wind in each sector. The ventilation surface, i.e., surface area of the vent openings/greenhouse area, or
SV/SA, was 11.25% for sector E and 10.81% for sector W.
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Figure 2. Location of the greenhouse sectors and layout of the climate sensors in the greenhouse.

Temperature and relative air humidity were measured inside and outside the greenhouse by
means of 13 CS215 sensors (Campbell Scientific Spain S.L., Barcelona, Spain) with accuracy for
temperature of ˘0.4 ˝C over 5–40 ˝C and for relative humidity of ˘2% over 10%–90% RH. The sensors
were protected from radiation inside a naturally aspirated box 41003-5 (Campbell Scientific Spain
S.L.). Air velocity was measured inside the greenhouse using 2 Windsonic bi-dimensional sonic
anemometers (Gill Instrument LTD, Lymington, Hampshire, UK; resolution: 0.01 m¨ s´1; accuracy 2%).
Solar radiation was measured inside and outside the greenhouse with three SP1110 pyranometers
(Campbell Scientific Spain S.L.; sensitivity range of 350–1100 nm; accuracy of ˘5%). The data from all
sensors were stored in four CR3000 microloggers (Campbell Scientific Spain S.L.) with a frequency
of 1 Hz. Outside wind speed was measured, at 10 m height, with a Meteostation II (Hortimax S.L.,
Almería, Spain), incorporating a cup anemometer (measurement range of 0 to 40 m¨ s´1; accuracy of
˘5%) and a vane for wind direction (accuracy ˘5˝). The Meteostation II measurements were stored in
an independent computer system once a minute. Figure 2 presents the location of the sensors in the
experimental greenhouse.

Data were recorded on the 5th and 6th of August, 2014 with screen 1 (10 ˆ 20 threads¨ cm´2) in
the roof vents in sector E and screen 2 (13 ˆ 30 threads¨ cm´2) in sector W of the greenhouse. On the
7th of August screen 3 (10 ˆ 20 threads¨ cm´2) was installed in both sectors, and data were taken
on both the 7th and 8th of August 2014. The vent openings were operated using a climate control
system, with a setpoint temperature of 15 ˝C. Table 1 presents the means climatic conditions during
the experiment.

Table 1. Daily climatic condition values: uo, outside wind velocity (m¨ s´1); θ, wind direction (˝); HRo,
outside relative air humidity (%); To, outside air temperature (˝C); Ro, incoming shortwave radiation
(W¨ m´2).

Date uo θ a HRo To Ro

5 August 2014 1.1 ˘ 1.0 219.5 ˘ 68.0 72.8 ˘ 16.6 23.7 ˘ 3.6 347.6 ˘ 404.4
6 August 2014 2.1 ˘ 1.4 179.6 ˘ 103.6 77.3 ˘ 10.0 25.4 ˘ 2.6 315.1 ˘ 389.4
7 August 2014 1.0 ˘ 1.0 240.2 ˘ 92.4 81.9 ˘ 11.2 24.3 ˘ 2.5 324.9 ˘ 390.8
8 August 2014 1.6 ˘ 1.0 179.8 ˘ 107.1 73.1 ˘ 14.6 25.5 ˘ 3.1 327.2 ˘ 395.3

a Direction perpendicular to the vents is 208˝ for a wind from southwest (SW).
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2.4. Statistical Analysis

We have carried out regression analysis to compare the different variables for statistically
significant differences (p-value < 0.05) conducted with Statgraphics Plus ver. 4.1 (Manugistics Inc.,
Rockville, MD, USA).

3. Results and Discussion

The first results presented concern the geometric characterisation of the insect-proof screens,
highlighting the difference in porosity between screens 1 and 2. The second set of results was obtained
in the low-velocity wind tunnel. That data obtained allow us to estimate the reduction in the greenhouse
air renovation rate produced by the placement of the screens in the vent openings. It is expected that
the reduction in the screen porosity will diminish the air renovation rate. The final section of the results
analyses the microclimatic data obtained on the days of the experiments in the greenhouses.

