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Abstract: In multi-target tracking, the key problem lies in estimating the number and states of
individual targets, in which the challenge is the time-varying multi-target numbers and states.
Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability
hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most
of these approaches select the transition density as the importance sampling (IS) function, which is
inefficient in a nonlinear scenario. To enhance the performance of the conventional SMC-PHD filter,
we propose in this paper two approaches using the cubature information filter (CIF) for multi-target
tracking. More specifically, we first apply the posterior intensity as the IS function. Then, we
propose to utilize the CIF algorithm with a gating method to calculate the IS function, namely
CISMC-PHD approach. Meanwhile, a fast implementation of the CISMC-PHD approach is proposed,
which clusters the particles into several groups according to the Gaussian mixture components.
With the constructed components, the IS function is approximated instead of particles. As a result, the
computational complexity of the CISMC-PHD approach can be significantly reduced. The simulation
results demonstrate the effectiveness of our approaches.

Keywords: Sequential monte carlo; probability hypothesis density; importance sampling;
cubature information filter; Gaussian mixture
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1. Introduction

1.1. Background

Multi-target tracking refers to sequential approximation of the states (positions, velocities, etc.),
and the number of individual targets. It has been widely used in ground-moving-target tracking [1],
visual tracking [2], and distribution fusion [3]. In multi-target tracking, both the state and observation
sets of targets are time-varying. In practice, the associations between state and observation sets are
always unknown, thus posing a challenge for multi-target tracking. The conventional approaches,
such as the nearest-neighbour Kalman filter (NNKF) [4], Extended Kalman Filter (EKF) [5,6], multiple
hypothesis tracking (MHT) [7], and joint probabilistic data association (JPDA) [8], are used to formulate
the explicit associations between states and observations of targets. However, caused by the targets
appearing and disappearing, the state and observation sets of the multi-target are uncertain. Such
uncertainty costs high complexity in the conventional approaches on constructing the association
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between them. Several approaches have emerged to improve the performance of conventional
approaches in terms of tracking accuracy [9–13].

Recently, filters based on random finite sets (RFS) have been developed as alternative frameworks
of the traditional algorithms [14–17] to estimate the multi-target number and states. In RFS
formulations, both the multi-target state and observation sets are modelled as random finite sets. Given
such models, the multi-target tracking problem is formulated under the Bayesian framework [14]. Since
the optimal RFS-based Bayesian filter is computationally intractable, the probability hypothesis density
(PHD) filter has been proposed as a sub-optimal Bayesian filter for multi-target tracking [15–17].
By propagating the first order moment (namely the intensity), the PHD filter can save much
computational complexity in comparison to the optimal RFS-based Bayesian filter. Moreover, it avoids
the combinatorial problem arising from data association, which is the bottleneck for conventional
multi-target tracking approaches to estimate multi-target number and states.

However, the difficulty of the PHD filter is that it is intractable to derive close-form solutions to
the PHD filter formulations. To solve such difficulties, Vo et al. [18] proposed the bootstrap SMC-PHD
(BSMC-PHD) filter, which selects the transition density as the IS function. The modified versions of
BSMC-PHD filter have emerged in [19–21]. As for those BSMC-PHD filters, the IS function selection
simplifies the weight computation in the prediction stage of the SMC-PHD filter. In practice, such a
selection leads to a few particles with large-valued weights in the update stage, when targets have
nonlinear motion [22].

To improve the tracking performance of the conventional SMC-PHD filter, several efficient
approaches have been presented. Morelande et al. proposed the Rao-Blackwellised SMC-PHD
(RB-SMC-PHD) filter in [23]. The RB-SMC-PHD filter utilizes several auxiliary variables to define
the IS function, thus making it suitable for the intensity approximation of the SMC-PHD filter with
conditionally linear Gaussian models. Motivated by the auxiliary particle filter, Whiteley et al. proposed
the auxiliary particle PHD (APHD) filter in [24], in which the auxiliary variable is pre-selected to
minimize the variance of the IS weights. Although the APHD filter enhances the efficiency of the
SMC-PHD filter in nonlinear scenario, it yields poor performance in case of severe nonlinearities or
high process noise [22]. Inspired by the unscented particle filter, Yoon et al. [25] utilized the unscented
information filter (UIF) to design the IS function of SMC-PHD (called USMC-PHD filter). Since such a
design takes the current observations of targets into account, it is more stable than the BSMC-PHD filter.
However, the drawback of this filter is that its performance has been influenced by the selection of the
sigma-points of UIF. Ristic et al. [20] proposed a novel state estimation method (called IBSMC-PHD),
rather than partitioning particles in ad-hoc manner. Their method groups the particles in the update
stage, thus enjoying the computational efficiency.

1.2. Our Work and Contributions

In this paper, we propose a cubature information SMC-PHD (CISMC-PHD) and its fast
implementation (F-CISMC-PHD) approaches, which can be used to estimate the time-varying number
and states of multi-target. As aforementioned, the disadvantage of conventional SMC-PHD filters is
the tracking inefficiency in nonlinear scenario. To avoid such inefficiency, our CISMC-PHD approach
applies the posterior intensity as the IS function. With such a selection, the current observations
can be incorporated into the IS function design. Then, we utilize the cubature information filter
(CIF) [26] with a gating method to calculate the IS function. Benefitting from tracking accuracy
of CIF in high dimensional nonlinear case, the CISMC-PHD approach is capable of estimating the
time-varying number and states of targets. To avoid initializing birth intensity in whole state space,
a birth intensity initialization method is proposed for our CISMC-PHD approach. At last, we present
the F-CISMC-PHD approach to reduce the computational complexity by considering groups of particles
as Gaussian mixture components. These components are applied to approximate the IS functions
instead of particles of the CISMC-PHD approach. Since the number of Gaussian components is
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much less than that of particles, the computational complexity can be greatly reduced. The main
contributions of our work are listed as follows.

(1) We propose a novel IS function approximating method, which utilizes the CIF with a gating
method to enhance the estimation accuracy of the SMC-PHD filter. Specifically, first, the posterior
intensity is applied as the IS function of our CISMC-PHD approach, in order to incorporate the
current observation set into the IS function approximation. Then, the gating method is integrated
into the update step of the CIF for approximating the IS function. Benefitting from the most
recent success of CIF in nonlinear state estimation, the tracking performance of the proposed
CISMC-PHD approach is significantly enhanced.

