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Abstract: Smartphone sensors are being increasingly used in mobile applications. The performance 

of sensors varies considerably among different smartphone models and the development of a  

cross-platform mobile application might be a very complex and demanding task. A publicly 

accessible resource containing real-life-situation smartphone sensor parameters could be of great 

help for cross-platform developers. To address this issue we have designed and implemented a 

pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor 

parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. 

The application database presently includes sensor parameters of more than 60 different 

smartphone models of different platforms. It is a modest, but important start, offering information 

on several statistical parameters of the measured smartphone sensors and insights into their 

performance. The next step, a large-scale cloud-based version of the application, is already 

planned. The large database of smartphone sensor parameters may prove particularly useful for 

cross-platform developers. It may also be interesting for individual participants who would be able 

to check-up and compare their smartphone sensors against a large number of similar or  

identical models. 

Keywords: smartphone sensors; mobile application; participatory sensing; Internet of Things;  

cross-platform application; inertial sensor performance parameters 

 

1. Introduction 

Mobile applications are a very important segment in the software market and the competition 

in the mobile application market is fiercer every year. The need for rapid application development 

and deployment has never been greater. The development of mobile applications is becoming more 

challenging with the availability of many different platforms and their dedicated single-platform 

software development kits. In the single-platform development concept, an application is first 

developed for a specific platform, and if successful, it may later be developed for other platforms. 

This concept is giving way to the cross-platform application development, where an application is 

simultaneously developed for several platforms. To reduce the cross-platform development costs 

and to reach to as many users as possible, the development is shifting to cross-platform development 

tools. In regard to the abovementioned, such tools will become more and more important in the 

coming years. 

In recent years the majority of mobile applications have been developed primarily for 

smartphones. Today’s smartphones incorporate numerous sensors. Depending on the particular 

smartphone model, the sensor count may include an accelerometer, gyroscope, compass, GPS, 

microphone, camera, proximity sensor, light sensor, temperature sensor, pressure sensor, etc. The 

abundance of different sensor types and sensor count heterogeneity of smartphone models are 
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posing a great challenge to the developers of cross-platform applications. One of the challenges is 

also the variability of parameters of a particular sensor type in various smartphone models. A 

cross-platform application should be able to work with any targeted sensor type used in any 

targeted smartphone platform. Therefore, a developer should be well aware of the performance 

parameters of a particular type of sensors that can potentially be used in the application being 

developed for targeted smartphone platforms. Smartphone applications cannot directly access 

physical sensors embedded into smartphones. Raw sensor signals from physical sensors are 

processed by the smartphone’s operating system (OS) and made available to applications in a 

standardized format as a smartphone sensor. In this work, the focus is on accelerometer and gyroscope 

sensors, which are micro-electro-mechanical system (MEMS) sensors. In the remainder of this paper 

the term sensor denotes the smartphone sensor defined above, and the term MEMS sensor denotes 

the smartphone-embedded physical sensor. Developers should be aware that the applications can 

only access smartphone sensor data and not sensor data from the MEMS sensor chip directly, 

therefore sensor parameters cannot be taken from the MEMS sensor manufacturer’s data sheet. 

Smartphone sensors are being employed in a growing number of mobile applications. Among 

these, mobile sensing applications are playing an increasingly important role in many aspects of our 

lives, such as health, fitness, sports, social networking, environmental monitoring, public 

infrastructure, navigation, and urban sensing [1–6]. The concept of mobile sensing has been 

identified as an appropriate technique for our objective—the evaluation of smartphone inertial 

sensors performance for cross-platform mobile applications. 

Mobile sensing applications are designed and used at different scales [7]. Personal sensing 

applications are aimed and designed for an individual, with typical applications in wellbeing and 

recreation. Generated data are usually not shared with others. Group sensing applications are designed 

for a limited number of participants cooperating to achieve a common goal, for example, monitoring 

the garbage in the neighbourhood [7]. Community sensing applications include a large number of 

participating people. They offer collection, analysis and sharing of large amounts of data. An 

important issue with sensing applications is to what extent they require an active participant 

involvement. Two sensing paradigms are identified [7]: (a) participatory sensing, where a participant 

is actively engaged in the data collection and (b) opportunistic sensing, where the data collection is 

done automatically by the sensing application. 