3.1. Geometric Characteristics of the Insect-Proof Screens

The geometric analysis of the three insect-proof screens shows that number 3, installed in both
sectors E and W for the second set of tests carried out in the experimental greenhouse, had the same
thread density as screen 1 (10 ˆ 20 threads¨ cm´2), but slightly higher porosity (Table 2). The main
difference between screens 1 and 3 is the pore length Lpy. On the other hand, although screen 2 is less
porous, its smaller pore size (weft pore length Lpx, warp pore length Lpy, diameter of the circumference
drawn inside the pore Di and pore surface Sp) constitutes an advantage as it will be more effective in
preventing the access of harmful insects to the crop [12].

Table 2. Geometric characteristics of the insect-proof screens (Average value ˘ standard deviation): Dr,
thread density (threads¨ cm´2); φ, porosity (%); Lpx, weft pore length (µm); Lpy, warp pore length (µm);
Dhx, weft thread diameter (µm); Dhy, warp thread diameter (µm); Dh, mean thread diameter (µm); Di,
diameter of the circumference drawn inside the pore (µm); Sp, mean pore area (mm2).

Screen Dr φ Lpx Lpy Dhx Dhy Dh Di Sp

1 9.8 ˆ 20.0 35.0 238.6 ˘ 19.5 746.0 ˘ 22.7 272.0 ˘ 7.2 261.2 ˘ 12.4 265.3 ˘ 11.9 241.7 ˘ 19.5 0.178 ˘ 0.015
2 12.5 ˆ 31.3 26.3 110.0 ˘ 7.9 611.9 ˘ 17.5 187.7 ˘ 6.7 209.4 ˘ 8.2 200.2 ˘ 13.1 113.5 ˘ 8.5 0.067 ˘ 0.005
3 9.6 ˆ 20.3 36.0 239.9 ˘ 18.5 765.4 ˘ 27.1 272.2 ˘ 11.6 252.0 ˘ 8.6 259.6 ˘ 13.9 241.9 ˘ 19.1 0.182 ˘ 0.015

When choosing an insect-proof screen, therefore, growers must weigh two factors: (i) greater
porosity will benefit the natural ventilation of the greenhouse, particularly in warmer climates; (ii)
smaller pore size will benefit the insect-proof screen’s efficacy in preventing the entrance of pests in the
greenhouse. Bethke and Paine [43] observed that insect-proof screens with pore size (Lpx) lower than
twice the width of the insect’s thorax were effective in not allowing whitefly to pass through. Based
on the geometric analysis (Table 2), screen 2 (Lpx = 110.0 ˘ 7.9 µm) is expected to be more efficient
than screen 1 (Lpx = 238.6 ˘ 19.5 µm) and screen 3 (Lpx = 239.9 ˘ 18.5 µm) as a barrier against the
whitefly Bemisia tabaci, with a mean thorax width of 215.8 µm and 261.8 µm for the male and female,
respectively [43]. Álvarez [9] analysed the efficiency of several screens in preventing the entrance
of Bemisia tabaci, concluding that insect-proof screens with mean Lpx values of between 187.3 µm
and 250.3 µm were practically 100% effective. As a barrier against thrips (Frankliniela occidentalis),
which has a mean thorax width of 184.4 µm and 245.5 µm for the male and female, respectively [43],
screens 1 (Lpx = 238.6˘ 19.5 µm) and 3 (Lpx = 239.9˘ 18.5 µm) would not be effective, whereas screen 2
(Lpx = 110.0 ˘ 7.9 µm) would. However, one characteristic of this insect is that it can fold its wings,
and it has been seen to be able to pass through screens with mean Lpx values of 118.5 µm [9]

