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Abstract: Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate
change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution
WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of
80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal
components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as
the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven
principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed
that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70%
and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic
regression analysis (LR). However, the ML classifier achieved the highest classification accuracy
(OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables.
The contribution of this study is to create a new framework for accurately identifying tea crops in a
subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which
could further aid agriculture land management and a sustainable agricultural product supply.

Keywords: WorldView-2; tea crops; GLCM texture; pixel and object-based image analysis; random
forest; support vector machine

1. Introduction

In recent years, due to global warming, many regions of the Earth have suffered from drastic
climate change, which has increased the frequency of extreme climate events. Not only does this
cause certain inconveniences for the lives of human beings, but it also threatens our lives and property.
The growth of crops has an intimate relationship with the climate, so any climatic change could impact
the amount and the quality of crop production [1–11]. In the past, in order to control the production
surface area and the amount of production, governments would generally monitor the sensitive crops
with prices that fluctuate according to the weather, disasters, or public preferences so as to prevent
price collapses, which could cause financial damage to farmers. Therefore, it is important to have a
comprehensive understanding of the acreage of crop production and the market situation of various
crops in order to propose important contingency measures in response to the economic losses and
potential food crises caused by extreme climate phenomena. In the sub-tropical region in Taiwan, for
example, tea is a sensitive crop of high economic value and a featured export product. About 3306 tons
of teas of various special varieties are exported annually, and the number is still growing. According to
the United Nations Food and Agriculture Organization (FAO), the global production of tea grew from
3.059 million tons in 2001 to 4.162 million tons in 2010, while the global area planted with tea grew
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from 2.41 million hectares in 2001 to 3.045 million hectares in 2010. This is certainly an amazing growth
rate, and many studies conducted in different countries found that global warming would result in tea
production losses [12–15], so adopting effective measures for productivity control is necessary.

Timely and accurate LULC interpretation and dynamic agriculture structure monitoring are the
key points of agricultural productivity control to ensure a sustainable food supply [16–22]. In actual
operation, on-site investigation and orthogonal photograph interpretation are two methods widely
used, especially by government agencies, to obtain information about tree characteristics and crop
species composition. However, on-site investigation requires a lot of time and manpower and even
though the working process is very detailed and precise, the ineffective investigation results in
incomplete, unstable and sporadic LULC products. Aerial photograph interpretation and vector
digitizing on GIS platforms (e.g., ArcGIS, MapInfo, QGIS) is also time-consuming and expensive for
large crop mapping and classification. Besides, it is easier for the researchers to obtain extensive LULC
information with high temporal resolution by using satellite imagery rather than aerial photographs
or other methods. This information is fundamental for agricultural monitoring because the farmer
compensation and the recognition of production losses are highly time-dependent. Therefore, daily
transmission satellite imagery could be a very useful tool for LULC mapping.

However, the accurate interpretation ability for individual stands with the highly heterogeneous
farm or shape characters of single canopies, is limited by the relatively low spatial resolution if we
apply moderate-resolution satellite imagery (e.g., SPOT 4 and SPOT 5 provided by Airbus Defence
and Space) [23–31]. Over the last few years, the spectral resolution, spatial resolution and temporal
resolution have undergone rapid and substantial progress (e.g., Formosat-2 multispectral images offer
8 m resolution and panchromatic band images at 2 m resolution). For some urban and flat areas,
individual stands, such as a tree or a shrub, can be easily distinguished by using very high resolution
(VHR) imagery [32–35]. This provides opportunities to differentiate farm and crop types. High spatial
resolution satellite imagery has thus become a cost-effective alternative to aerial photography for
distinguishing individual crops or tree shapes [36–46]. For example, WorldView-2 images and
support vector machine classifier (SVM) have been used to identified three dominant tree species and
canopy gap types (accuracy = 89.32.1%) [47]. Previous study has applied a reproducible geographic
object-based image analysis (GEOBIA) methodology to find out the location and shape of tree crowns
in urban areas using high resolution imagery, and the identification rates were up to 70% to 82% [36].
QuickBird image classification with GEOBIA has also been proved useful to identify urban LULC
classes and obtained a high overall accuracy (90.40%) [32].

Apart of the impact of satellite imagery resolution, image segmentation methods and classification
algorithms also play essential roles in LULC classification workflows. In early years, many studies
focused on developing pixel-based image analysis (PBIA) by taking the advantage of VHR image
characteristics [48–54], but it is obvious that recent studies mapping vegetation composition or
individual feature have demonstrated the advantages of object-based image analysis (OBIA) [55–62].
In OBIA, researchers first have to transfer the original pixel-image into object units based on specific
arrangement or image characteristics, which is called image segmentation, and then assign the category
of every object unit by using classifiers. OBIA can improve the deficiency of PBIA, such as the salt
and pepper effect, therefore it has become one of the most popular workflows. For example, Ke and
Quackenbush classified five tree species (spruce, pine, hemlock, larch and deciduous) in a sampled
area of New York (USA) by applying object-based image analysis with QuickBird multispectral
imagery and obtained an average accuracy of 66% [63]. Pu and Landry presented a significantly higher
classification accuracy of five vegetation types (including broad-leaved, needle-leaved and palm trees)
using object-based IKONOS image analysis [39]. The results were much better than using pixel-based
approaches. Kim et al. obtained a higher overall accuracy of 13% with object-based image analysis
by using an optimal segmentation of IKONOS image data to identify seven tree species/stands [64].
Ghosh and Joshi compared several classification algorithms on mapping bamboo patches using very
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high resolutionWorldView-2 imagery, and achieved 94% producer accuracy with an object-based SVM
classifier [65].

According to the abovementioned reasons and background, the main objectives of this study
include: (1) to investigate the classification accuracy of a combined workflow applied on WorldView-2
imagery to identify tea crop LULC; (2) to compare the capabilities of several ordinary LULC
classification algorithms (e.g., maximum likelihood (ML), logistic regression (LR) random forest
(RF) and support vector machine (SVM) based on pixel and object-based domains) in identifying tea
LULC; and (3) to explore the potential of using high spatial/spectral/time resolution WorldView-2
imagery to identify tea crop LULC classification, and the details about image segmentation and
feature extraction will also be discussed. The main content of this paper is divided into four major
sections. Sections 1 and 2 include descriptions and introductions of the study, introductions to on
site investigation and satellite imagery data sets, frameworks of feature extraction and classification
developed for this study. Section 3 contains the main findings and breakthroughs of this study,
followed by their discussion. The final part consists of the conclusions.