(2) We develop a method to initialize the birth intensity for the next tracking recursion. Since the
current estimated targets (i.e., current survival targets) are not possible to be the birth targets at
the next recursion, the observations of estimated targets are removed from the current observation
set. Then, using an unbiased model, the remaining observations are mapped to state space for the
birth intensity initialization. As such, the birth intensity can be adaptively initialized, making the
target tracking more accurate and stable.

(3) We develop a fast version of the CISMC-PHD approach (namely F-CISMC-PHD). We first consider
each group of particles as a Gaussian mixture component. Then these components are used to
approximate the IS functions of the CISMC-PHD approach. With the approximated IS functions,
the particles can be sampled from these components for the intensity prediction and update
steps. As a result, the computational complexity of the proposed CISMC-PHD approach can be
significantly reduced.

The rest of this paper is organized as follows. In Section 2, a brief overview of the SMC-PHD filter
is provided. Section 3 proposes our CISMC-PHD approach. A fast implementation of CISMC-PHD
approach is presented in Section 4. Simulation results are demonstrated in Section 5, and Section 6
concludes this paper.

2. A Brief Overview of The SMC-PHD Filter

In this section, we review the basic idea of the SMC-PHD filter in detail. The main notations used
in this section are defined as follows.

xk The state of a dynamic target at time k
zk The observation of a dynamic target at time k
γk(·) The intensity of birth target at time k
Lk The number of the survival particles at time k
Jk The number of the birth particles at time k
ps(·) The survival probability of target
pd(·) The detected probability of target
π(·, ·) The IS function of birth intensity
q(·|·) The IS function of survival intensity

The SMC-PHD filter, motivated by the particle filter, is a sequential implementation of the PHD
filter. In the SMC-PHD filter, the posterior intensity can be represented by a set of random samples
of state vector xk with associated weights, which are usually called particles. By substituting these
particles into the recursion of the PHD filter, the multi-dimensional integrals can be replaced by
summations of the particles, which is computationally tractable.

More specifically, we define the particle set at time k− 1 as {x(i)k−1, w(i)
k−1|k−1}

Lk−1
i=1 , where x(i)k−1 and

w(i)
k−1|k−1 are the state and weight of the i-th particle at time k− 1, respectively. The posterior intensity

at time k− 1 can be modelled by

Dk−1|k−1(xk−1|Z1:k−1) =
Lk−1

∑
i=1

w(i)
k−1|k−1 · δ(x− x(i)k−1) (1)
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where Z1:k−1 is the multi-target observations from time 1 to k − 1, and δ(·) is the Dirac Delta
function. Notice that Zk = {zk,1, zk,2, . . . , zk,M}. Given Dk−1|k−1(xk−1|Z1:k−1), the implementation
of the SMC-PHD filter consists of the prediction and update stages.

Prediction: We first denote IS functions for the survival and birth targets as q(x(i)k |x
(i)
k−1, Zk) and

π(x(i)k , Zk), respectively. Then, according to [18], the predicted intensity can be formulated by these
IS functions,

Dk|k−1(xk|Z1:k−1) =
Lk−1+Jk

∑
i=1

w(i)
k|k−1 · δ(x− x(i)k ) (2)

where

x(i)k ∼
{

q(x(i)k |x
(i)
k−1, Zk) i = 1, . . . , Lk−1

π(x(i)k , Zk) i = Lk−1 + 1, . . . , Lk−1 + Jk
(3)

w(i)
k|k−1=


ps(x

(i)
k−1)· f (x

(i)
k |x

(i)
k−1)

q(x(i)k |x
(i)
k−1,Zk)

i=1, 2, . . . , Lk−1

γ(x(i)k )

Jk ·π(x(i)k ,Zk)
i=Lk−1+1, . . . , Lk−1+ Jk

(4)

In Equation (4), Jk is calculated by Jk = ν
∫

γ(x)dx, where ν is the particle number of each birth
target. Equations (2)–(4) can be then used to predict the states and weights of the particles.

Update: In this stage, we obtain the posterior intensity by updating Equation (2). Then, we have
the following update strategy,

Dk|k(xk|Z1:k) =
Lk−1+Jk

∑
i=1

w(i)
k|kδ(x− x(i)k ) (5)

where

w(i)
k|k =

(
1− pd(x

(i)
k ) + ∑

z∈Zk

pd(x
(i)
k )gk(z|x

(i)
k )

κ(z) + Cz

)
w(i)

k|k−1 (6)

κ(·) denotes the clutter intensity, and

Cz =
Lk−1+Jk

∑
i=1

pd(x
(i)
k )gk(z|xk,i)wk|k−1 (7)

Equations (2)–(6) include the main procedure of SMC-PHD at one recursion. Commonly, to avoid
the degeneracy of particles, the resampling strategy is utilized to resample particle set {x(i)k , w(i)

k|k}
Lk−1+Jk
i=1 .

After resampling, we can use the clustering methods to extract number and states of targets.

3. The CISMC-PHD Approach for Multi-Target Tracking

In this section, we present our CISMC-PHD approach. To be more specific, we propose a novel IS
function approximation algorithm incorporating the CIF and a gating method in Section 3.1. Then,
Section 3.2 develops a method to initialize the birth intensity. Finally, Section 3.3 introduces the state
extraction method for state estimation.

The nonlinear dynamic model of the target with state xk at time k is given as follows,

Process model: xk = φ(xk−1) + vk−1 (8)

Observation model: zk = ϕ(xk) + wk (9)

where φ(·) is the state transition function, and ϕ(·) denotes the relationship between state and
observation. vk−1 and wk are the process and observation noises at time k− 1 and k, respectively. Both
vk−1 and wk are assumed to be Gaussian noises with zero means, and their covariances are denoted as
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Qk−1 and Rk. According to this model, the transition density f (xk|xk−1) and likelihood gk(zk|xk) are
subject to Gaussian distributions.

3.1. The IS Function Approximation Algorithm

As mentioned in Section 2, most of the conventional SMC-PHD filters utilize the transition density
function as the IS functions, resulting in great tracking error for targets with nonlinear dynamics.
A novel IS function approximation algorithm, incorporating the CIF with a gating method, is presented
to improve the tracking accuracy.

In our approach, we select the IS functions of Equations (3) and (4) as

Survival IS: q(x(i)k |x
(i)
k−1, Zk) = N(x(i)k ; m(i)

k,s , P(i)
k,s) (10)

Birth IS: π(x(i)k |Zk) = N(x(i)k ; m(i)
k,b, P(i)

k,b) (11)

where m(·)
k,s and m(·)

k,b are means of the survival and birth particles, respectively. P(·)
k,s and P(·)

k,b denotes
the corresponding covariances of them.