3.2. Aerodynamic Characteristics of the Insect-Proof Screens

Table 3 presents the results obtained in the wind tunnel experiments at low velocities
(0–4 m¨ s´1) for the three insect-proof screens (Figure 3a). Screen 2, with higher thread density
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(13 ˆ 30 threads¨ cm´2) and lower porosity (26.3%) than the other two screens, gave rise to the highest
pressure drop. Screen 1 with the same thread density (10 ˆ 20 threads¨ cm´2) but with slightly lower
porosity and greater thickness than screen 3 (Table 2) produces a greater pressure drop. Therefore, two
insect-proof screens of the same thread density can have a different aerodynamic behaviour resulting
from several minor geometric differences.
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Figure 3. Pressure drops ∆P (Pa) measured in the wind tunnel experiments (a) and pressure drop
coefficient due to the insect-proof screen Fφ (b) in function of air velocity through screen us (m¨ s´1) and
its reciprocal 1/us, respectively. Theoretical (c) and statistical (d) relationships between the discharge
coefficient due to the insect-proof screen Cd,φ and us. Insect-proof screens 1 (∆), 2 (˝) and 3 (˛); values
of Cd,φ for air velocity equal to 0.25, 0.5 and 1.0 m¨ s´1 (N, �, �).

Table 3. Aerodynamic characteristics of the insect-proof screens installed in the experimental
greenhouse. e, thickness of the insect-proof screen (µm); a, b and c are the coefficients of the polynomial
fit of the wind tunnel experiments; R2, coefficient of determination; Kp, screen permeability (m2);
Y, inertial factor; Fφ, pressure drop coefficient that depends on the Reynolds number based on the
permeability of the insect-proof screen Rep.

Screen e a b c R2 Kp Y Fφ

1 564.4 ˘ 44.9 2.618 2.631 ´0.934 0.99 3.909 ˆ 10´9 0.243 18.05 (0.243 + Rep
´1)

2 458.1 ˘ 44.2 4.068 5.106 ´0.373 0.99 1.635 ˆ 10´9 0.300 22.66 (0.300 + Rep
´1)

3 508.1 ˘ 19.3 2.267 0.784 0.299 0.99 11.725 ˆ 10´9 0.401 9.39 (0.401 + Rep
´1)

The parameter Kp appears to increase with the screen porosity, which was also observed by
Miguel et al. [42] and Teitel [16]. The latter work found that the inertial factor Y increased along
with the porosity of the insect-proof screen, whereas the former work did not. In the present work,
comparison of insect-proof screens 1 and 3 (35.0% and 36.0% porosity, respectively) showed that the
inertial factor was greater for screen 3, which was less thick than screen 1.

On the other hand, screen 2, of less porosity and thickness than the other two, presented an
intermediate recorded inertial factor. Therefore, the inertial factor seems to be related to the porosity
and the thickness of the insect-proof screens. The aerodynamic characteristics of the insect-proof
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screens (Kp e Y) allow us to determine the discharge coefficient due to the insect-proof screen Cd,φ
(Figure 3c).

The coefficient Cd,φ can be calculated from the pressure drop coefficient Fφ previously determined
in the wind tunnel experiments (Figure 3b) [4,15]:

Cd,φ “
1

F0.5
φ

(1)

Fφ “
2e

K0.5
p

ˆ

1
Rep

`Y
˙

(2)

In order to obtain a numerical value for Fφ, we must calculate the Reynolds number based on the
permeability of the insect-proof screen Rep. Applied to porous media, this Reynolds number can be
calculated as [44]:

Rep “

a

Kpusρ

µ
(3)

where us is the air velocity through the insect-proof screen, ρ is the air density (kg¨m´3) and µ the
air viscosity (kg¨ s´1¨m´1) calculated for the daytime mean air temperature of 35 ˝C recorded in the
experimental greenhouse. The physical relation between Cd,φ and the velocity can be obtained from
Equations (1)–(3):

Cd,φ “

ˆ

1
Fφ

˙0.5
“

˜

2eµ
Kpρ

1
us
`

2eY
K0.5

p

¸´0.5

(4)

In our case we have carried out this theoretical fit between the value of Cd,φ and the air velocity
through the screen us (Figure 3c). This type of curve allows us to characterise the aerodynamic
behaviour of each insect-proof screen, and it would be convenient if manufacturers were to provide
this information. Others authors observed that the coefficient Cd,φ was a function of the logarithm of
the Reynolds number [16], which in turn depends on the air speed through the insect-proof screen
us. Thus, we can approach the theoretical function of Cd,φ (Figure 3c) with a logarithmic relationship
(Figure 3d), with a good correlation coefficient but based on a statistical fitting.