2. Materials and Methods

2.1. Study Area and Workflow

The study area is located in part of Nantou County in central Taiwan (between 120.620˝E to
120.683˝E and 23.8492˝N to 23.8894˝N). The total area is about 263 hectares. According to the 2014
agricultural statistic data of Taiwan, the annual tea production of this area is about 2.3% of the total
output. The climate of this region is sub-tropical, with average temperatures of 22~25 ˝C and an annual
rainfall of 1500~2100 mm. The terrain is mainly a flat plain near low slope hills. This region contains
typical agricultural villages with abundant and minimally changed Camellia sinensis (L.) O. Ktze. Var.
Sinensis and Camellia sinensis (L.) O. Ktze. Var. Assamica (Mast.) Kitam. f. Assamica tea crops and
pineapple LULC. The study area is shown in Figure 1. The methodological flowchart for mapping the
tea cultivation area is shown in Figure 2.

Sensors 2016, 16, 594 3 of 25 

 

According to the abovementioned reasons and background, the main objectives of this study 
include: (1) to investigate the classification accuracy of a combined workflow applied on WorldView-
2 imagery to identify tea crop LULC; (2) to compare the capabilities of several ordinary LULC 
classification algorithms (e.g., maximum likelihood (ML), logistic regression (LR) random forest (RF) 
and support vector machine (SVM) based on pixel and object-based domains) in identifying tea 
LULC; and (3) to explore the potential of using high spatial/spectral/time resolution WorldView-2 
imagery to identify tea crop LULC classification, and the details about image segmentation and 
feature extraction will also be discussed. The main content of this paper is divided into four major 
sections. Sections 1 and 2 include descriptions and introductions of the study, introductions to on site 
investigation and satellite imagery data sets, frameworks of feature extraction and classification 
developed for this study. Section 3 contains the main findings and breakthroughs of this study, 
followed by their discussion. The final part consists of the conclusions. 

2. Materials and Methods 

2.1. Study Area and Workflow 

The study area is located in part of Nantou County in central Taiwan (between 120.620°E to 
120.683°E and 23.8492°N to 23.8894°N). The total area is about 263 hectares. According to the 2014 
agricultural statistic data of Taiwan, the annual tea production of this area is about 2.3% of the total 
output. The climate of this region is sub-tropical, with average temperatures of 22~25 °C and an 
annual rainfall of 1500~2100 mm. The terrain is mainly a flat plain near low slope hills. This region 
contains typical agricultural villages with abundant and minimally changed Camellia sinensis (L.) O. 
Ktze. Var. Sinensis and Camellia sinensis (L.) O. Ktze. Var. Assamica (Mast.) Kitam. f. Assamica tea crops 
and pineapple LULC. The study area is shown in Figure 1. The methodological flowchart for 
mapping the tea cultivation area is shown in Figure 2. 

 

Figure 1. The location of study area in Nantou, Taiwan and the WorldView-2 imagery used to map 
tea cultivation area in this study. 

Figure 1. The location of study area in Nantou, Taiwan and the WorldView-2 imagery used to map tea
cultivation area in this study.



Sensors 2016, 16, 594 4 of 25
Sensors 2016, 16, 594 4 of 25 

 

 
Figure 2. Methodological flowchart for mapping tea cultivation area. 

2.2. Data Sets 

2.2.1. Collection of Ground Reference Data 

We surveyed the exact plantation location of all tea and other non-tea LULC during 4–5 March 
2015 (Figure 3). A Garmin global positioning system (GPS) and ArcGIS mobile device were used as 
the tools for semi-automatic site mapping with a scale of 1:2500. The LULC includes five types: (1) 
tea (Camellia sinensis (L.) O. Ktze. Var. Sinensis and Camellia sinensis (L.) O. Ktze. Var. Assamica (Mast.) 
Kitam. f. Assamica); (2) other crops (e.g., pineapple and betel palm (Areca catechu)); (3) water and 
ponds; (4) buildings and roads; and (5) forest (evergreen broadleaf forest). Other crops in the study 
area were mainly pineapple and betel nut. We re-categorized these five LULC types into “tea” and 
“non-tea” LULC by integrating all land features except the tea areas. The results of the field survey 
showed that there are around 33 hectares of tea and 230 hectares of non-tea regions in our study area. 

 

Figure 3. Tea crops (Camellia sinensis (L.) O. Ktze. Var. Sinensis and Camellia sinensis (L.) O. Ktze. Var. 
Assamica (Mast.) Kitam. f. Assamica) of three different seasons located in study area. (a) December 2014; 
(b) March 2015; (c) August 2015. 

Figure 2. Methodological flowchart for mapping tea cultivation area.

2.2. Data Sets

2.2.1. Collection of Ground Reference Data

We surveyed the exact plantation location of all tea and other non-tea LULC during 4–5 March
2015 (Figure 3). A Garmin global positioning system (GPS) and ArcGIS mobile device were used as
the tools for semi-automatic site mapping with a scale of 1:2500. The LULC includes five types: (1) tea
(Camellia sinensis (L.) O. Ktze. Var. Sinensis and Camellia sinensis (L.) O. Ktze. Var. Assamica (Mast.)
Kitam. f. Assamica); (2) other crops (e.g., pineapple and betel palm (Areca catechu)); (3) water and ponds;
(4) buildings and roads; and (5) forest (evergreen broadleaf forest). Other crops in the study area were
mainly pineapple and betel nut. We re-categorized these five LULC types into “tea” and “non-tea”
LULC by integrating all land features except the tea areas. The results of the field survey showed that
there are around 33 hectares of tea and 230 hectares of non-tea regions in our study area.
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2.2.2. WorldView-2 Imagery

The main LULC of the study area are tea crops and pineapples, but it was not easy to do artificial
interpretation even with VHR orthogonal aerial photographs due to the similar arrangements of the
plants. For this reason, WorldView-2 imagery with both high spatial and spectral resolution was
applied as a main material. The WorldView-2 imagery satellite (DigitalGlobe, Inc., Westminster, CO,
USA) is a commercial satellite with eight multispectral bands and very high resolution. The average
amount of time needed to revisit and acquire data for the exact same location is 1.1 day, and the
spatial resolution is 0.46~0.52 m (panchromatic band, 450~800 nm) and 1.84~2.08 m (multispectral
bands). The eight multispectral bands contained coastal blue (400~450 nm), blue (450~510 nm), green
(510~580 nm), yellow (585~625 nm), red (630~690 nm), red edge (705~745 nm), NIR1 (770~895 nm)
and NIR2 (860~1040 nm). The added spectral diversity of WorldView-2 satellite such as coastal blue,
yellow and red edges provides the ability to perform detailed environmental and landscape change
detection better than with other satellite images (e.g., Formosat-2, SPOT6, Kompsat) and DMC aerial
photographs with only four bands or less. We applied cloud-free imagery (<5%) of the study area
as the original material. The original digital number (DN) value of the imagery was converted to
top-of-atmosphere spectral reflectance [66]. The imagery was also ortho-rectified and co-registered to
the two degree zone Transverse Mercator projection coordinate system with a root mean square error of
less than 0.5 pixels per image. The time of image acquisition for this study was acquired on 22 February
2015 corresponding to the date of ground reference data (4–5 March 2015). It worth mentioned that
tea crops within study area are stable in LULC, farm shape arrangement, and not leafing out all years
(Figure 4). Therefore, if the tea LULC still remained, the image acquisition and interpretation would
not be limited or affected by season or date within a period due to stable vegetation spectral dynamics.
This is beneficial to ground verification and long term monitoring.
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Figure 4. Distribution of standardized reflectance of different LULC across 8 multi-spectral bands
and NDVI.