Mobile sensing applications require differing degrees of sensor data quality. While some do not 

require highly accurate sensor data, others depend on it. For example, an application for daily 

activity monitoring, using accelerometer data, primarily needs the information when a person is 

moving and in what patterns, hence accurate sensor data values are less important. A contrary 

example is the wheelchair accessibility application that uses smartphone inertial sensor data to track 

movements and path [8]. For accurate tracking a precise and accurate sensor readings are required 

during the the entire application activity. Similarly, accurate accelerometer readings are needed for 

measuring structural vibrations [9]. Other similar applications of both kinds can be identified  

in [1–10]. 

Mobile sensing applications fit perfectly into the Internet of Things (IoT) and Internet of 

Everything (IoE) paradigms. While the sensing capability of IoT devices is generally limited to only 

one or a few quantities, smartphones are less limited in this respect. Because smartphones include 

plenty of different sensors, have good communication capabilities, and are closely linked to their 

owners and owners’ activities, they play an increasingly important role in the IoT and IoE. 

Mobile applications on smartphones are already used in many spheres of our daily life. Some 

important areas of use, that are expected to grow rapidly in the near future, are eHealth and eCare. 

Algorithms that are able to detect the various states of patients or persons under care are an 

important field of research [11]. In some cases one’s life can even depend on the correct and timely 

detection of his or her state. Application developers must take special care to develop detection 

algorithms that are robust enough to prevent most of the possible adverse events. Smartphone 

sensor parameters in changing environmental conditions may differ greatly from parameters 

measured in a controlled environment. It is therefore very important to measure smartphone sensors 
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in daily use under changing environmental conditions. Such measurements better define the upper 

bounds of sensor parameter deviations and offer developers better information about safety factors 

needed in their applications. We are convinced that the information about smartphone sensor 

parameters can be very helpful for research and application development community, as the 

researchers and developers have to be aware of the reliability of the data they are using, especially 

when developing eHealth applications, where whether we like it or not, smartphone sensors are and 

will be used. 

New smartphone models are being introduced at a rapid pace and participatory sensing seems 

to be the only feasible way of quantifying their performance in real-use conditions. Participatory 

sensing measurements are performed in uncontrolled environments and they yield sensor 

parameter deviation boundaries in real-use conditions. Such real-use parameters are the information 

about smartphone sensor quality that is of great assistance to cross-platform mobile  

application developers. 

The paper is structured in the following way: Section 2 presents the motivation for this work 

and lists the most important contributions; related work is also discussed. Section 3 describes the 

implementation of the pilot participatory sensing system and its architecture. Measurement 

protocols and methodology are also defined. The results gained through the pilot application are 

presented in Section 4. Discussion and future work are covered in Section 5. We conclude in  

Section 6. 

2. Motivation, Contributions and Related Work 

Our research group has been studying and developing biomechanical biofeedback systems and 

applications based on inertial sensors. We have learned that various biofeedback applications have 

various demands concerning sensor data accuracy and precision. These demands are expressed 

through boundary values of parameter errors induced by sensor inaccuracy and imprecision. Two of 

the several factors that contribute to the sensor errors are bias and noise. These error sources induce 

parameter value errors that have different dependency on the duration of the analysis. For example, 

the angular error induced by gyroscope bias has a linear dependency on time and the position error 

induced by the accelerometer has a quadratic dependency on time. To estimate if a specific sensor is 

good enough for a specific application, the quality of the smartphone sensor must be known. 

Our primary motivation, based on experience from biofeedback applications, is to design and 

implement a mobile sensing application that allows measurement, analysis, and storage of 

smartphone sensor parameters. Participatory sensing enables acquisition of large number of 

measurements in short time, therefore it is our method of choice. 

The expected results and benefits of mobile participatory sensing application are numerous. 

They offer not only answers to purely research and academic questions but also solutions applicable 

to real-world problems and issues connected to the use of smartphone sensors in the development of 

a cross-platform applications. Cross-platform application developers can benefit from the statistical 

properties of measured sensors on which one can draw general conclusions about sensor’s quality 

and usability for various purposes and under various conditions and demands. One example of a 

practical benefit is the comparison of a particular measured sensor to other measured sensors of the 

same type already in the database. Such comparisons could identify damaged or deteriorated 

sensors or simply point to the fact that the measured sensor may be operating outside the normal 

operation conditions; for instance at the temperature that is outside of the recommended range. 

When the discussion is limited to smartphone sensors, several practical benefits can be identified. 

Some of them are listed below: 

 Comparison of smartphones of the same platform. 