We can characterise the aerodynamic behaviour of an insect-proof screen for a specific temperature
of air during the test (influencing its density ρ and viscosity µ) with only two parameters, the coefficient
a and b of the polynomial relationship between pressure drop and air velocity (Figure 3a). The ratio a/b
defines the behaviour of screens at air velocities lower and greater than 1 m¨ s´1. For velocities lower
than 1 m¨ s´1, the coefficient b is more important to compare two screens. However, for velocities
greater than 1 m¨ s´1 the coefficient a become significate when analysing the pressure drop produced
by the screens. To define the screens as a porous medium (with independence of the temperature
during the test) we can use three parameters: the permeability Kp, the inertial factor Y and the thickness
e. These three parameters are used in CFD simulations of screens as porous media [3]. We can observe
how there are screens with different values of Kp and Y, but with different thickness resulting in similar
different pressure drops (Figure 4).

In order to estimate the effect of the different insect-proof screens on the ventilation capacity
of the experimental greenhouse, and therefore on the inside temperature, we have determined the
total discharge coefficient Cd for the roof vent of the experimental greenhouse. This coefficient can be
calculated using the following expression [12,33,45]:

Cd “

g

f

f

e

1
1

C2
d,LH

` 1
C2

d,φ

(5)

The coefficient Cd,LH depends on the geometry of the vent (equivalent to the coefficient Cd of a
vent without insect-proof screen) and can be obtained as follows [46]:
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Cd,LH “ t1.9` 0.7exp r´LV{ p32.5hsinαqsu´0.5 (6)

where LV is the length of the vent (m), h the height of the vent (m) and α the angle of opening, which is
14˝ for the roof vent. For the roof vents in the experimental greenhouse Cd,LH was 0.718 in sector E and
0.711 in sector W.Sensors 2016, 16, 690 8 of 15 
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Figure 4. Pressure drops ∆P (Pa) in function of air velocity through screen us (m¨ s´1), determined
by the wind tunnel experiments for the insect-proof screen 1 (∆) analyzed in this work, and for two
screens with similar aerodynamic behavior but with different aerodynamic characteristics (Kp, Y and e)
and different ratio a/b (screens 5 and 9 in Valera et al., 2006 [39] for low air velocities, 0–4 m¨ s´1).

The discharge coefficient Cd was calculated with insect-proof screen 1 on the roof vent in sector E,
and with screens 2 and 3 on the roof vent in sector W (Table 4). It was determined for a reference air
velocity us of 0.25, 0.5 and 1.0 m¨ s´1. The value of 0.25 m¨ s´1 for air velocity is the maximum mean
value of the longitudinal component ux, perpendicular to the vents, observed in a similar experimental
greenhouse [4].

Table 4. Discharge coefficients due to the presence of insect-proof screens Cd,φ and of the roof vent Cd

(for us of 0.25, 0.5 and 1.0 m¨ s´1). Insect-proof screen 1 (for sector E of the experimental greenhouse),
insect-proof screen 2 (for sector W) and insect-proof screen 3 (for sector W). φ, porosity (%); Dr, thread
density (threads¨ cm´2).