As for the resolution of WorldView-2 imagery, the intervals between every tea plantation were
not clear in the 2 m resolution MS bands in this study. Therefore, a pan-sharpening process was added
to improve the spatial resolution of the MS bands from 2 m to 0.5 m. The pan-sharpened archives
had enhanced interpretability in inferring forms and shapes of tea crop LULC. Each band of the
pan-sharpened imagery was then standardized by using mean and standard deviation. The reason is
that the reflectance value range of the WorldView-2 image varies between each band and makes the
input variables contribute unequally to the PBIA and OBIA.

2.3. Spectral Variability Analysis

The common scientific challenge of mapping vegetation with very high spatial resolution imagery
is to distinguish between different vegetation classes due to the superimposition of spectral signatures.
In order to test the LULC classification capability of eight MS band WorldView-2 imagery, and the
difference or similarity of tea crops in different season, spectral separability analysis was undertaken
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as the initial step. Figure 4 presents the box-whisker-plots of spectral variability of the training pixels
of five basic LULC classes. Reflectance of buildings and roads in NIR1, NIR2, coastal blue wavelengths
and reflectance of water and ponds in all red edge wavelengths were significantly different from
other classes. Besides, in most bands, tea LULC, forest canopies, and other crops (pineapple crop and
betel palm) showed similar spectral variability in the blue, green, yellow, red bands and normalized
difference vegetation index (NDVI, ranges from minus one (´1) to plus one (+1)), and little difference
in NIR1 and NIR2 bands. In other words, tea farm patches cannot be definitely distinguished from
non-tea crops if we only use eight MS bands and NDVI without other information.

As for the evaluation of tea spectral dynamics, usually, when plants are harvested, they have a
physiological response characterized by intensive vegetation growth and high primary production
to restore the area that was eliminated. This frequently translates into a displacement of the red
edge position towards longer wavelengths. However, Figure 5 shows that the mean standardized
reflectances of tea were almost the same in each band between 18 October 2012 and 22 February 2015.
The same appearance was noted for pineapple as well. For this reason, we believed that the tea LULC
and tea spectral dynamics are relatively stable.
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Figure 5. Standardized reflectance of tea crops (Camellia sinensis (L.) O. Ktze. Var. Sinensis and Camellia
sinensis (L.) O. Ktze. Var. Assamica (Mast.) Kitam. f. Assamica) and pineapple in different dates across
eight multi-spectral bands.

2.4. Generation of Other Input Variables

This study assumed that the classification accuracy of tea and non-tea LULC separation would be
increased if more sub-class bands or indices were involved in the procedure. Thus, eight WorldView-2
bands treated with pan-sharpening and standardization, 64 GLCM texture indices derived from these
eight bands, and eight principal components, for a total of 80 variables, were used as the input variables.
In regard to the spectral variables, first, the multispectral images of the eight bands of WorldView-2 and
the panchromatic images of the single band were treated with fusion using hyperspherical color spaces
(HCS) [67]; this is followed by standardization which would be more convenient for the subsequent
feature selection by using logistic regression (LR) analysis, which is ORIGIN 1–8 in Table 1.
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Table 1. Description of the input variables used for the classification.

Variable Symbol Formula Description

Bands 1–8 ORIGIN 1–8 – Pan-sharpened and standardized 8 WorldView-2 bands.

GLCM Mean 1–8 MEAN 1–8
N´1
ř

i,j“0

Pi,j

N2
The local mean grey level value in a given area. This measure helps
distinguish the spectral difference between tea and other crop fields.

GLCM Variance 1–8 VARIANCE 1–8
N´1
ř

i,j“0
pi,jpi´ µiq

2
A measure of heterogeneity. Variance increases when the grey level values
differ from their mean. Tea crop fields usually show lower variance
compared with other crops.

GLCM Contrast 1–8 CONTRAST 1–8
N´1
ř

i,j“0
pi,jpi´ jq2

Measures the linear dependency of grey levels of neighboring pixels. High
contrast represents heavy textures. Tea crop fields usually show lower
contrast compared with other crops.

GLCM Dissimilarity 1–8 DISSIMI 1–8
N´1
ř

i,j“0
pi,j |i´ j|

Defines the variation of grey level pairs in an image. It is the closest to
Contrast with a difference in the weight. Contrast will always give slightly
higher values than Dissimilarity.

GLCM Homogeneity 1–8 HOMO 1–8
N´1
ř

i,j“0

Pi,j

1`pi´jq2

Measures the level of variation in a given area. High homogeneity refers
to textures that contain ideal repetitive structures. Tea crop fields usually
show higher homogeneity compared with other crops.

GLCM Correlation 1–8 CORREL 1–8
N´1
ř

i,j“0
pi,j

ˆ

pi´µiqpj´µjq
σiσj

˙ A measure of grey level linear dependence between the pixels at the
specified positions relative to each other. Tea crop fields usually show
higher correlation compared with other crops.

GLCM Entropy 1–8 ENTROPY 1–8
N´1
ř

i,j“0
pi,j

´

´lnpi,j

¯

Measures the level of chaos in a given area. A completely random
distribution would have very high entropy because it represents chaos.
Solid tone image would have an entropy value of 0. Tea crop fields usually
show lower entropy compared with other crops.

GLCM Angular second
moment 1–8 ASM 1–8

N´1
ř

i,j“0
p2

i,j

Measures the textural uniformity that is pixel pair repetitions. High ASM
values occur when the grey level distribution is constant or periodic. Tea
crop fields usually show higher ASM values compared with other crops.

Principal Component 1–8 PC 1–8 – Principal components derived from ORIGIN 1–8.
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In addition, PC 1–8 was generated from the analysis of ORIGIN 1–2 in the principal component
analysis. In regard to the spatial characteristics, the texture indices adopted in this study consisted of
mean, variance, contrast, dissimilarity, homogeneity, correlation, entropy, angular second moment in
GLCM. These indices are supposed to be helpful for distinguishing the structure differences between tea
and other crop fields, such as the fields of pineapple and betel palm. With regards to plant structure, the
canopies of tea trees have a more compact structure compared with other crops. In addition, although
the tea trees and other crops in the study area are mostly planted line by line, the canopies of tea trees
usually cover most of the soil surface. Therefore, tea crop fields show smoother texture than other crop
fields. The relationship between the above ecological meaning and the GLCM indices along with the
formulas of each of the index are shown in Table 1. Among them, i is the row number, j is the column
number; pi,j is the normalized frequencies at which two neighboring pixels separated by a constant shift
occur in the WorldView-2 imagery; N is the number of gray levels presented in the imagery.