Then, the problem of IS function design can be reduced to calculate m(i)
k and P(i)

k . Now, we discuss
on how to calculate them. For simplicity, they are replaced by mk and Pk, respectively. Here we use the
CIF and gating methods to estimate them.

Before introducing the CIF method, we review the cubature rules [27]. The cubature rules are
used to approximate the Gaussian weight integral. Assuming c(x) is a function on the n-dimension
Rn, its Gaussian weight integral can be approximated by

IN(c) =
∫
Rn

c(x)N(x; m, P) ≈ 1
2n

2n

∑
j=1

c(m +
√

Pαj) (12)

where
αj =

√
n[1]j , j = 1, 2, . . . , 2n (13)

and [1]j is the j-th vector of the set


1
0
...
0

 , · · · ,


0
0
...
1

 ,


−1
0
...
0

 ,


0
0
...
−1




According to Equation (12), the cubature rules can be used to compute the multi-dimension
integrals in the prediction and update steps of the CIF method.

Prediction: In this step, we first predict the state mk|k−1 and covariance Pk|k−1 according to
cubature rules. Then, the predicted information state vector yk|k−1 and matrix Yk|k−1 are estimated for
the update step.

Let mk−1 and Pk−1 be the previous state and covariance, respectively. According to Equations (12)
and (13), the j-th cubature point χk−1,j can be estimated by

χk−1,j =
√

Pk−1αj + mk−1 (14)
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Then, we can calculate mk|k−1 and Pk|k−1 using the following formulations:

mk|k−1 =
1

2n

2n

∑
j=1

χ∗k−1,j (15)

Pk|k−1 =
1

2n

2n

∑
j=1

χ∗k−1,j(χ
∗
k−1,j)

T −mk|k−1(mk|k−1)
T

+Qk−1 (16)

where (·)T is the transpose operator, and

χ∗k−1,j = φ(χk−1,j) (17)

Given Equations (15) and (16), the information forms of mk|k−1 and Pk|k−1 are represented [28] by

yk|k−1 = Yk|k−1mk|k−1 (18)

and
Yk|k−1 = (Pk|k−1)

−1 (19)

where yk|k−1 and Yk|k−1 are the information state and matrix, respectively.
Update: We use the observation set Zk to update the predicted yk|k−1 and Yk|k−1 in the current step.

In order to construct the associations between the observation set Zk and predicted observation zk|k−1,
a gating method is applied to extract the associated observations. With the extracted observations, we
can finally obtain mk and covariance Pk.

We denote zk|k−1 as the predicted observation, computed by

zk|k−1 =
1

2n

2n

∑
j=1

χ∗k|k−1,j (20)

where
χ∗k|k−1,j = ϕ(χk|k−1,j) (21)

and
χk|k−1,j =

√
Pk|k−1αj + mk|k−1 (22)

Utilizing the predicted observation zk|k−1 of Equation (20), the error cross covariance matrix of
state and observation can be evaluated by

Pmz
k|k−1 =

1
2n

2n

∑
j=1

(χk|k−1,j −mk|k−1)(χ
∗
k|k−1,j − zk|k−1)

T

=
1

2n

2n

∑
j=1

χk|k−1,j(χ
∗
k|k−1,j)

T −mk|k−1(zk|k−1)
T (23)

With the above obtained parameters, we can calculate the state contribution and its corresponding
information matrix as

ik,j = Yk|k−1Pmz
k|k−1R−1

k (µj + (Yk|k−1Pmz
k|k−1)

Tmk|k−1) (24)

and
Ik = Yk|k−1Pmz

k|k−1R−1
k (Yk|k−1Pmz

k|k−1)
T (25)
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where µj is the innovation of the j-th observation zj (zj ∈ Zk), expressed by

µj = zj − zk|k−1 (26)

In our scenario, zj is a two-dimension vector, and µj follows a two-dimension
Gaussian distribution.

In practice, the observation set may contain large clutters. The existence of these clutters cannot
only degenerate the estimation accuracy, but also increase the computational complexity. Recently,
several gating technologies have been proposed to remove the clutters from the observation set [29,30].
Inspired by [30], we utilize the gating technology to reduce the influence of clutters.

Intuitively, observations far away from the predicted observation are subject to be generated by
clutters. These observations must be removed from the observation set. With the gating technology,
the left observations can be represented by

Ẑk ={zk,j|µT
j (P

zz
k|k−1)

−1µj <
√

Th} zk,j ∈ Zk (27)

where Pzz
k|k−1 is the covariance matrix of the predicted observation zk|k−1, and (·)−1 is the matrix

inversion. Th is the threshold of the gate. According to Equation (27), the innovation µj follows the
Chi-square distribution. Thus, Th can be determined by the dimension of µj and association probability.
Commonly, the square root of Th is known as the number of Sigma. Literature [30] proved that the
number of Sigma gates ranging from 3 to 5 (corresponding to Th = 9− 25) can guarantee the true
observation lying inside the gate with “enough” probability (≥ 0.971), when the dimension of µj
is less than three. In this paper, we select the number of Sigma gates being to 4 (corresponding to
Th = 16). When the dimension of µj is less than three, such a selection guarantee that the association
probability ≥ 0.998.

Then, we concentrate on computing Pzz
k|k−1 of Equation (27). Let Pmz

k|k−1 be the cross covariance
matrix between observation and state space. According to the linear error propagating of [31], Pmz

k|k−1
can be rewritten as

Pmz
k|k−1 ' Pk|k−1HT

k (28)

where Hk is the linearized matrix.
Obviously, Hk can be approximated by

Hk ' (Pmz
k|k−1)

TP−1
k|k−1 (29)

With the achieved Hk, according to [32], Pzz
k|k−1 can be calculated by

Pzz
k|k−1 = HkPk|k−1HT

k + Rk (30)

Substituting the achieve Pzz
k|k−1 into Equation (27), Ẑk can be extracted from the current observation

set Zk.
With the extracted observation set Ẑk, the information state vector yk and matrix Yk are

represented as:

yk = yk|k−1 +
|Ẑk |

∑
j=1

ik,j (31)

Yk = Yk|k−1 +
|Ẑk |

∑
j=1

Ik,j (32)
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Given information state yk and matrix Yk, posterior state mk can be reconstructed based on
Equation (18) :

mk = Yk
−1yk (33)

Moreover, the posterior covariance Pk is recovered based on Equation (19):

Pk = (Yk)
−1 (34)

If there is no observation that lies inside the gate (Ẑk = ∅), we approximate mk and Pk in
the following,

mk = mk|k−1 (35)

Pk = Pk|k−1 (36)

Substituting the above obtained mk and Pk into Equations (10) and (11), we can approximate the
IS functions of survival and birth targets for our CISMC-PHD approach.