Screen Dr φ

Cd,φ Cd

us (m¨ s´1)

0.25 0.5 1.0 0.25 0.5 1.0

1 9.8 ˆ 20.0 35.0 0.207 0.268 0.331 0.199 0.251 0.301
2 12.5 ˆ 31.3 26.3 0.151 0.199 0.250 0.148 0.192 0.236
3 9.6 ˆ 20.3 36.0 0.325 0.389 0.439 0.296 0.341 0.374

The discharge coefficient values due to the presence of the insect-proof screen Cd,φ presented in
Table 4 were similar to those obtained in previous works following the same methodology [4,15]. The
values of Cd are similar to those obtained by other authors and compiled by Molina-Aiz et al. [15],
in the range of 0.16 to 0.51 for vents with insect-proof screens whose porosity varied between 25% and
45%. For instance, in an Almería-type greenhouse fitted with an insect-proof screen of 34% porosity, a
Cd value of 0.194 was obtained [15]. When comparing Cd values obtained by different authors, one
should also bear in mind the fact that this coefficient depends on the Reynolds number Rep [15], which
in turn depends on the air velocity through the porous medium.

The discharge coefficients obtained at the roof vents in each sector of the greenhouse allow us to
estimate the reduction that one insect-proof screen will cause with respect to another one, based on the
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ratio Cd,screen2/Cd,screen1 [4,34]. Previous research works have used this ratio to compare greenhouses
with and without insect-proof screens; for instance, Katsoulas et al. [21] and Kittas et al. [14] obtained
a ratio of 0.67 for an insect-proof screen of 50% porosity and Kittas et al. [33] obtained a value of
between 0.44 and 0.46 for an insect-proof screen of 60% porosity. In the present work the ratio
Cd,s2/Cd,s1 was 0.74 (us = 0.25 m¨ s´1), which indicates that in theory the less porous medium
(screen 2) should bring about a 26% reduction in the natural ventilation capacity in sector W (with
screen 2) of the greenhouse in comparison with sector E (with screen 1). Surprisingly, between the two
commercial screens of similar thread density and porosity there is a similar difference in the discharge
coefficient (Cd,s1/Cd,s3 = 0.67) to the one between the two commercial screens of different thread density
(Cd,s2/Cd,s1 = 0.74). Wang et al. [47] also observed as two screens with the same bi-dimensional porosity
and characteristic (length and width pore and filament width) produced different pressure drops, and
therefore, different discharge coefficients, as consequence of its different tri-dimensional geometry.

After analysing screens 1, 2 and 3, we can suppose that the geometric characteristics of screen 2
make it more efficient as a barrier against insects, but we can state that its aerodynamic characteristics
results in a greater reduction of the natural ventilation capacity of the greenhouse than those of
screens 1 and 3.

3.3. Air Velocity Inside the Greenhouse

Between 12:00–16:00 on the 5th and 6th of August, the mean air velocity ui values on the horizontal
plane XY were 0.16 m¨ s´1 in sector W (screen 2) and 0.27 m¨ s´1 in sector E (screen 1); which implies a
40.7% reduction in inside air velocity. On the 7th and 8th of August, with the same screen fitted in
both sectors, the values of ui recorded were 0.28 m¨ s´1 in sector W and 0.34 m¨ s´1 in sector E; which
implies a difference of 17.6%, which may be due to the difference in ventilation surface or the location
of the anemometers. Kittas et al. [14] observed a 58% fall in the air velocity value inside a tunnel-type
greenhouse (with only side vents) fitted with 50% porosity screens, in comparison to the greenhouse
without screens.

In Figure 5 we can observe how the difference in air velocity at the centre of the two greenhouse
sectors ui is more uniform at night, when the wind speed is low and the ventilation airflow is less
notable, observing very similar differences for the four nights analysed (around 0.05 m¨ s´1). However,
the difference between air velocity measured at the centre of the two sectors that constituted the
greenhouse, increases at midday on the first days (5 and 6) when the screens installed in the two
sectors were different, but decreases at midday on the last two days (7 and 8) when the screens are the
same in both sectors (screen 3).