With the purpose of proving that the increase of “sub-categories” or “factors” could enhance the
LULC classification, this study adopted four spectral distance measurements: Euclidean, divergence,
transformed divergence (TD), Jefferies-Matusita (J-M), to calculate the degree of separation of the
training samples of tea trees and non-tea trees (forest, building and road, water bodies and ponds and
other non-tea LULC) in the spectrum. In the TD assessment, 2000 was the best categorical resolution.
Basically, above 1900 represents a good categorical resolution. The closer the selected sample from
the training area is to 0, the worse the categorical separation efficiency is, so training data shall be
re-selected. J-M has a similar concept towards TD; the closer to 1414, the better the separability is
(Table 2). The results showed that the larger the increase of sub-categorical bands or indicators is,
the more effective it is to increase the separability between tea and non-tea farmland. This study
subsequently investigated which sub-categorical band was the most helpful.

Table 2. Various spectral distance measurements between tea and non-tea (including non-tea LULC,
forest, water and ponds, buildings and roads) training area.

Measurement Distance

Euclidean 4.05
Divergence 14,288.60

TD 2000.00
J-M 1414.00

2.5. Feature Selection-LR Analysis

We applied LR analysis, a log-linear model suitable for quantitative analysis, in two different
stages of this research. In feature selection stage, LR analysis was a filter to reduce the dimension of
the data from 80 to less than 80. The next part we applied LR analysis was to evaluate the best LULC
classifier, and LR model was one of the classifiers.

LR analysis is useful when the dependent variable is categorical (e.g., yes or no, presence or
absence) and the explanatory (independent) variables are categorical, numerical, or both [68–70].
Generally speaking, a LR model can be expressed in the following forms [71]:

P pyi “ 1q “ r1` exp pα` xiβqs
´1 (1)

In Equation (1), P
`

yi “ 1
˘

means the conditional probability of landslide changes; xi is the vector
of independent variable; if p “ P

`

yi “ 1
˘

, the above equation can be revised to:

ln
ˆ

p
1´ p

˙

“ α` β1 x1 ` β2x2 ` ¨ ¨ ¨ ` βnxn (2)

In Equation (2), p is the occurrence probability; α is the intercept; and β1, β2, ... βn are the regression
coefficients of the input variables x1, x2, ... xn. In order to interpret the occurrence probability, one
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has to use the coefficients as a power to the natural log (e). The result represents the corresponding
coefficient of each responding independent variable is the effect on odds (tea and non-tea occurrence),
and when βn = 0 it means that the odds will not change. In this way, we can sum up the main factors
related to the land cover. Last, Cox & Snell test, Omnibus test, Hosmer and Lemeshow test and odds
ratio are used for the LR model as to achieve the assessments of the explanatory power of the factors
and the model fit. We applied SPSS for calculating LR here, and all input row data (.txt) were generated
from original layer files (.grd) by using the conversion tools of ArcGIS software.

2.6. Classification Procedure

The classification in this study basically used PBIA and OBIA mainly because the high spatial
resolution of pan-sharpened WorldView-2 0.5 m images may present high spectral heterogeneity
of the surface features, and the LULC classification may be affected if one only includes PBIA [72].
The difference of OBIA and PBIA is that the image shall be segmented before the classification and the
objects are created; the establishment of objects from image segmentation mainly uses the heterogeneity,
shape and boundary of surface features to define a object. This study segmented the images with
multi-scale segmentation by using the eCognition image processing software concept. During the
image segmentation, the scale, shape and compactness were the three parameters which produced
the most reasonable results. The reasonability defined in this study refers to: (1) the drawing of the
tea tree plantation in the study area using the boundaries; and (2) the object is still complete and
does not include more than one kind of LULC classification after the image segmentation. This study
used ORIGIN variable layers as the image segmentation basis. The best parameters obtained were
160 in scale, 0.1 in shape and 0.5 in compactness within the study area. After obtaining the reasonable
segmented results, a classification of the LULC for the segmented images follows. PBIA classifies
LULC based on the value of the single pixel, yet the OBIA would assign the LULC classes with the
characters of homogeneous segmented features.

In both PBIA and OBIA, the aforementioned 80 variables were a huge amount which would
cause a great burden to the system operation. For this reason, LR model was applied to reduce data
dimensions before putting variables into ML, LR, RF, and SVM classifiers. The area of training samples
for tea and non-tea was 6.2 and 16.1 hectares separately for PBIA classifiers, and 36 and 132 segments
for OBIA classifiers. The following section provides a detailed description of tea tree classification
with RF and SVM.

2.6.1. Classification Procedure-RF Classifier

We employed a newly developed RF algorithm as one of the LULC classifiers in this study.
The main concepts of the RF algorithm are based on a non-parametric decision-tree, and it allows
various kinds of inputs with different scales and types, including data sources recorded on different
measurement scales [73]. This advantage allows us to use three different sets of variables involving
original spectral bands and their derivative GLCM and PCA. The process of RF starts by selecting
many bootstrap (with replacement) observations from the original data. The data source of a single
classification tree comes from each bootstrap sample, but the predictor variables decrease with the
binary partition classification tree at each node. The observations eliminated from bootstrapping at
each decision-tree are called the “out-of-bag” (OOB) observations. The error rate for the entire RF
classifier was generated from the comparison between the observed classification and the predicted
classification for all observations derived from the out-of-bag vote tallies [74]. We thus built a separate
RF model for three sets of predictors:

1. Two control parameters were set: one for the amount of the decision trees (ntree), while the other
was for the number of characteristic parameters (mtry);

2. We took the original training samples and then put them back with a bootstrap method; the best
number and sample of decision tree Xi (i = number of iterations) were randomly collected from
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the original samples (dataset) X. Each sample stage contained about one third of X. The element
that was not included in the sample was called OOB;

3. Every decision tree would have a complete growth without pruning. This step differs from a
traditional decision tree;

4. In every iteration of the bootstrap, the prediction did not include the dependent variables within
OOB, and the results generated from all the decision trees were to be averaged;

5. When all OOB data was included in the generation of decision tree, the importance of every
factor could be ensured through the calculation of RMSE with increased percentage; thus, the
correlations of these factors with the dependent variables could be established;

6. Last vote was to elect the classification results into tea tree or non-tea tree.

2.6.2. Classification Procedure—SVM Classifier

The theoretical concept of SVM was basically developed from the optimal conditions of the
hyperplane from the linear or non-linear separability. The optimal hyperplane not only correctly
separates two types of samples but also has the largest class intervals. For a linearly separable binary
classification, if the training data with k number of samples is represented as {Xi, yi}, i = 1, . . . , k where
X P RN is an N-dimensional space and y P t`1,´1u is a class label with two classes, the SVM classifier
can be created by a hyperplane given by:

#

pW¨Xiq ` b “ `1
pW¨Xiq ` b “ ´1

(3)

where W is a vector perpendicular to the linear hyperplane and b is a scalar showing the offset of the
discriminating hyperplane from the origin. For the two classes y, two hyperplanes can be used to
discriminate the data points in the respective classes. The two hyperplanes can be expressed as:

pW ¨ Xiq ` bě ` 1 for all y “ ` 1, i.e., class 1, and (4)

pW ¨ Xiq ` bď´1 for all y “ ´ 1, i.e., class 2 (5)

For a nonlinear classification, the input data is mapped onto a higher dimensional feature space
using a non-linear mapping function. The classification is then carried out in the mapped space rather
than the input feature space. In order to increase the computational efficiency, a kernel-trick is usually
used to definite kernel function. In this study, we chose the kernel function contributing to the best tea
and non-tea LULC classification from the four basic options: linear, polynomial, radial and sigmoid.
Besides, two crucial parameters, cost of constraints violation (C) and sigma (σ), were also considered
to create the best SVM classifier. C accounts for the over-fitting of the model while σ decides the shape
of the hyperplane [65].

2.7. Accuracy Assessment

For accuracy assessment of PBIA results, we converted the ground reference data from vector to
grid file format with a cell size of 0.5 m (i.e., the same cell size as the spatial resolution of pan-sharpened
WorldView-2 images) and calculated the areas classified correctly and incorrectly, while for OBIA
we calculated the number of segmented objects rather than the areas with correct and incorrect
classification results. Indices including producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA) and kappa index of agreement (KIA) were then applied to evaluate the PBIA and OBIA
results. The KIA measures the difference between the actual agreement and the chance agreement in
the error matrix [75,76]. The KIA is computed as:

KIA “
N

r
ř

i“1
xii ´

r
ř

i“1
xi`¨ x`i

N2 ´
r
ř

i“1
xi`¨ x`i

(6)
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where r is the number of rows in the error matrix; xii is the number of observations in row i and column
i (on the major diagonal); xi+ is the total of observations in row i; x+i is the total of observations in
column i; N is the total number of observations included in the matrix.

To assess if the statistical difference between the results of PBIA and OBIA exists, McNemar’s
test based on the standardized normal test statistic was used in this study. The difference in accuracy
between two approaches is statistically significant if |z| > 1.96, and the sign of z indicates which the
more accurate approach is [77,78]. The z-score is computed as:

z “
fGP ´ fPG

a

fGP ` fPG
(7)

where fGP indicates the number of samples correctly classified by OBIA and incorrectly classified by
PBIA and fPG indicates the number of samples correctly classified by PBIA and incorrectly classified
by OBIA.

3. Results

In this section, we describe the feature selection results, followed by the classification ones. When
discussing the results, we mostly focus on the tea cultivation area.

3.1. Feature Selection

Although both PBIA and OBIA had 80 input variables, yet their “basic-unit values” were different;
thus, LR model filter shall be carried out separately as to select the best variables for pixel-based and
object-based approaches.

In terms of feature selection in a pixel-based approach, the eight multispectral bands, the eight
principal components and the 64 GLCM textures were used to choose the significant impact variables
in the LR analysis. The analytical result obtained with Cox & Snell R square test was 0.481. The p value
of the Omnibus test was 0.000, while p < 0.01 meant the explained variance of independent variables
was significantly greater than the variance of the unexplained ones. This also represented that there
was at least one independent variable which can effectively explain and predict the dependent variable.
The p-value of Hosmer and Lemeshow test was 0.511. The insignificant p-value here meant LR model
was indicated of good fit. With the 34 significant variables listed in Table 3, the best classification
accuracy (87.5%) gained from the training data can be achieved.

Table 3. Feature selection results of PBIA with LR model.

Variable B Coefficient S.E. Wald p-Value Odds Ratio

MEAN2 ´2.702 0.072 1401.956 0.000 0.067
MEAN3 2.199 0.084 686.504 0.000 9.020
MEAN4 1.528 0.072 448.174 0.000 4.609
MEAN6 ´1.519 0.068 493.346 0.000 0.219
MEAN7 3.963 0.075 2823.246 0.000 52.629
MEAN8 ´3.176 0.081 1526.896 0.000 0.042

VARIANCE3 ´0.870 0.070 154.513 0.000 0.419
VARIANCE6 1.280 0.050 646.022 0.000 3.597
CONTRAST1 ´0.604 0.052 134.969 0.000 0.546
CONTRAST6 1.903 0.063 900.445 0.000 6.704
CONTRAST8 0.129 0.029 19.601 0.000 1.138

DISSIMI3 ´0.500 0.039 164.181 0.000 0.606
DISSIMI5 ´0.103 0.031 11.042 0.001 0.902
DISSIMI6 0.658 0.022 899.772 0.000 1.931
DISSIMI7 0.364 0.027 187.321 0.000 1.440
DISSIMI8 ´0.569 0.029 388.366 0.000 0.566
HOMO1 0.043 0.005 86.851 0.000 1.044
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Table 3. Cont.

Variable B Coefficient S.E. Wald p-Value Odds Ratio

HOMO2 0.069 0.004 250.479 0.000 1.071
CORREL2 ´0.025 0.003 74.088 0.000 0.975
CORREL3 ´0.036 0.003 110.817 0.000 0.965
CORREL6 ´0.050 0.004 194.260 0.000 0.951

PC1 ´3.898 0.137 812.674 0.000 0.020
PC2 ´4.083 0.116 1230.779 0.000 0.017
PC3 ´3.216 0.126 652.325 0.000 0.040
PC4 ´0.643 0.044 211.023 0.000 0.526
PC5 0.352 0.025 193.298 0.000 1.423
PC7 ´0.180 0.011 245.752 0.000 0.835
PC8 0.221 0.015 211.578 0.000 1.247

ORIGIN2 ´2.792 0.118 556.104 0.000 0.061
ORIGIN3 1.685 0.099 287.170 0.000 5.390
ORIGIN4 3.604 0.102 1256.850 0.000 36.740
ORIGIN6 ´2.679 0.101 706.748 0.000 0.069
ORIGIN7 2.683 0.135 392.887 0.000 14.635
ORIGIN8 ´1.922 0.135 201.614 0.000 0.146
Intercept 3.826 0.012 95,806.689 0.000 45.866

Among them, the 1st to the 21th represents the texture variables. MEAN2 means the MEAN
texture of the second band in WorldView-2 fusion image. The others may also be induced in the
same way. From the results, the ENTROPY and SECOND MOMENT textures in each band were
both considered as not significant, so they were both removed from the classifiers. MEAN7 has the
highest B coefficient among all texture variables and this implies that it is the most beneficial index to
differentiate tea from non-tea LULC. PC1 means the first main component. Except for PC6, the rest of
the main components were significant; ORIGIN, which was the original band of WorldView-2 fusion
image, was not significant in the first and fifth band of the model; thus, only the other six bands were
kept. The variables from the aforementioned Table 3 were the input variables of the four pixel-based
classifiers. In terms of feature selection step in OBIA, the Cox & Snell R square value of the analytical
results was 0.547, meaning the intensity of correlation and the predictive power of the input variables
and dependent variables are both good. The result of the Omnibus test was the value of p = 0.000,
meaning that the explained variance was significantly greater than the unexplained variance, and
among the input variables, at least one variable can effectively explain and predict the dependent
variable. The p-value of Hosmer and Lemeshow test was 0.977. It meant LR model was indicated of
good fit. The six significant variables listed in Table 4 can be used to achieve the best classification
accuracy (94.7%) from the training data.