3.2. The Birth Intensity Initialization Method

According to Equation (2), the birth intensity has large effect on the posterior intensity estimation.
Targets may “born at anywhere” of the state space. In other words, birth intensity γ(x) may cover the
whole state space, which is rather exhaustive [25]. To avoid such a disadvantage, observation-driven
birth intensity initiation methods were proposed [20,33,34]. Inspired by these methods, an adaptive
birth intensity initialization method is proposed for the CISMC-PHD approach. Instead of initializing
birth intensity across the whole state space, the proposed method of CISMC-PHD approach utilizes
the current observations and estimated targets to initialize the birth intensity at the next recursion.
Compared with the conventional SMC-PHD filters, our method can initialize the birth intensity without
knowing it as a prior.

The implementation of our method consists of two steps. First, in order to initialize the birth
intensity, we remove observations generated by the estimated targets That is because the current
survival targets cannot be new-born targets at the next recursion. Second, we use the remaining
observations to estimate the birth target components, which can be used to calculate the birth intensity.
With these two steps, the birth intensity can be initialized for the next recursion.

Step1. Remove observations generated by the estimated targets.

In the basic PHD filter, it is assumed that each target can yield at most one observation [35].
According to this assumption, each target has one and only one corresponding observation. Influenced
by the noises and clutters, the observation generated by the target may appear around the target.
In other words, observations around the target has the large probability to be generated by the same
target. Therefore, the birth target state set can be estimated by removing states of estimated targets
from the multi-target state.

Here, we adopt the bearing and range tracking model [36] to illustrate the birth intensity
initialization method of our CISMC-PHD approach. Let xe

k,i be the state of the i-th target in the
estimate state set Xe

k. xe
k,i consists of position and velocity, while zk,j (zk,j ∈ Zk) consists of the bearing

angle and range. We define the distance between xe
k,i and zk,j (zk,j ∈ Zk) as

di,j = |(zk,j − ϕ(xe
k,i))r| (37)

where (·)r denotes the range-dimension element, and | · | is the absolution value.
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We follow the way of [30] to select the certain threshold for Equation (37),

di,j < l · σr (38)

where σr is the error of the range-dimension (known as a prior). l is the confidence level, commonly
selected from l = 3 ∼ 5. Here, we use l = 3, which can guarantee that the associated probability equals
to 0.997.

With Equations (37) and (38), we can remove the observations associated with the estimated
targets. Let Z̃k be the observations of birth targets, the removing procedure is summarized in Table 1.

Table 1. Removing observations generated by the estimated targets.

– Input: Observation set Zk, and estimated state set Xe
k

– Output: Observation set of birth targets Z̃k

- For: j = 1, 2, · · · , |Xe
k|,

1 Compute the distance di,j between xe
k,i (xe

k,i ∈ Xe
k) and zk,j for each zk,i ∈ Zk by Equation (37).

2 Extract zk,i satisfying i = {i|di,j <= 3 · σr}.
3 Remove zk,i from Zk to obtain Z̃k.

- End For
- Return Z̃k.

Step2. Estimate the birth target components.

Once Z̃k is obtained, we turn to estimate the birth target components (the mean of the i-th target
state vector m(i)

k,b and its corresponding covariance P(i)
k,b) by the unbiased model of [37].

Let z̃k,i ∈ Z̃k, we map z̃k,i into state space denoted by z̃c
k,i = [px

k,i, py
k,i]

T . px
k,i and py

k,i can be
computed by px

k,i = β−1
θ rk,i cos θk,i and py

k,i = β−1
θ rk,i sin θk,i. βθ = σθ is a biased comparison factor,

where σθ , as a prior, is the error of bearing angle θk,i. According to [37], m(i)
k , the mean of the i-th birth

target state, can be estimated as
m(i)

k = [px
k,i, 0, py

k,i, 0, 0]T (39)

The covariance can be approximated by

P(i)
k =


σxx 0 σxy 0 0
0 σv 0 0 0

σyy 0 σxy 0 0
0 0 0 σ2

v 0
0 0 0 0 σ2

θ

 (40)

where σv, as a prior, is the standard deviation of velocity. In Equation (40), the following exists,

σxx = (β−2
θ − 2)(r̃k,i)

2 cos2(θk,i) + 0.5((r̃k,i)
2

+σ2
r )(1 + β4

θ cos(2θk,i))

σxy = (β−2
θ − 2)(r̃k,i)

2 cos(θk,i) sin(θk,i) + 0.5((r̃k,i)
2

+σ2
r )(1 + β4

θ cos(2θk,i))

σyy = (β−2
θ − 2)(r̃k,i)

2 sin2(θk,i) + 0.5((r̃k,i)
2

+σ2
r )(1− β4

θ cos(2θk,i))

(41)
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Finally, we can construct the new-born targets as {mk,i, Pk,i}
Nk ,b
i=1 , where Nk,b = |Z̃c

k| is considered
as the number of birth targets. We use Equation (11) to sample states of birth particles. The weights

of these birth particles are initialized with the same values, w(i)
k,b =

∫
γ(x)dx

N·Nk,b
, where N is the number

particles for each target, and γ(x) is defined in Section 2. On this basis, these birth particles become
survival particles at time k + 1. That is to say, the IS functions of these particles at time k + 1 can be
computed by the method of Section 3.1. Notice that the new-born target in this section may contain
clutters, and these clutters can be removed in the resampling step of the CISMC-PHD approach.

The proposed initialization method may cause overestimation of targets. To overcome the issue
of overestimation, some advanced methods, such as [33,34], etc., may be incorporated for initialization
of our approach. It is an interesting future work.

3.3. State Estimation

In multi-target tracking, it is rather important to estimate the target number and states. As for
the state estimation, clustering methods, are commonly used in SMC-PHD filters [16,18]. However,
they are subject to biased estimation [21]. Ristic et al. [21] proposed an method that clusters the
particles into several groups at the update stage. In this paper, we intend to adopt the method of [38]
for state estimation, which is an improved method of [21]. There are also several alternative methods,
such as Zhao’s method [39] and MEAP method [40], which have better estimation performance.