The wind tunnel experiments allowed us to estimate using Equation (4) that the expected
reduction in the air renewal rate in sector W (screen 2) with respect to sector E (screen 1) due to
the difference in aerodynamic characteristics of the screens was 26% (Cd,s2/Cd,s1 = 0.74). In a previous
work, López et al. [4] measured a 16% reduction in the greenhouse air renewal rate with a less porous
screen (φ = 33.5%) compared to a more porous one (φ = 39.0%) in agreement with the theoretical
reduction in the air renewal rate of 11% (Cd,33.5%/Cd,39.0% =0.89). These previous results confirm that
the ratio Cd,s2/Cd,s1 provides an approximate value of the reduction in the renovation rate by natural
ventilation produced by screen 2 respect to screen 1. The difference in aerodynamics characteristics
of the three screens produces differences in the discharge coefficients of the vent openings, and
consequently in the ventilation airflow, thus affecting the air velocity and temperature distribution
inside the greenhouse. When a more permeable screen was used (i.e., one with a greater discharge
coefficient Cd) we perceived higher air velocity at the centre of the greenhouse sector, indicating a
greater ventilation airflow that cools the greenhouse air.

Although, the statistical relationship that best fits the experimental data is with an exponential
function, we have use a linear relationship (ui = 0.856 Cd + 0.062; R2 = 0.68 and p-value = 0.012)
between the air velocity inside the greenhouse ui and the discharge coefficient of the windows Cd. This
can be explained by the direct relationship between the volumetric airflow G in the greenhouse and
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the discharge coefficient Cd that multiply a function of inside-outside temperature difference in the
greenhouse ∆Tio and the wind speed uo [48]:

G “ Cd ¨ f p∆Tio, uoq ` Go rm3s´1s (7)

where Go is the leakage airflow when openings are closed (m3¨ s´1).
The mean interior air velocity ui can be considered to be proportional to the ventilation volumetric

flux G (Equation (7)) divided by the vertical cross-section surface perpendicular to the average direction
of the inside airflow SCS [49]:

ui “
G

SCS
rm s´1s (8)

We can deduce a linear relationship between the inside air velocity and the discharge coefficient
of the vent openings:

ui “ Cd ¨ SCS ¨ f p∆Tio, uoq ` SCS ¨ Go rm s´1s (9)
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Figure 5. Temporal evolution of the outside wind speed uo (—) and inside air velocity ui (m¨ s´1) (a)
and wind direction (—) and normalised velocity ui/uo (b). Inside velocities measured in the centre of
sector E with screen 1 (—), sector W with screen 2 (—), sector E with screen 3 (- - -) and sector W with
screen 3 (- - -).

3.4. Air Temperature Inside the Greenhouse

The first air temperature analysis compared the mean daily and daytime values and the mean
values for the hottest part of day (12:00–16:00) in the two sectors of the greenhouse (Table 5). Using
an insect-proof screen of 26.3% (screen 2) as opposed to 35.0% (screen 1) porosity gave rise to a mean
daily temperature increase of 2.3 ˝C, while the increase in mean daytime temperature was 3.7 ˝C, and
the increase during the hottest part of the day was 4.8 ˝C. The maximum temperatures recorded were
44.6 ˝C and 48.4 ˝C in sectors E and W, respectively, and the maximum difference between the two
sectors at any given moment was 7.7 ˝C at the afternoon (Figure 6).
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Figure 6. Air temperature (˝C) (a) and inside-outside air temperature difference ∆Tio (˝C) (b) on the
days of the experiment. Outside (—); mean values of all the sensors in sector E with screen 1 (—), sector
W with screen 2 (—), sector E with screen 3 (- - -) and sector W with screen 3 (- - -).

Table 5. Air temperature Ti (˝C) and absolute humidity xi (g¨ g´1) inside the greenhouse (average
value ˘ standard deviation) and inside-outside temperature ∆Tio (˝C) and absolute humidity ∆xio

(g¨ g´1). Subscripts: E sector east and W sector west.