 Comparison of smartphones of the same manufacturer. 

 Comparison of the same smartphone model using different applications. 

 Comparison of smartphone models with the same physical sensor, but on different platform. 

 Comparison of results from the same physical smartphone through some period of time. 
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A possible obstacle for a successful implementation of the mobile sensing application is the 

recruitment of a large enough number of participants. Customary mobile sensing applications start 

as small-scale projects that are later expanded into full-scale applications. The small-scale phase is 

usually covered by recruiting a group of a few tens to a few hundreds of participants; in academic 

circles most commonly students. For a large-scale phase incentive mechanisms are needed [12]. For 

our mobile sensing application we identified a few incentive mechanisms for which we believe that 

could work: (a) participation in a research program; (b) immediate sensor quality information sent to 

the participant; absolute parameter values and comparison to other participants; and (c) 

gamification. Another obstacle is connected to measurements that are not performed in controlled 

conditions or measurements that deviate from the measurement protocol. Deviations from the 

expected results can be detected only to certain extent. 

The contributions of this paper are: 

 Confirmation of the usefulness of the participatory data acquisition concept for mass 

measurement and collection of smartphone sensor parameters. This is attained through the 

development, implementation, and employment of a pilot participatory application. 

 Compilation of a database containing measured sensor parameters of more than 60 smartphone 

models. This is achieved through the recruitment of more than one hundred participants that 

performed more than 500 measurements of their smartphone sensors by using the pilot 

participatory sensing application. 

 Useful results and findings about smartphone sensor properties and their statistical parameters 

that can be the base for directions to developers of cross-platform applications. One important 

result is the possibility of the identification of faulty devices that are, for example, potentially 

life-threatening if used in eHealth or eCare applications. 

Related Work 

Participatory sensing applications are primarily designed for sensing physical quantities of 

interest, such as air pollution, temperature, body activity, and others [1,6,7,13]. In these applications 

smartphone sensors are used to measure the values of the quantity of interest. The primary focus is 

on gathering the sensor data, less attention is given to the quality of the acquired sensor data. 

Participatory sensing applications with high data quality demands cannot use raw smartphone 

sensor data. They may include intolerable measurement errors that must be eliminated or reduced 

before the sensor data is used by the sensing application. Smartphone participatory sensing 

application for monitoring air pollution [13] requires high data quality. It calibrates the smartphone 

sensors by comparing their readings to governmental measurement stations when in their vicinity. 

Authors in [14] use iterative approach for calibration of smartphone sensors in monitoring pollution 

sources. In contrast to cooperative methods with neighbouring sensors and ground truth, their 

solution includes implicit calibration process in uncooperative environment. 

In addition to sensor data quality, cross-platform developers should also consider the high 

variability of sensor parameters. The issues connected to variability of sensor parameters in 

smartphones are well described in [15]. The study is based on measurement of sensor parameters of 

nine different smartphone models. A number of papers focus on smartphone sensor performance 

evaluation and calibration. The authors of [16] performed laboratory measurements of accelerometer 

and gyroscope performance for the three high-end smartphones. The autonomous calibration of 

smartphone sensors based on sensor fusion is the main topic of paper [17]. Two different 

smartphone models are taken into consideration. Time and computation efficient calibration of 

accelerometers and gyroscopes is described also in [18]. 

To the best of our knowledge, no study that would use participatory sensing concept for 

evaluation of smartphone sensor quality has yet been conducted. The results of our study are 

available to anyone interested, for instance cross-platform application developers. 
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3. Pilot Participatory Sensing System 

The implemented pilot system employs the participatory sensing concept, where participants 

are actively engaged in the data collection. The architecture of the pilot system implementation is 

shown in Figure 1. The participants connect their smartphones to one of the available wireless 

networks and send sensor data to the server in the internet. The server extracts the measured sensor 

parameters and writes the anonymized results into the database. Participants can use the database 

access to check their personal results or various statistics. The pilot system is designed for a medium 

group of advanced smartphone participants. 

 

Figure 1. Pilot system architecture. Smartphones send sensor data over one of the available wireless 

interfaces to the processing computer (server). Processing results are stored in the database. They can 

be analysed and retrieved through a database access application. 