According to Equation (6), the updated weight wi
k of the i-th particle consists of two parts,

w(i,j)
k =


(1− pd(xk))w

(i)
k|k−1 j = 0

pd(x
(i)
k )gk(zk,j |x

(i)
k )

κ(zk,j)+Czk,j
wi

k|k−1 j = 1, . . . , |Ẑk|
(42)

In Equation (42), j = 0 denotes that there is no observation, and Czk,j can be computed
by Equation (7). For state estimation, we aggregate W j of particle weights corresponding to
observation zk,j,

W j =
Lk−1+Jk

∑
i=1

w(i,j)
k j = 0, . . . , |Ẑk| (43)

According to Equations (42) and (43), if zk,j is generated by the clutter, then the likelihood

gk(zk,j|x
(i)
k ) may be small, leading to low value of W j. However, if zk,j is generated by the target, then

W j may be large due to the large value of gk(zk,j|x
(i)
k ). Thus, setting certain threshold Wth for W j, we

can assign particles {x(i)k,j , w(i,j)
k } that satisfy W j > Wth to the j-th target. In this paper, we set Wth = 0.5,

the same as [21]. Then, xk,j and Pk,j can be calculated in the following

xk,j =
1

W j

Lk−1+Jk

∑
i=1

wi,j
k x(i)k,j (44)

Pk,j =
1

W j

Lk−1+Jk

∑
i=1

wi,j
k (x(i)k,j − xk,j)(x

(i)
k,j − xk,j) (45)

Given Equations (44) and (45), the states of multi-target can be finally output. We summarize our
approach at time k in Table 2.
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Table 2. The CISMC-PHD filter at time k.

– Input: Birth particle set {x(i)k−1,b, P(i)
k−1,b, w(i)

k−1,b}
Jk−1
i=1 , survival particle set {x(i)k−1,s, P(i)

k−1,s, w(i)
k−1,s}

Lk−1
i=1 ,

and current observation set Zk
– Output: Target number Mk, and estimated state set Xe

k

1 Calculate the IS function q(x(i)k |x
(i)
k−1,s, Z1:k) of Equation (10) by Equations (33) and (34), and draw

particles {x(i)k|k, w(i)
k|k−1}

Lk−1
i=1 for survival targets by Equations (3) and (4), where m(i)

k−1,s = x(i)k−1,s.

2 Approximate the IS function q(x(i)k,b|x
(i)
k−1,b, Z1:k) of Equation (10) using Equations (33) and (34),

and draw particle set {x(i)k|k, w(i)
k|k−1}

Lk−1+Jk−1
i=Lk−1+1 for birth particles by Equations (3) and (4), where

m(i)
k−1,b = x(i)k−1,b.

3 Calculate w(i)
k|k by Equation (6) for resampling and w(i,j)

k|k by Equation (42) for estimating, using the

particle set {x(i)k|k, w(i)
k|k−1}

Lk−1+Jk−1
i=1 .

4 Compute W j by Equation (43) with w(i,j)
k|k calculated by step 3 and assign particles into the

corresponding group by Wth to estimate the target states and number.

5 Estimate the state set Xe
k by Equation (44) with w(i,j)

k|k and x(i)k|k,j, where w(i,j)
k|k and x(i)k|k,j belong to the

j−th group of step 4. In addition, target number can be approximated by Mk =| Xe
k |.

6 Resample particles {x(i)k|k, P(i)
k|k, w(i)

k|k}
Lk−1+Jk−1
i=1 to obtain {x(i)k,s , P(i)

k,s , w(i)
k,s}

Lk
i=1 for the next recursion, where

Lk = [∑Lk−1+Jk
i=1 w(i)

k|k], and [·] denotes the nearest integer.
7 Remove the observations of survival targets using Table 1, and estimate the birth components by

Equations (39) and (40) to obtain the birth component set Bk.

8 Draw particle from Equation (11) to obtain the birth particles {x(i)k,b, P(i)
k,b, w(i)

k,b}
Jk
i=1 when Bk is given.

9 Return Mk and Xe
k.

4. A Fast Approach For The CISMC-PHD Filter

In this section, we focus on reducing the computational complexity of our CISMC-PHD approach.
Section 4.1 presents a fast implementation of the CISMC-PHD approach, namely the F-CISMC-PHD
approach. Then, we analyze the computational complexity of the CISMC-PHD and F-CISMC-PHD
approaches in Section 4.2. The framework of the improved approach is illustrated in Figure 1.

Birth component

PHD Prediction 

and Update

Survival Components 

Construction

Birth Components 

Construction 

Survival component

Particle

IS Function  

Approximating 

Figure 1. Framework of the F-CISMC-PHD approach. In the IS function Approximating step, we utilize
the survival and birth components to approximate the IS functions. Then the predicted particles
are generated and updated in the PHD prediction and update step to achieve the posterior particles.
By clustering the particles into several groups, the Gaussian Mixture components (namely survival
components) can be constructed in the survival components construction step. Meanwhile, we also apply
the survival components to estimate the birth components in the birth components construction step.
These components are used to approximate the IS functions in the next iteration.
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4.1. The Fast CISMC-PHD Filter

In this section, we introduce the F-CISMC-PHD approach, which can save the computational
time of the CISMC-PHD approach. Inspired by [41], we consider the particle groups of targets as the
Gaussian mixture components. Recall that Nk−1,b is the number of birth components. m(i)

k−1,b and P(i)
k−1,b

denote the mean and covariance of the i-th birth component, respectively. The posterior intensity of
Equation (1) can be approximated by

Dk−1|k−1(xk−1|Z1:k−1) ≈
Nk−1,s

∑
i=1

G(i)
k−1,sN(xk−1; m(i)

k−1,b, P(i)
k−1,b) +

Nk−1,b

∑
i=1

G(i)
k−1,bN(xk−1; m(i)

k−1, P(i)
k−1) (46)

where m(i)
k−1,s and P(i)

k−1,s are the mean and covariance of the i-th survival component, respectively.

G(i)
k−1,s is its corresponding weight, Nk−1,s is the number of survival components, and G(i)

k−1,b is the

weight of the i-th birth component. Here, G(i)
k−1,b =

∫
γ(x)dx

Nk−1,b
.