Daily Daytime Midday (12:00–16:00) Midday (12:00–16:00)

Date Ti,E Ti,W Ti,E Ti,W Ti,E Ti,W xi,E xi,W

Sector E with screen 1 (porosity 35.0%) and sector W with screen 2 (porosity 26.3%)

5 August 2014 29.3 ˘ 7.1 31.8 ˘ 9.8 34.1 ˘ 5.2 38.4 ˘ 7.6 38.2 ˘ 1.4 44.0 ˘ 1.8 0.0136 ˘ 0.0003 0.0142 ˘ 0.0004
6 August 2014 29.5 ˘ 5.7 31.6 ˘ 7.5 33.0 ˘ 5.0 36.3 ˘ 6.4 37.3 ˘ 2.6 41.2 ˘ 2.5 0.0157 ˘ 0.0004 0.0159 ˘ 0.0004

Sector E and W with screen 3 (porosity 36.0%)

7 August 2014 28.6 ˘ 4.6 28.8 ˘ 4.7 31.5 ˘ 3.6 31.7 ˘ 3.8 33.8 ˘ 1.5 34.0 ˘ 1.7 0.0148 ˘ 0.0005 0.0148 ˘ 0.0005
8 August 2014 29.0 ˘ 5.3 28.8 ˘ 5.3 32.4 ˘ 4.5 32.1 ˘ 4.5 36.0 ˘ 1.2 35.5 ˘ 1.1 0.0135 ˘ 0.0013 0.0134 ˘ 0.0013

With insect-proof screen 3 in both greenhouse sectors (7th and 8th of August), no significant
differences in temperature were observed (Figure 6), with mean values at midday of 34.9 ˝C and
34.8 ˝C in sectors E and W, respectively (Table 5). This indicates that the differences recorded on the
5th and 6th of August were primarily due to the different characteristics of screens 1 and 2. The mean
temperatures recorded with insect-proof screen 3 fitted in both sectors of the greenhouse (7th and
8th of August), were lower than those recorded with screens 1 and 2 on the 5th and 6th of August
(Table 5 and Figure 6), though outside temperatures were quite similar (Figure 6a). This ratifies that the
better aerodynamic characteristics of screen 3 (higher Cd) have improved the greenhouse ventilation
capacity in comparison to screens 1 and 2, increasing the greenhouse’s cooling capacity and allow
lower temperatures inside.

There is a proportional relationship between the thermal gradient values ∆Tio and the discharge
coefficient Cd [∆Tio = (´141.82 + 52.87/Cd)0.5] and as consequence and the mean air velocity at the
centre of the greenhouse ui [∆Tio = (´135.85 + 57.88/ui)0.5]. The difference in temperature between
inside and outside is reduced by increasing Cd and the air velocity. Teitel [16] also observed an
increase of temperature and humidity inside the greenhouse when the pressure drop Fφ increased,
and therefore the discharge coefficient Cd decreased. As mentioned in the introduction section, we
have chosen to analyse the effect of insect-proof screen in the microclimate of empty greenhouses to
avoid the cooling effect that plants transpiration produce in cropped greenhouses.

No differences were observed between the levels of inside absolute humidity xi between sectors,
nor between inside xi and outside xo the greenhouse, ∆xio ď 0.0006 (kg¨ kg´1) (Table 5). This similarity
in air humidity inside both greenhouse sectors, provide a guarantee that the main parameter that
affects the inside greenhouse microclimate is the ventilation airflow affected by the type of insect-proof
screens installed in the vent openings.
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4. Conclusions

This research works provides new data on the effect that the aerodynamic characteristics of
insect-proof screens have on the greenhouse microclimate. The thread density Dr and porosity φ of
the three screens tested were 9.8 ˆ 20.0 threads¨ cm´2 and 35.0% (screen 1), 12.5 ˆ 31.3 threads¨ cm´2

and 26.3% (screen 2) and 9.6 ˆ 20.3 threads¨ cm´2 and 36.0% (screen 3).
The geometrical analyses of the three screens show how screen 3, with similar thread density

and porosity to screen 1, has different thread diameter, pore length and thickness. These geometrical
differences produce a change in the aerodynamic behaviour of the two screens in the wind tunnel
tests. As a consequence of the different aerodynamic response of the three screens, we have obtained
different values of discharge coefficients due to the presence of insect-proof screens Cd,φ and of the
roof vents Cd. Thus, for an air velocity value of 0.25 m¨ s´1 (normally measured in the vent openings)
we have obtained Cd values of 0.199 for screen 1, 0.148 for screen 2 and 0.296 for screen 3.