In the pilot implementation a participant needs to install and setup one of the supported off the 

shelf applications that have the option to stream sensor data to a remote location. We used three 

different applications: (a) for the Android platform the Sensor Node version 1.53 (mScino Tools, 

Singapore, 2014) is used; (b) for iOS platform Sensor stream version 1.1 (FNI Co., LTD, Seongnam, 

South Korea, 2013) and Sensor monitor (Pro) version 1.0.9 (Young-woo Ko, Fuzz-Tech, Seoul, South 

Korea, 2010). Each subsequent sensor measuring episode must be actively started by the participant. 

By starting the measuring episode sensor data is sent to the server and anonymized results are 

written to the database. The server is in the public IP network and it is running the custom-designed 

LabVIEW™ application. The database used is XAMPP mySQL running on Windows server 2008 R2. 

For the retrieval of the participant’s smartphone measuring results, PhoneID is required. The pilot 

implementation has so far been used by our research colleagues and engineering students. They 

have all been educated about the correct measurement protocol. 

3.1. Measurement Protocol 

We focus on the measurement of a limited number of smartphone accelerometer and gyroscope 

parameters. Because the measurements are performed through the participatory sensing concept, 

they are performed by different subjects at different locations. The measurement protocol for the 

pilot participatory sensing application should be simple and straightforward. For example, it should 

not require the use of any hard-to-get tools or devices, it could be performed in less strictly 

controlled environment, each measurement episode should not take too long, etc. The above defined 

limitations impose a compromise between the complexity of the measurement protocol and the 

quality of measurements. We are aware of the fact that a looser measurement protocol produces 

lower quality results. Therefore we have chosen only a set of smartphone sensor parameters that can 

be measured with high enough reliability under the given protocol limitations. For smartphone 

accelerometer and gyroscope we measure their bias and a limited number of noise parameters. 

 Developer

WLAN

3G

LTE

Database 

accessDatabase

Participant
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The measurement of the sensor bias and noise parameters must be performed with the 

smartphone in a stand-still position. In addition to the aforementioned, the accelerometer bias 

measurement requires a levelled flat surface. All participants were instructed to use spirit level to 

ensure the measuring surface is appropriately levelled. The accuracy of standard commercial spirit 

levels is between 0.5 mm/m and 1 mm/m. Possible measurement error due to gravity projections on 

the axes parallel to the measuring surface are therefore up to 1 mg0. The smartphone must have the 

connection to the server. In each measurement episode the participant initiates sensor data 

streaming and puts the smartphone face-down onto the flat surface. Since the great majority of 

smartphones have flat screens, this position assures the standardized orientation of the smartphone. 

Assuming that the MEMS sensor axes are aligned with the smartphone screen and that the Z-axis is 

perpendicular to the screen, the gravity is expressed only in the Z-axis. It means that the gravity does 

not affect the readings of the X and Y axis of the accelerometer. The measurement begins after a few 

seconds of the detected stand-still position of the measured smartphone. During the measurement 

the participant must assure that the smartphone does not experience vibrations or movements of any 

kind. The measurement takes 100 s. 

3.2. Measurement Methodology 

The quality of smartphone sensors is limited by sensor inaccuracy and imprecision [19,20]. 

Sensor bias and noise cause parameter value errors that induce the linear angular error of gyroscope 

and quadratic position error of the accelerometer. 

Sensor bias is defined as an average sensor output at zero sensor input. Bias value Equation (1) is 

estimated by averaging N samples of sensor signal. The bias estimate averaging time depends on 

sampling frequency fs and signal sample block length N. Bias estimate exhibits variations which are 

the result of a sensor noise: 
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Sensor noise characteristics can be observed by measuring the Allan variance. Allan variance 

Equation (3) is defined as the average squared difference between successive bias estimates y[m] 

Equation (2). Each y[m] is calculated from a block of N signal samples [21]: 
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Allan variance is estimated from a finite data stream in M successive bias estimates y[m] 

Equation (3): 
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The approximation error of Equation (4) is [21]: 
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By definition Equation (3) the Allan variance is a function of block length N, which can also be 

expressed by the averaging time Tavg = N/fs. Sensor noise generally originates from different random 

processes. Various noise terms with different spectral power densities participate at the same  

time [21]. For averaging times around 1 s the white noise is most often a dominant error source for 

MEMS gyroscopes and accelerometers. In such cases the Allan variance measured at averaging time 

Tavg = 1 s represents the sensor white noise power density. Allan deviation σA at Tavg = 1 s is also 
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known as velocity random-walk parameter (VRW) for accelerometer and angular random-walk 

parameter (ARW) for gyroscope [22,23]. 