Commonly, birth components at time k − 1 become survival components at time k.
We combine birth and survival components into one set. That is {G(i)

k−1, m(i)
k−1, P(i)

k−1}
Nk−1,b+Nk−1,s
i=1 =

{G(i)
k−1,b, m(i)

k−1,b, P(i)
k−1,b}

Nk−1,b
i=1 ∪ {G(i)

k−1,s, m(i)
k−1,s, P(i)

k−1,s}
Nk−1,s
i=1 , where G(i)

k−1, m(i)
k−1, P(i)

k−1 denote the weight,
mean and covariance of the i-th combined component.

With the combined components, we use the CIF method of Section 3.1 to approximate the IS
function of each component. Here, we utilize q(x|m(i)

k−1, Zk) to represent the IS function of the i-th
component. On this basis, the j-th predicted particle, which is generated by the i-th component, can be
represented by

x(j)
k ∼ q(x(j)

k |m
(i)
k−1, Zk) j = ∑i−1

a=1bG
(a)
k−1 · Nc+ 1, ∑i−1

a=1bG
(a)
k−1 · Nc+ 2, . . . , ∑i

a=1bG
(a)
k−1 · Nc (47)

w(j)
k|k−1=

ps(x
(i)
k−1)· f (x

(j)
k |x

(i)
k−1)

q(x(j)
k |m

(j)
k−1,Zk)

· G(a)
k−1

bG(a)
k−1 Nc

j = ∑i−1
a=1bG

(a)
k−1 · Nc+ 1, ∑i−1

a=1bG
(a)
k−1 · Nc+ 2, . . . , ∑i

a=1bG
(a)
k−1 · Nc (48)

where f (x(j)
k |x

(i)
k−1) = N(x(j)

k ; m(i)
k|k−1, P(i)

k|k−1). In addition, m(i)
k|k−1 and P(i)

k|k−1 are the predicted mean
and covariance of i-th component, respectively, which can be computed by Equations (15) and (16).
b·c denotes the nearest floor integer, and bG(i)

k−1 · Nc is the number of particles generated by
the i-th component. According to Equations (47) and (48), the number of predicted particles is
Nk = ∑

Nk,s+Nk,b
a=1 bG(a)

k−1 · Nc.
Then, the predicted weight of Equation (48) is substituted into Equation (42) for particle grouping

and state estimation. Recall that, weight W j of Equation (43) can be used to assign the particles into
the j-th group, where the mean xk,j and covariance Pk,j can be calculated by Equations (44) and (45)
in Section 3.3. Given W j, xk,j and Pk,j, we model the j-th group as a Gaussian mixture component

{G(j)
k , xk,j, Pk,j}, where we set G(j)

k =
Wj

maxj Wj
. With such a selection, it can guarantee that the groups

with large W j have enough number of sampling particles. Note that the group with small W j has the
large probability to be generated by the clutter, and such a group should be neglected to avoid the
waste of computational time. We set a certain threshold Tg for {G(j)

k |G
(j)
k > Tg}, subject to Tg · N � N.

In this paper, we set Tg = 0.1. The construction procedure of the target components is summarized in
Table 3.

The target components of Table 3 refer to the survival target components. The birth components
and target state estimation can be achieved by Sections 3.2 and 3.3, respectively.
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Table 3. The construction of target components.

– Input: The group weight W j, particle {x(i)k,j , wi,j
k }, ,j = 0, 1, . . . , |Ẑk|, and i = 1, 2, . . . , Lk−1 + Jk

– Output: The target components {G(a)
k , mk,a, Pk,p}

Ns,k
a=1.

1 Initiate the weight of the target component G(1)
k = 0,Ns,k = 0.

2 Normalize W j by W̃ j = W j

maxj W j

3 for: j = 0, 1, . . . , |Zk|
if W̃ j > Tg

− Add the number of target components Ns,k = Ns,k + 1.
− Substitute {w(i,j)

k } and {x(i)k } into Equation (44) to approximate the mean xk,Ns,k
and

covariance Pk,Ns,k
.

− Save the weight of the current component as G(Ns,k)
k = W̃ j.

4 Return the target components {G(a)
k , mk,a, Pk,p}

Ns,k
a=1.

4.2. Computational Complexity

In this section, we analyze the computational complexity of the CISMC-PHD, F-CISMC-PHD and
conventional SMC-PHD approaches. For justice, we adopt the same state estimation and birth target
initialization methods for the three approaches. The computational complexity of the three approaches
on state estimating and birth target initializing is the same, when they have same particle numbers
and observations. Thus, it can be neglected for the computational complexity comparing. In addition,
we select the multinomial resampling method as the resampling methods of the CISMC-PHD and
conventional SMC-PHD approaches. The particle numbers of these approaches are equal to Np.

We begin with the computational complexity analysis of the CISMC-PHD approach. Incorporating
the CIF and gating methods into the SMC-PHD approach, the CISMC-PHD approach can achieve
a good estimation accuracy in nonlinear target tracking. As mentioned in Section 3.1, each particle
is applied to approximate the IS functions. The computational complexity of the CIF and gating
method per particle is nearly O(n3

d), where nd is the dimension of the particle state. The computational
complexity of the CIF-based IS functions is O(Np · n3

d). Besides, the computational complexity of the
PHD update step is O(Np ·M), where M is the number of observations. In addition, the resampling step
of our CISMC-PHD approach consumes O(Np) computational complexity. Thus, the computational
complexity of our CISMC-PHD approach in total is O(Np · n3

d + Np ·M + Np).
Then, we turn to the analysis of the computational complexity of the F-CISMC-PHD approach.

Since the F-CISMC-PHD approach adopts the target components to compute the CIF-based IS
functions, the computational complexity of the CIF-based IS functions is O(NG · n3

d), where NG
is the number of target components, NG � Np. Assuming that in the PHD prediction step, NG target
components generate Np particles. The computational complexity of the PHD update step is O(Np ·M).
Besides, the Gaussian target component forming consumes O(M + 1). Combining the computational
complexity of these steps together, the computational complexity of the F-CISMC-PHD approach is
O(NG · n3

d + Np ·M + M + 1). In practice, M� Np, the computational complexity of F-CISMC-PHD
filter is much less than the CISMC-PHD filter.