Table 4. Feature selection results of OBIA using LR model.

Variable B Coefficient S.E. Wald p-Value Odds Ratio

CONTRAST3 0.024 0.007 11.481 0.001 1.024
DISSIMI2 ´1.439 0.467 9.473 0.002 0.237
DISSIMI5 ´0.475 0.151 9.935 0.002 0.622
CORREL2 ´65.267 20.660 9.980 0.002 0.000
CORREL3 139.379 39.486 12.460 0.000 3.402 ˆ 1060

CORREL6 ´30.690 8.535 12.929 0.000 0.000
Intercept ´8.239 20.695 0.158 0.691 0.000

The difference between OBIA and PBIA consisted in the variables which were related to spectral
characteristics, such as MEAN, ORIGIN and PC, and they were not considered as significant; however,
the similarity among them is that CONTRAST, DISSIMI and CORREL were considered as significant.
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This means when the classification was carried out with OBIA, the spatial characteristics would have
more referential meaning than the spectral characteristics. This feature could avoid the high spectral
heterogeneity phenomenon in high spatial resolution images [72]. The variables in the aforementioned
Table 4 were taken as the input variables of the four object-based classifiers.

3.2. Classification with the Selected Input Variables

The following two sub-sections demonstrated the results generated from ML, LR, RF and
SVM classifiers with the use of 34 and six selected variables for the pixel-based and object-based
approaches respectively.

3.2.1. Pixel-Based Results

The study evaluated the classification accuracies of ML, LR, RF and SVM classifiers seperately
in PBIA. First, in the LR analysis, we used Equation (2) and the B coefficient in Table 3 to derive the
occurrence probability p; pixels with the value of p < 0.5 were assigned as the class of tea while non-tea
if p ě 0.5. RF classifier takes the best ntree = 500 and mtry = 11 as the final parameter setting. SVM
classifier obtained the best classification results with radial kernel function and gamma value of 0.1.
The best results obtained with the use of the aforementioned classifiers were shown in Table 5 and
Figure 6.

Table 5. Error matrix for pixel-based classification with 34 selected variables; the unit is pixel number.

(a) Pixel-Based ML

Reference

Tea Non-Tea UA

Classified
Tea 1,804,612 577,088 75.77%

Non-tea 110,352 1,553,379 93.37%
PA 94.24% 72.91%

OA = 83.01% Kappa = 0.663

(b) Pixel-Based Logistic

Reference

Tea Non-Tea UA

Classified
Tea 1,353,349 127,503 91.39%

Non-tea 561,626 2,002,973 78.10%
PA 70.67% 94.02%

OA = 82.97% Kappa = 0.654

(c) Pixel-Based RF

Reference

Tea Non-Tea UA

Classified
Tea 1,336,860 72,876 94.83%

Non-tea 578,104 205,7591 78.07%
PA 69.81% 96.58%

OA = 83.91% Kappa = 0.673

(d) Pixel-Based SVM

Reference

Tea Non-Tea UA

Classified
Tea 1,431,223 135,319 91.36%

Non-tea 483,741 1,995,148 80.49%
PA 74.74% 93.65%

OA = 84.70% Kappa = 0.690
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In terms of classification accuracy, SVM was the highest (OA = 84.70% and KIA = 0.690) followed
by RF analysis, ML and LR. In terms of McNemar’s test, the accuracy of SVM which was the best in
classification was significantly higher than the second best RF (|z| = 35.961), while LR was significantly
the lowest (with |z| = 72.109 compared with ML).

For more detailed information about the PA and UA values of each classifier, we found that
the PA value of ML classifier was much higher than others (Figure 6a) since over 50% of study area
was interpreted as tea tree LULC. It obviously reduced the omission error in tea tree classification
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(i.e., 1—PA); however, it also caused several non-tea areas to be commissioned as the classof tea and
decreased the UA of the class of tea and the PA of class of non-tea.

3.2.2. Object-Based Results

In the LR analysis, the same as the pixel-based approach, objects with the value of p < 0.5 were
assigned as the class of tea while they were non-tea. RF classifier obtained the best classification results
when ntree = 500 and mtry = 3. SVM classifier obtained the best classification results with radial kernel
function and gamma values of 0.1. The best results gained with the aforementioned classifiers are
shown in Table 6 and Figure 7.

Table 6. Error matrix for object-based classification with six selected variables; the unit is object number.

(a) Object-Based ML

Reference

Tea Non-Tea UA

Classified
Tea 234 11 95.51%

Non-tea 34 858 96.19%
PA 87.31% 98.73%

OA = 96.04% Kappa = 0.887

(b) Object-Based Logisitic

Reference

Tea Non-Tea UA

Classified
Tea 203 6 97.13%

Non-tea 65 863 93.00%
PA 75.75% 99.31%

OA = 93.76% Kappa = 0.812

(c) Object-Based RF

Reference

Tea Non-Tea UA

Classified
Tea 185 17 91.58%

Non-tea 83 852 91.12%
PA 69.03% 98.04%

OA = 91.20% Kappa = 0.733

(d) Object-Based SVM

Reference

Tea Non-Tea UA

Classified
Tea 212 26 89.08%

Non-tea 56 843 93.77%
PA 79.10% 97.01%

OA = 92.79% Kappa = 0.792

In terms of the accuracy of classification, ML was the one with the highest member in OBIA. OA
and KIA may both reach to 96.04% and 0.887. LR, SVM analysis and RF followed. The one with the
lowest accuracy was RF in OA and KIA with 91.20% and 0.733 respectively. The results of McNemar’s
test showed that ML was with the best classification accuracy which was significantly higher than
the one of the second best LR (|z| = 138.082), while the accuracy of SVM analysis was significantly
higher than RF (|z| = 38.051). Evaluating the details of PA and UA of the classifiers, the PA of tea tree
with ML was higher than the other classifiers, which was the main reason for it to give the best overall
classification results. The PA of tea tree and the UA of non-tea tree with RF were not high, meaning
that many tea tree areas were classified as non-tea tree areas, which was the main reason for it to be
the worse results among the classifiers.
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3.2.3. Overall Comparison

Using the same classifier to compare the results obtained with the use of PBIA and OBIA, the
classification accuracy of OBIA among ML and LR analysis classifiers was higher, while the one among
the results gained with the use of PBIA in SVM and RF was higher. Although the result of McNemar’s
test indicated that both results had significant differences, the significant values |z| of ML and LR
analysis classifiers were larger than the ones of RF and SVM. Overall, it turned out that the results
obtained with the use of OBIA were better than the results obtained with PBIA in both OA and KIA
(Table 7).
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Table 7. Comparison of the accuracy assessment of pixel- and object-based approaches.