Pilot participatory application calculates sensor biases Equation (1) by averaging N = 300 sensor 

samples at sampling frequency fs = 30 Hz. The corresponding bias estimate averaging time is 

therefore 10 s. The sampling frequency is chosen as the greatest common sampling frequency 

accepted by all smartphone applications listed at the beginning of Section 3. Calculated bias 

estimates of each measurement are stored in the database. Accelerometer biases are given relative to 

the gravity constant g0. Gyroscope biases are given in rad/s. 

Allan variance function is commonly presented in a graph. Its calculation requires a large 

number of signal samples and consequently long measurement times. For the statistically relevant 

results (Equation (5)) the measurement time must be at least ten times longer than the largest 

averaging time Tavg presented in the function graph. For example, if the maximal averaging time 

presented in the graph is 100 s and M = 10 the measurement takes more than 16 min. One of the 

limitations of participatory sensing protocol from Section 3.1 is that the measurement should not 

take too long. Instead of measuring the Allan variance function, we chose to measure only the 

characteristic point at Tavg = 1 s that represents sensor white noise power density parameter. The 

validity of presumed white noise model around Tavg = 1 s was confirmed by a number of preliminary 

measurements of various smartphone models. 

Pilot participatory application calculates Allan variation σA (Equation (4)) from M = 100 clusters 

with N = 30 samples at sampling frequency fs = 30 Hz. Noise parameter measurement takes 100 s. The 

predicted relative measurement error δσ = 0.071 (Equation (5)). Calculated noise parameters of each 

measurement are stored in the database. Accelerometer noise parameters (VRW) are given in  

g0/ Hz . Gyroscope noise parameters (ARW) are given in deg/s/ Hz . 

4. Results 

In the implemented pilot participatory sensing application we have managed to collect over  

500 measurements of 116 different smartphone devices in 44 days. The collection of smartphones 

includes 61 different models of which 31 models are measured once and 30 models more t. The 

smartphone models that were measured the most times were: Galaxy S3, Galaxy S4, iPhone 4,  

iPhone 5, iPhone 5S, iPhone 6, Nexus 5, and Xperia Z1 Compact. They are included in the statistics 

by model (see Section 4.2). The measured smartphone models come from 13 different manufacturers 

and use two different platforms. Measurement results are presented in three scales: (a) complete 

dataset results; (b) results by smartphone model; and (c) results of individual smartphone devices. 

4.1. Complete Dataset Results 

In this subsection the complete measurement dataset is presented by the measured devices. 

Plotted values represent the averaged measured parameter values by the device. Figure 2 shows 

smartphone accelerometer and gyroscope biases, Figures 3 and 4 their noise, and Table 1 their 

average, standard deviation, and percentiles. 
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(b) 

Figure 2. Accelerometer and gyroscope bias measurements of X, Y and Z axes. (a) Average 

accelerometer biases of 116 different smartphones are plotted; (b) Average gyroscope biases of 

smartphones with gyroscopes are plotted. The horizontal axis represents the device identification 

number (ID) from the measurement database.  

 

(a) 

 

(b) 

Figure 3. Accelerometer and gyroscope noise measurements of the axes X, Y and Z. The horizontal 

axis represents the device identification number from the measurement database. (a) The complete 

accelerometer measurement dataset is plotted, including an example of a faulty device with ID = 50 

that evidently deviates from other devices. The vertical axis shows VRW in [g0/ Hz ]; (b) The 

complete gyroscope measurement dataset is plotted, including the examples of the three faulty 

devices with ID = {25, 50, 73}. The vertical axis shows ARW in [deg/s/ Hz ]. 
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(a) 

 
(b) 

Figure 4. Accelerometer (a) and gyroscope (b) noise of all properly functioning devices (Ka = 108,  

Kg = 82). The horizontal axis represents the device identification number from the measurement 

database. Considerable deviations are the result of different models of MEMS sensor chips 

embedded in different smartphone models. The vertical axis shows (a) VRW in [g0/ Hz ] and  

(b) ARW in [deg/s/ Hz ]. 

Table 1. Statistical parameters of the measured smartphone accelerometer and gyroscope biases. 

Average, standard deviation and several percentiles for absolute bias values are listed. 