The conventional SMC-PHD approach uses the transitional density as the IS function. Compared
with the CISMC-PHD and F-CISMC-PHD approaches, it does not need to the IS function computing.
Hence, the computational complexity of the conventional SMC-PHD approach can be approximated
as O(Np ·M + Np), where O(Np ·M) and O(Np) are the computational complexity of the update and
resampling steps. Obviously, O(Np ·M + Np) < O(NG · n3

d + Np ·M + M + 1) < O(Np · n3
d + Np ·

M + Np). Thus, the computational complexity of the conventional SMC-PHD approach is smaller than
the CISMC-PHD and F-CISMC-PHD approaches.
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With the above discussion, we can conclude that the conventional SMC-PHD approach has the
lowest computational complexity, and the CISMC-PHD approach has the highest computational
complexity. However, the estimation accuracy of the conventional SMC-PHD approach is the lowest,
and the estimation accuracy of the CISMC-PHD approach is the highest. The F-CISMC-PHD approach
can make a trade-off between the computational complexity and estimation accuracy. Such a conclusion
can be observed in Section 5.

5. Simulation Results

In this section, we validate the tracking performance of the proposed CISMC-PHD and
F-CISMC-PHD approaches. In Section 5.1, a nonlinear simulation scenario composed of five targets
is constructed. Then, Section 5.2 compares the estimation results of the IBSMC-PHD [20], proposed
CISMC-PHD and F-CISMC-PHD approaches, in terms of the optimal subpattern assignment (OSPA)
metric [42] and Root Mean Square Error (RMSE). At last, we compare the simulation results of all three
approaches with different numbers of clutters and detection probabilities, to validate the effectiveness
of our approaches.

5.1. Simulation Scenarios

In our simulations, we use the nonlinear scenario, the same as [36]. Let x be the target states,
represented by x = [px, vx, py, vy, α]T . In this paper, (px, py) is the position, (vx, vy) is the velocity, and
α is the turn rate. With the above definitions, we model the nonlinear dynamic equation as

xk = 
1 sin(αk−1T)

αk−1
0 − 1−cos(αk−1T)

αk−1
0

0 cos(αk−1T) 0 − sin(αk−1T) 0

0 1−cos(αk−1T)
αk−1

1 sin(αk−1T)
αk−1

0
0 sin(αk−1T) 0 cos(αk−1T) 0
0 0 0 0 1

 xk−1

+


T2

2 0 0
T 0 0
0 T2

2 0
0 T 0
0 0 1

 εk−1 (49)

where T = 1 second (s) is the sampling interval. In addition, εk−1 is the noise, defined by
εk−1 ∼ N(εk−1; 0, Q). We denote Q = diag(σ2

x,ε, σ2
y,ε, σ2

α) as covariance matrices of εk−1. In this
paper, we set σx,ε = σy,ε = 1 meter/second2 (m/s2), σα = π/180 rad. The initial states, appearing
times, and disappearing times of targets are listed in Table 4.

Table 4. Initial states of the targets.

Target State Appearing(s) Disappearing(s)

1 [320, 5, 320, 5, 0] 1 40
2 [400,−5, 400, 5, 0] 8 50
3 [375, 5, 375,−5, 0] 25 70
4 [400, 5, 325,−5, 0] 59 70
5 [325,−5, 375, 5, 0] 59 70
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Besides, the observation model is given by

zk =

arctan
(

py
px

)√
p2

x + p2
y

+ ηk (50)

where ηk is the observation noise defined by ηk ∼ N(ηk; 0, R), and R = diag(σ2
θ , σ2

r ) is the covariance.
Here, we set σθ = π/180 rad and σr = 1 meter (m). We also assume that clutters are uniformly
distributed in the detection region, where the angle range is (0, π/2) rad, and distance range is
(0, 1000) m. Trajectories of the five targets in both scenarios are shown in Figure 2, where the clutter
number is set to be 10 for each scenario.

X(m)

0 100 200 300 400 500 600 700 800 900 1000

Y
(m

)

0

200

400

600

800

1000

Clutter

Target 1

Target 2

Target 3

Target 4

Target 5

Figure 2. Ground-truth trajectories of five targets with the clutter number setting to be 10. The target
trajectories are depicted by circle-solid lines with different colors, while the asterisks denote clutters.

For parameters, we set the gating threshold Th = 16 according to [32], the probability of detection
and survival are pd(xk) = 0.95, and ps(xk) = 0.99, in accordance with [36]. The particle numbers for
each birth target and survival targets are 5 and 100, respectively. All of the simulations are run in a
computer with MATLAB 2015a, and i5 3.2 GHz processor with 4GB RAM.

5.2. Comparison of Estimation Accuracy on Certain Number of Clutters

To compare the estimation accuracy, we adopt the first order OSPA and RMSE as the metric.
Here, we discuss the first order OSPA distance in the following. Let X = {x1, . . . , xn} and
Y = {y1, . . . , yn} be two RFSs, where m and n are numbers of elements in X and Y, respectively.
Supposing that Ωn represents the set of permutations of {1, 2, . . . , n}, the first order OSPA metric can
be rewritten by

d̄c
p(X, Y) =

1
n

(
min
ς∈Ωn

m

∑
i=1

dc(xi, yς(i))
p + cp(n−m)

)
(51)

where dc(x, y) = min(c, d(x, y)), c > 0 is a cut-off factor, and d(x, y) is the distance between x and y.
In this paper, we set c = 150 in accordance with [43], and use the Euclidean distance to compute d(x, y).

Then, we conducted 500 Monte Carlo runs for multi-target tracking with the IBSMC-PHD,
our CISMC-PHD, and F-CISMC-PHD approaches. The estimated trajectories of all three approaches
are demonstrated in Figure 3. We can observe that most of estimated points are covered with the true
trajectories in Figures 3b,c, while most of points are not covered with the ground-truth trajectories.
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Figure 3. Estimated trajectories of three approaches with clutter number being 10. The estimated
trajectories are represented with the red (light) points, while the true trajectories are with the black
(dark) solid line. (a) Trajectories of IBSMC-PHD; (b) Trajectories of CISMC-PHD; (c) Trajectories of
F-CISMC-PHD.

Furthermore, Figure 4 depicts the OSPA distances of all three approaches. In these figures,
the OSPA distances of the proposed CISMC-PHD and F-CISMC-PHD approaches are smaller than
the BSMC-PHD approach. Note that large OSPA distance denotes large tracking error. Thus,
the proposed CISMC-PHD and F-CISMC-PHD approaches have the smaller tracking error than
the IBSMC-PHD approach. We can also observe that the OSPA distances of the proposed CISMC-PHD
and F-CSMC-PHD approaches have four peaks at time 2, 9, 26, and 60. That is to say, targets may
appear at these times.