Tea Non-Tea
OA. KIA

PA UA PA UA

Pixel-based

ML 94.24% 75.77% 72.91% 93.37% 83.01% 0.663
Logistic 70.67% 91.39% 94.02% 78.10% 82.97% 0.654

RF 69.81% 94.83% 96.58% 78.07% 83.91% 0.673
SVM 74.74% 91.36% 93.65% 80.49% 84.70% 0.690

Object-based

ML 87.31% 95.51% 98.73% 96.19% 96.04% 0.887
Logistic 75.75% 97.13% 99.31% 93.00% 93.76% 0.812

RF 69.03% 91.58% 98.04% 91.12% 91.20% 0.733
SVM 79.10% 89.08% 97.01% 93.77% 92.79% 0.792

What is worth attention is that the accuracy of OBIA + ML was not only higher than that of
PBIA + ML but also the best among all the results obtained with PBIA and OBIA. In addition, if we
take a look at the ML results of the two approaches, the PA of tea tree LULC is the highest among all the
classifiers mainly because the ML, whether among PBIA or OBIA results, tended to classify more areas
as tea tree LULC as to avoid the error caused by omission. The performance of all classifiers of PBIA
and OBIA approaches were unstable while the OA varied a lot between 82.97% and 96.04%. However,
the results of RF in this study showed a difference from those of the previous studies for other LULC
classification which showed the highest OA result than other classifiers [65,79]. It was speculated
that perhaps in the experiment design of this study, only two categories—tea and non-tea LULC were
provided—tea tree and non-tea tree LULC so that RF cannot show its advantage in classification.

4. Discussion

In the feature selection stage, adding variables such as GLCM layer would increase the
interpretation capability of land-use/land cover, but it requires a lot of time and efforts. This study tried
to find the most useful variables to be added here so we can promote the efficiency of interpretation
with lowest cost. As mentioned in Figure 2, the feature selection stage based on LR model delineated
34 useful variables in PBIA and 6 GLCM variables in OBIA. All selected variables were significant
related factor for LR function (p < 0.05, and B coefficient can be considered as the weights of importance).
It means that we only need to input 34 variables in PBIA classifier, and six variables in the OBIA
classifier. We think it is important for saving money if the government (e.g., Council of Agriculture)
needs to lower the cost of crop cultivation investigation.

Previous studies have already discussed the use of four newly available spectral bands (coastal,
green, yellow, red edge) for the classification of the tree species [39,80]. In this research, the results
of feature selection using LR analysis showed that the influence of band 6 (red edge) and band 4 of
its derivative texture indices were significant to the tea classification. Figure 8 shows the signature
comparison between tea, betel nut, pineapple and forest fields using input variables with different
band combination. Obviously, the visual differences became clear when standardized CONTRAST6,
DISSIMI6, HOMO2, CORREL6 and PC2 were included in classification process. This means red edge
spectrum and some texture indices were useful in distinguishing between tea and non-tea LULC.
It also supports the conclusions of the previous studies concerning vegetation classification [39,81].
The superiority of the red edge spectrum indicates that it can reflect the chlorophyll concentration and
the physiological status of crops [82]; and thus it can also be helpful for land cover classification [81].
Besides, principal component transformation is commonly considered a good method to reduce data
dimension and to extract useful information. After the processing of 8-band WorldView-2 imagery, the
most abundant information was transformed into the first PC (PC1) and the information decreases
gradually to the last PC (PC8). According to the LR analysis results, however, PC2 to PC8 except
PC6 were still helpful for tea and non-tea LULC discrimination. This implies that every component
may have to be thought about when conducting binary classification. LR analysis also indicates the
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importance of each variable. Taking tea, betel nut, pineapple fields and forest as the examples, Figure 8
shows that the input variables with higher absolute B coefficient values differentiate the LULC above
more than those with lower B coefficients.
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standardized CONTRAST6, DISSIMI6, HOMO2, CORREL6 and PC2 respectively. The yellow 
boundaries delineate the tea crop fields. 

Figure 8. Signature comparison of tea, betel nut, pineapple and forest fields using input variables
with higher B coefficient. (a) is the original image displayed with band 7, 3 and 2; while (b–f)
are standardized CONTRAST6, DISSIMI6, HOMO2, CORREL6 and PC2 respectively. The yellow
boundaries delineate the tea crop fields.

As for textural information, LR analysis in feature selection showed that GLCM MEAN and DISSIMI
were the two most dominant variables for the tea LULC classification. GLCM MEAN represented the
local mean value of the processing window and had high relation with the original spectral information.
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The processing window also called moving window, is the basic unit for calculating grid layer features.
The value of each pixel is calculated by shifting the window one pixel at a time until all pixels are
calculated. The size of moving window was 3 ˆ 3 pixels in this study. B coefficients of the MEAN
which were higher than those of other variables suggested that the spectral information was more useful
than the structural characteristics of WorldView-2 imagery. Nevertheless, the dissimilarity measures,
which were based on empirical estimates of the feature distribution, were also critical for enhancing the
structural difference between tea and non-tea LULC.

Though previous studies seldom used MEAN and DISSIMI for tea classification, these two
measures had been proven effective in improving classification accuracy for agricultural and forest
areas [65,83] and the idea also indirectly support the findings of this study. The tea trees in the study
area were planted in rows with totally different characteristics from those of the crops observed on
the ground in structure and arrangement. However, in Table 3, the overall spectral variables of B
coefficient are still larger than the structural variables when using pixel-approach. This means that in
pixel-based classification, the spectral variables were more effective in distinguishing the differences of
the ground coverage of tea trees and non-tea trees comparing to the structural variables. This could
be explained with the two examples in Figure 9. Even in the pan-sharpened WorldView-2 imagery
with 0.5-m high spatial resolution, there are not all characteristics of the line by line formation could be
clearly presented due to the narrow interval between tea trees. For this reason, it seems to be much
harder for the structural variables to play to their strengths.
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corresponding WorldView-2 image captured in 22 February 2015; (c) is the photograph captured in 
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Figure 9. Comparative images of the photograph of the tea tree field (left row) and WorldView-2
(right row). (a) is the photograph captured in 120.6341˝E, 23.8684˝N in 4 March 2015 while (b) is its
corresponding WorldView-2 image captured in 22 February 2015; (c) is the photograph captured in
120.6292˝E, 23.8615˝N in 5 March 2015 while (d) is its corresponding WorldView-2 image captured in
22 February 2015.