 Accelerometer [mg0] Gyroscope [mrad/s] 

Parameter X Y Z X Y Z 

Average 14.3 14.6 25.3 9.4 8.7 6.1 

StDev 14.2 15.2 25.1 13.6 12.1 8.7 

50th percentile 10.0 9.9 18.5 3.1 4.3 2.8 

90th percentile 30.1 31.5 60.3 30.8 22.9 17.1 

95th percentile 43.6 45.9 71.1 40.5 35.4 28.2 

100th percentile 90.9 82.7 161.0 142.7 81.7 158.2 

Accelerometer and gyroscope biases are measured under conditions defined in the last 

paragraph of Section 3.2. The averaged accelerometer biases for all devices under test are shown in 

Figure 2a and averaged smartphone gyroscope bias measurements in Figure 2b. Some devices have 

large bias, but they are not necessary faulty. For example, excessive gyroscope bias values are 

evident in the results of the device with ID = 73 in Figure 2b. 

Accelerometer and gyroscope biases should be measured and compensated in most sensor 

based applications. However, some less demanding applications can work even without bias 

compensation. The statistics on absolute bias values is collected in Table 1. Absolute bias values for 

more than 50% of measured devices stay under average and 95th percentile might be helpful for 

cross-platform application developers. More detailed results will be acquired after starting a 

planned full-scale cloud-based application. At least ten times larger testing group will provide 

results with higher statistic relevance for higher percentiles, for example 99th percentile. 
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Accelerometer noise parameter VRW and gyroscope noise parameter ARW are obtained from 

single point Allan variation measurements under conditions defined in Sections 3.1 and 3.2. Large 

deviations in measured values can be used to diagnose faulty devices. Such examples are visible in 

the complete VRV and ARW measurement dataset shown in Figure 3. Smartphone device with  

ID = 50 in Figure 3a exhibits enormous accelerometer noise density parameter VRW. Similarly,  

Figure 3b show three devices with ID = {25, 50, 73} with excessive gyroscope noise density parameter 

ARW. All listed faulty devices are excluded from further analysis. Figure 4 shows large deviations in 

measured noise parameters for both sensors after exclusion of the three identified faulty devices. 

Large deviations are the result of different noise characteristics of MEMS sensor chips embedded in 

different smartphone models. Noise parameter is further analysed after clustering the complete data 

set by smartphone model in the next section. 

4.2. Results by Smartphone Model 

While statistics of the complete measurement dataset gives us the overall picture of the 

smartphone sensor statistics, it is sometimes more interesting to filter out the results for a particular 

smartphone model. In this subsection the statistics of different smartphone models are presented 

and compared. Only the smartphones with enough different devices of the same model have been 

taken into consideration. The selection includes eight popular smartphone models: Galaxy S3, 

Galaxy S4, iPhone 4, iPhone 5, iPhone 5S, iPhone 6, Nexus 5, Xperia Z1 Compact. The same set of 

smartphone models is used in Figures 5 and 6. 

Noise parameter values, VRV and ARW, are strongly connected to the embedded MEMS chip 

technology. For illustration we group the dataset of properly working devices shown in Figure 4 by 

the smartphone model. The comparison is done for the popular smartphone models listed in the 

previous paragraph. At least six different devices of the same model are measured. Figure 5 shows 

the comparison of the averaged accelerometer noise density VRV in combination with its standard 

deviation and Figure 6 shows the comparison of the averaged gyroscope noise parameter ARV in 

combination with its standard deviation; the same set of smartphones is used in both figures. 

Results in Figures 5 and 6 are presented in the same random order. Similar differences in 

sensors noise parameters between various smartphone models are evident for all principal axes. 

Smartphone models with codes 4 and 8 exhibit the best performance of both sensors. While 

smartphone models with codes 1, 2 and 3 show better performance for accelerometer and below 

average performance for gyroscope, smartphone with code 7 shows the opposite, better 

performance for gyroscope and below average performance for accelerometer. 

   

Figure 5. Comparison of average accelerometer noise parameter VRW and its standard deviation for 

eight different smartphone models. Smartphone models presented are: Galaxy S3, Galaxy S4,  

iPhone 4, iPhone 5, iPhone 5S, iPhone 6, Nexus 5, Xperia Z1 Compact. The listed smartphone models 

are presented in a random order (the same for all graphs). The vertical axis shows VRW in [g0/ Hz ]. 