When we measured the air velocity ui in the centre of the greenhouse, we observed that a more
permeable screen (with a greater discharge coefficient Cd) produces higher velocities, with statistical
proportionality ui = 0.856 Cd + 0.062; R2 = 0.68 and p-value = 0.012. The influence of the aerodynamic
characteristics of the screens on airflow gives rise to variations in the inside temperature distribution.
The inside-outside temperature difference ∆Tio is statistically correlated with the discharge coefficient
∆Tio = (´141.82 + 52.87/Cd)0.5 and with air velocity ∆Tio = (´135.85 + 57.88/ui)0.5 (R2 = 0.85 and
p-value = 0.0011), and the temperature gradient diminishes when the inside air velocity increases.

Traditionally, screen porosity has been used as the characteristic parameter that determines
their effect on the ventilation airflow and the greenhouse microclimate (temperature and humidity).
However, the use of different thread diameters and tensions in the screens’ manufacture affects
the screen thickness. This means that similar porosities may be associated with very different
aerodynamic characteristics, and similar aerodynamic characteristics can be associated with very
different pressure drop as consequence of the effect of different screen thickness. For this reason, we
consider that our results indicate that screens need to be characterised by the theoretical function
Cd,φ = [(2eµ/Kpρ)¨ (1/us) + (2eY/Kp

0.5)]´0.5 that relates the discharge coefficient of the screen Cd,φ with
the air velocity through the screen us. This function can be calculated from the three parameters that
characterise the pressure drop produced by each screen at the same air velocity: permeability Kp,
inertial factor Y and screen thickness e. However, for a determined temperature of air, the pressure
drop-velocity relationship ∆P = aus

2 + bus can be characterised only with two parameters (coefficients
a and b).
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Nomenclature

a, b, c second-order polynomial regression coefficients
e thickness of the insect-proof screen (µm)
h height of the vent openings (m)
ui air velocity inside the greenhouse (m¨ s´1)
uo outside wind velocity (m¨ s´1)



Sensors 2016, 16, 690 13 of 16

x absolute air humidity (g¨g´1)
us air velocity through the screen (m¨ s´1)
ux longitudinal component of air velocity (perpendicular to the vents)
Cd total discharge coefficient of the opening
Cd,LH discharge coefficient due to the shape of the opening
Cd,φ discharge coefficient due to the presence of insect-proof screens
Dh diameter of the threads (µm)
Dhx diameter of the weft threads (µm)
Dhy diameter of the warp threads (µm)
Di diameter of the inside circumference of the pore (µm)
Dr thread density (threads¨ cm´2)
Fφ pressure drop coefficient due to the presence of an insect-proof screen
G volumetric ventilation flow (m3¨ s´1)
Go leakage volumetric airflow when openings are closed (m3¨ s´1)
HRo outside relative air humidity (%)
Kp screen permeability (m2)
Lpx length of the pore in the weft direction (µm)
Lpy length of the pore in the warp direction (µm)
LV length of the vent openings (m)
P Pressure (Pa)
R2 coefficient of determination
Rep Reynolds number based on the insect-proof screen’s permeability
Ro incoming shortwave radiation (W¨m´2)
S sector
SA greenhouse area (m2)
SCS vertical cross-section surface perpendicular to the direction of the inside airflow (m2)
Sp area of the pore (mm2)
SV surface area of the vent openings (m2)
T air temperature (˝C)
Y inertial factor
∆Tio inside to outside temperature difference (˝C)

Greek Letters

α angle of the vent opening (m)
θ wind direction (˝)
µ air viscosity (kg¨ s´1¨m´1)
ρ air density (kg¨m´3)
φ porosity (%)
∆ difference (˝C)

Subscripts

i inside the greenhouse
o outside
s screen
E eastern sector
W western sector
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