As for the issues for reducing data dimensions and the number of input variables, the comparative
analysis between PBIA and OBIA in this study demonstrated a significant difference that using OBIA
was more effective and sensitive in conducting variable filtering process than using PBIA. The strength
of OBIA was attributed to the less amount of samples and the reduction of spectral heterogeneity
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within each variable layer when producing objects from pixels. Taking this study for example, it means
that people could spend less time generating input variables and achieve satisfactory results compared
to using PBIA if OBIA is applied. However, it is worth noting that OBIA demands more computational
resources, requires specialized software (i.e., eCognition Suite) and is hard to applied in a large study
area even the number of objects is much less than the total number of pixels. The above mentioned
factors often set limitations on the use of OBIA.

One parametric classifier (ML) and three non-parametric classifiers (LR, SVM and RF) were
applied in this study. According to the accuracy assessment of PBIA and OBIA approaches, almost
all OA values were found to exceed 82.97%. The use of OBIA + ML obviously got the best OA value
among OBIA approaches, but the use of PBIA+ML did not. The main reason that the overall accuracy
of ML classifier was not as good as non-parametric approach (SVM or RF) in PBIA comes from the
bimodal data distribution of tea-farm training samples due to the alternate permutation of tea plants
and corridors. The special arrangement might lead tea farms divided into two LULC types in PBIA
when ML classier was applied. However, in OBIA, the basic unit was polygon that contained many
WorldView-2 image pixels, the average treatment effect within tea farm training samples would
decrease the difference of every basic unit, eliminate the spectral heterogeneity within every tea LULC
patches, and lead sample distribution more like normal distribution. The ML classifier performs well
for normally distributed data, this is why the classification result of the use of OBIA + ML was much
better than PBIA + ML.

Minimum distance classifier has been commonly used to classify remote sensing imagery [84,85].
This classifier works well when the distance between means is large compared to the spread (or
randomness) of each class with respect to its mean; moveover, it is very good approach dealing with
non-normal distribution data. However, this study did not consider this classifier as one of the methods
in PBIA and OBIA approaches. The reason is that the non-tea class spreads much wider in the feature
space and thus the distance between the means of non-tea and tea classes is not large compared to the
spread of non-tea class. In this case, if there is an unclassed sample situating near the boundary of
non-tea and tea classes in the feature space, the classification result may not be ideal. As for the ML
classifier, the occurrence frequencies of non-tea and tea classes are used to aid the classification process.
Without this frequency information, the minimum distance classifier can yield biased classifications.
Although salt and pepper effect may influence the distribution normality of the data, OBIA approach
can decrease the possibility of salt and pepper effect. Therefore, we think ML classifier still has the
superiority especially in OBIA approach.

As for SVM classifier, its superior classifying effects toward high-dimensional feature space,
capability on processing non-linear data, characteristics to avoid over fitting and under fitting, and the
stability to decrease the salt and pepper effect made it the best classifier of PBIA. However, it was not the
best algorithm of OBIA. We inferred the most possible reasons: (1) the OBIA image segmentation stage
in this study made the sample data look like a case of normal distribution, decreased the possibility of
salt and pepper effect, and promoted the effects of ML algorithm; (2) OBIA image segmentation was
possible to combine tea farms and pineapple farms together due to the line by line arrangements of tea
trees and pineapples with unfixed interval. Although the advantages of SVM with soft margin were
not presented in the application of OBIA, the OA and Kappa values were still good.

As for the LULC monitoring frequency, compared with many herbaceous crops, the monitoring
task on tea trees with high spatial resolution commercial satellite imagery is much easier because of
the long-lived perennial characteristics of tea tree. The relatively stable life cycle of tea production in
Taiwan often starts on the 3rd year after the planting of saplings, and then there is going to be one
to two harvests every season for at least 30 years. Therefore, people do not need to collect a series
of period images as frequently as in the monitoring on herbaceous crops. Nevertheless, it is worth
mentioning that this study still has some limitations. The first one is the study area of this research
was limited to a flat and gentle sloping area, yet some tea farms are in the high mountains where the
terrain effect would certainly have an influence due to the shadow-effect of satellite images. For this
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reason, we suggest the users to apply our workflow in flat or gentle slope areas. Besides, at some
places, physiological changes among non-tea plants might influence the spectral reflection of satellite
images, so we considered that our workflow is suitable for the use in sub-tropical places where most
plants are evergreen.

After all, in order to achieve tea production prediction or evaluation of high efficiency and low
costs, we suggest the governments apply the methodology used in this study as a standardized
framework, while field surveys and re-investigation with manpower resources should be the backup
option for calibration or supplementary once people want to totally eliminate the commission and
omission errors. The classification method in this study can be further applied in two different
ways. The first one is of benefit to countries with the largest tea planting areas (e.g., China, India,
Kenya, Sri Lanka, and Vietnam). Besides, it can also be applied in other crop classification studies
such as banana, pineapple, sugar cane, and watermelon with particular type of plantation and
farming arrangement.

5. Conclusions

Traditional field surveys or orthogonal photograph interpretation for the monitoring of sensitive
crops are time-consuming and expensive. The assistance of high spatial and spectral resolution imagery
has been proven useful for mapping several crops and helpful in agriculture land management and
sustainable agricultural production. However, there is a gap in the research on mapping tea LULC in
intensive and heterogeneous agriculture areas due to the spectral and spatial resolution restrictions.
This study investigated the WorldView-2 imagery characteristics and the most applied significant
variables and classification approaches used to develop a stepwise classification framework for tea
tree mapping in Taiwan. The results show it is not enough for tea and non-tea crop classification if
we only apply the original approach of eight MS bands of WorldView-2. Advanced variables such as
GLCM texture indices are necessary. It is evident that logistic regression analysis in this study was
helpful in feature selection, and the OBIA approach filtered more insignificant variables than the PBIA
approach. In other words, the OBIA approach costs less but generated additional variables.

As for higher accuracy of tea tree classification, one parametric classifier (ML) and three
non-parametric classifiers (LR, SVM and RF) were applied. The obtained data showed that all classifiers
achieved overall accuracies ranging from 82.97% to 96.04%. Parametric ML showed significantly higher
accuracy in OBIA while the lower accuracy of PBIA was due to the different spectral heterogeneity
in the tea tree samples. We suggest that the OBIA+ML approach would offer the best combination
of efficiency and stabilization in tea tree classification. Overall, the applicability of remote sensing
imagery for the evaluation, and monitoring of tea trees was well confirmed.
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