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

1 2 3 4 5 6 7 8

A
vg

 ±
St

d

X-axis

1 2 3 4 5 6 7 8

Y-axis

1 2 3 4 5 6 7 8

Z-axis



Sensors 2016, 16, 477 11 of 15 

 

   

Figure 6. Comparison of average gyroscope noise parameter ARW and its standard deviation for 

eight different smartphone models. Smartphone models presented are the same as in Figure 5. The 

vertical axis shows ARW in [deg/s/ Hz ]. 

4.3. Results by Individual Device 

The results of the complete dataset and statistics by model, presented in Sections 4.1 and 4.2, are 

particularly useful for cross-platform developers. Individual participants may find these results 

useful when comparing their smartphone device to all the smartphones measured or to the 

smartphones of the same model, brand, platform, etc. But participants, who measure their device 

repeatedly, over some period of time, can benefit also from the statistics about their own device. 

Figure 7 presents one such case when the participant is measuring his/her device repeatedly 44 

times. Tables 2 and 3 list the statistics for several smartphone devices that were measured more than 

10 times over the period of 44 days. 

A large number of bias measurements for the same sensor device can give some information 

about one of the most important sensor parameter; bias variation. Accelerometer and gyroscope 

biases vary with time. Bias variations are the result of random, low-frequency sensor noise and of 

deterministic dependence on temperature fluctuations. Deterministic bias drift cannot be 

compensated without measuring of sensor temperature. 

Several smartphones have been repeatedly measured during the 44 days testing period.  

Figure 7a,b show the results of N = 44 simultaneous accelerometer and gyroscope bias 

measurements of the iPhone 4 smartphone device with ID = 3. This device was under the test every 

evening repeatedly for 44 days. Bias variations pattern show that considerable variation is observed 

on a daily scale. 
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(b) 

Figure 7. Repetitive accelerometer and gyroscope bias measurements (N = 44) of the smartphone 

with ID = 3 showing bias variation. Measurement numbers are taken from the database and are not 

successive as other measurements took place in between two measurements of the presented device. 

Accelerometer bias is in [g0], gyroscope bias is in [rad/s]. 

To show bias variations on individual device a group of five devices of different smartphone 

models is selected: Xperia Z1 Compact (ID = 2), iPhone 4 (ID = 3), iPhone 5S (ID = 7), iPhone 6S  

(ID = 8), and LG Nexus 5 (ID = 14). Measurement statistics for the accelerometer biases of the above 

listed smartphone is presented in Table 2 and statistics for the gyroscope biases in Table 3. Bias 

variation is not critical for all devices under test. For example, device with ID = 14 from Table 2, 

exhibits large accelerometer bias, but very small bias variation. Devices ID = 2 and ID = 14 from  

Table 3 exhibit negligibly small gyroscope bias and bias variation. 

Table 2. Statistical parameters of smartphone accelerometer bias. Selected devices with more than  

10 measurements are presented. Average and standard deviation [g0] for the three axes are listed. 

  Average Standard Deviation Max–Min 

ID N X Y Z X Y Z X Y Z 

2 41 0.0063 0.0279 0.0231 0.0057 0.0019 0.0018 0.0236 0.0065 0.0075 

3 44 −0.0121 −0.0110 −0.0264 0.0005 0.0010 0.0038 0.0030 0.0040 0.0171 

7 42 0.0051 0.0060 0.0034 0.0009 0.0012 0.0011 0.0045 0.0046 0.0056 

8 14 0.0029 0.0032 0.0004 0.0025 0.0009 0.0008 0.0097 0.0025 0.0030 

14 11 −0.0241 −0.0259 −0.0994 0.0006 0.0017 0.0013 0.0017 0.0058 0.0046 

Table 3. Statistical parameters of smartphone gyroscopes bias. Selected devices with more than  

10 measurements are presented. Average and standard deviation [rad/s] for the three axes are listed. 

  Average Standard Deviation Max–Min 

ID N X Y Z X Y Z X Y Z 

2 41 0.00000 0.00002 0.00001 0.00013 0.00009 0.00010 0.00051 0.00042 0.00045 

3 44 −0.01495 0.00833 0.00423 0.00158 0.00091 0.00116 0.00591 0.00268 0.00380 

7 42 0.05062 0.05244 0.01190 0.00396 0.00054 0.00133 0.01656 0.00221 0.00812 

8 14 0.02728 0.03175 −0.00258 0.00054 0.00134 0.00037 0.00161 0.00410 0.00130 

14 11 −0.00004 0.00002 0.00001 0.00016 0.00036 0.00013 0.00052 0.00142 0.00039 

5. Discussion and Future Work 

The results of our pilot implementation are interesting and encouraging. Even in this limited 

volume, they can prove useful to developers of cross-platform sensing applications. Larger scale 

measurements would give us a better overall picture of existing smartphone sensor’s performance. 