Time(s)
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IBSMC-PHD

CISMC-PHD

F-CISMC-PHD

Figure 4. OSPA distances of the IBSMC-PHD, CISMC-PHD and F-CISMC-PHD approaches with clutter
number being 10.

We also plot the estimated numbers and corresponding RMSEs of all three approaches in Figure 5.
As seen from Figure 5a, the estimated number of the proposed CISMC-PHD approach is closest to
the ground truth among three approaches, thus enjoying the lowest RMSE in Figure 5b. In addition,
the numerical results of the averaged OSPA distances and RMSEs are listed in Table 5, demonstrating
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that our CISMC-PHD approach achieves the best estimation on numbers and states. According to
Table 5, the F-CIMS-PHD approach can make a compromise between the computational time and
estimation accuracy.

Time(s)
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(a) (b)

Figure 5. Estimated numbers and RMSEs of IBSMC-PHD, CISMC-PHD and F-CISMC-PHD approaches
with clutter number being 10. (a) Estimated numbers of the three approaches; (b) RMSEs of the three
approaches.

Table 5. Averaged Estimation Errors and Computational Times per 100 particles.

Approaches OSPA (m) RMSE Time (s)

IBSMC-PHD 46.20 0.44 0.02
CISMC-PHD 25.48 0.24 0.2

F-CISMC-PHD 31.93 0.30 0.06

5.3. Comparison of Estimation Accuracy on Various Numbers of Clutters

To validate the influence of clutters on multi-target tracking, the IBSMC-PHD, CISMC-PHD and
F-CISMC-PHD approaches were implemented with 500 Monte Carlo simulations alongside the clutter
number changing from 1 to 30. The results are illustrated in Figure 6a,b. From this figure, we can
see that the averaged OSPA distances of all three approaches are enhanced, when the clutter number
increases from 1 to 30. Among these approaches, the CISMC-PHD approach has the smallest averaged
OSPA distance and RMSE.
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Figure 6. Estimated error of the IBSMC-PHD, CISMC-PHD and F-CISMC-PHD approaches along
with the clutter number changing from 1 to 30. (a) Averaged OSPA distances; (b) Averaged RMSEs of
estimated number.
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5.4. Comparison of Estimation Accuracy over Different Probabilities of Detection

In this section, we compare the estimation accuracy at different detection probabilities (varying
from 0.92 to 0.98). Here, the clutter number is chosen to be 10, and 500 Monte Carlo simulations are run
for the comparison. Table 6 reports the OSPA distances and RMSEs of the IBSMC-PHD, CISMC-PHD
and F-CISMC-PHD approaches.

Table 6. Tracking Performance over different detection probabilities.

pd = 0.92 pd = 0.94

IBSMC-PHD CISMC-PHD F-CISMC-PHD IBSMC-PHD CISMC-PHD F-CISMC-PHD

OSPA(m) 52.13 34.40 40.21 43.55 27.39 29.82
RMSE 0.54 0.37 0.47 0.47 0.32 0.37

pd = 0.96 pd = 0.98

IBSMC-PHD CISMC-PHD F-CISMC-PHD IBSMC-PHD CISMC-PHD F-CISMC-PHD

OSPA(m) 43.55 27.39 29.82 39.35 23.20 23.02
RMSE 0.42 0.27 0.31 0.35 0.22 0.24

From Table 6, we can observe that the estimated accuracy of the F-CISMC-PHD approach get
close to the CISMC-PHD approach, when the probabilities of detection increase from 0.92 to 0.98. Thus,
the F-CISMC-PHD approach is suitable for the high probabilities of detection.

5.5. Comparison of Estimation Accuracy at Challenging Nonlinear Scenarios

In this section, we compare the estimation accuracy of the IBSMC-PHD, CISMC-PHD and
F-CISMC-PHD approaches at challenging nonlinear scenarios. For the challenging nonlinear
scenarios, the standard deviation σθ varies from 1.5π

180 to 3π
180 . We implement each approach with

500 Monte Carlo simulations.
The averaged accuracy, evaluated by OSPA and RMSE, is listed in Table 7. Table 7 indicates

that the estimation accuracy of all three approaches decreases, when σθ increases from 1.5π
180 to 3π

180 .
Compared with the IBSMC-PHD approach, the OSPA distances and RMSEs of the CISMC-PHD and
F-CISMC-PHD approaches are smaller at all four values of σθ . It means that the estimation accuracy of
the CISMC-PHD and F-CISMC-PHD approaches is more stable than the IBSMC-PHD approach in the
challenging nonlinear scenarios.

Table 7. Tracking Performance over different σθ .

σθ = 1.5π
180 σθ = 2π

180

IBSMC-PHD CISMC-PHD F-CISMC-PHD IBSMC-PHD CISMC-PHD F-CISMC-PHD

OSPA(m) 49.62 27.32 29.66 50.40 27.64 29.99
RMSE 0.43 0.33 0.37 0.47 0.34 0.38

σθ = 2.5π
180 σθ = 3π

180

IBSMC-PHD CISMC-PHD F-CISMC-PHD IBSMC-PHD CISMC-PHD F-CISMC-PHD

OSPA(m) 51.04 27.43 30.74 52.56 28.02 31.3
RMSE 0.50 0.35 0.39 0.45 0.35 0.39

6. Conclusions

In this paper, we have proposed the CISMC-PHD and F-CISMC-PHD approaches, which can
estimate the time-varying number and states of multi-target nonlinear tracking. In our CISMC-PHD
approach, a novel IS function approximation method is presented, which incorporates a gating method
into the CIF method. To initiate the birth intensity of the next recursion, we use the current observations
and estimated states to estimate the birth target components. In addition, we also present a fast
implementation of the CISMC-PHD approach, namely F-CISMC-PHD, to reduce the time complexity of
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the CISMC-PHD approach. By clustering the particles into several groups, the target components can be
obtained by representing the groups as Gaussian mixture components. Utilizing these components to
approximating the IS functions, the computational time can be reduced magnificently. The simulation
results demonstrate that the proposed CISMC-PHD and F-CISMC-PHD approaches outperform the
conventional BSMC-PHD approach.

This paper concentrates on improving efficiency and accuracy of the conventional SMC-PHD
filter. It simply utilizes the multinomial resampling method as the resampling method. Other
resampling methods may be integrated in the CISMC-PHD approach for the future work. Besides,
the F-CISMC-PHD approach is only suitable for the high probability of detection and small number
of clutters. Study on improving the tracking performance of the F-CISMC-PHD approach at low
probability of detection and large number of clutters may be seen as another direction of the
future work.
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