Its results would form a basis for further research in this field, such as data mining, and offer a good 

reference for the development of cross-platform smartphone sensing applications. 
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The obvious next step is a planned upgrade to a full-scale cloud based participatory sensing 

application. The application would operate in the cloud with open public access to anonymized and 

statistically processed results and personal access to user’s own data. Deployment of such 

participatory sensing application is a complex task. Concepts such as Sensing as a Service (S2aaS) 

[12] have been proposed to ease the task of designing mobile sensing applications. Platforms, such as 

described in [24–26], can further help developers to avoid inventing the wheel and enable them to 

implement their applications in a shorter period of time. 

The general architecture of the planned next-step participatory sensing system is shown in 

Figure 8. It is similar to the architecture of many other cloud applications. The system employs the 

participatory sensing paradigm, where participants are actively engaged in the data collection. 

Before the first use, a participant must install the custom developed sensing client onto the 

smartphone. Also, each subsequent sensor measuring episode must be actively started by the 

participant. By starting the measuring episode, sensor data is sent to the processing instance in the 

cloud. Processing results are then written to the cloud database. A cloud web application is used for 

data retrieval from the database and its statistical analysis. The public has access to the anonymized 

results in the database. Participants can retrieve their results from the data processing unit 

immediately after the measuring episode, or later from the cloud web application. 

 

Figure 8. Cloud based participatory sensing system architecture. Smartphones send sensor data to 

the cloud for processing. Processed sensor data results are stored in the cloud database. Results can 

be retrieved directly from the processing unit or through a cloud web application. 

On a longer run, the presented system could be upgraded with functionalities other than 

measurement and statistical analysis of sensor performance. For example, less demanding 

biofeedback applications could use the existing infrastructure for sending sensor data to the 

biofeedback processing unit, which would process the data and send the biofeedback signals back to 

the participant. Still further, the system could be supplemented by the opportunistic functionality; 

taking measurements periodically, with prior consent of the participant, at times favourable for 

measurements (during the night, longer standstill, etc.). Not all sensor parameters can be measured 

through the opportunistic paradigm as some measurements require the participant’s actions during 

the measurement 

By collecting large amounts of data from a large number of participants, privacy is of the prime 

concern [26] and participatory sensing application must provide sufficient measures to prevent any 

concerns about the issue. The presented sensing system will perform anonymization inside the 

installed smartphone application; hence all the data leaving the phone will be anonymized. The 

smartphone identity, in the form of a PhoneID hash, will be known only to the participant initiating 

the measuring episode. The same hash is needed when the participant wants to get the results from 

the cloud web application. The public sees only the anonymized and statistically processed results. 
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6. Conclusions 

Do you know how good your smartphone’s sensors are? Having in mind that smartphone 

sensor parameters do not directly reflect the embedded physical sensor’s parameters, measuring the 

former is an important task. The results gathered by the pilot participatory sensing application 

reveal that there is no straightforward answer to the above question and that the parameters of 

measured smartphone sensors vary considerably between different smartphone models and some of 

the parameters also within the same model. By closer inspection of individual measured sensor 

parameters it can be seen that while biases vary between the smartphone models and within the 

same model, noise varies between the smartphone models and is stable within the same model. 

How can a developer of a cross-platform application benefit from such results? Knowing that 

different applications require different levels of sensor quality, that bias can be compensated, and 

that noise can only be reduced, but not eliminated, a developer may choose different approaches. 

For example, if the application requirements are low, the developer may decide not to compensate 

biases at all, providing that the targeted group of smartphones exhibit biases that satisfy application 

requirements. 

The results of the pilot application give us the first insight of the statistics of smartphone 

accelerometer and gyroscope bias and noise. Extending the number of participants, smartphone 

models, manufacturers, sensor parameters, and platforms, would improve the statistical relevance 

of the results. Plenty of other options and ideas for upgrades and improvements to the pilot 

application are already in the scope. The first in the list is the upgrade to a full-scale cloud-based 

application. It will offer the inclusion of more measurements, other smartphone sensors and their 

parameters, that would further improve the usability of already gained results. 
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