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Abstract: We propose a method for classifying radiometric oceanic color data measured by
hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance
of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical
properties but to classify the pixels according to the known spectral classes of the reflectances from
the ocean. The method compensates for the unknown downwelling irradiance by white balancing the
radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds).
The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each
entry represents the spectral properties of one class. The proposed approach is tested on two datasets
of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging
spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide
field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument
(OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for
CIMEL’s SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is
observed on the validation dataset and more than 86% is observed on the other dataset for all satellite
sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors
mountable on airborne systems is demonstrated by showing classification results for two consumer
cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra
of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the
data are included.

Keywords: spectral data classification; environmental sensors; ocean color; remote sensing reflectance

1. Introduction

Satellite hyperspectral sensors are used for remote sensing of terrestrial, oceanic, and atmospheric
features. Post-acquisition processing of the hyper-spectral data is important for deriving useful
information from the data [1]. One such hyper-spectral processing problem involves ocean color
classification [2,3] as an indicator of the health of oceanic environment and biomass [4,5]. For example,
it can be useful for monitoring harmful algal blooms. Here, instead of retrieving the inherent optical
properties (generally referred to as IOPs) of the constituents of water at the data locations [6], direct
classification of the data points into classes characterized by the remote sensing reflectance spectra
is sought.

The remote sensing reflectance, denoted as Rrs, is the water leaving radiance, i.e., the amplitude
and spectral shape of the light reflected by the water surface towards a particular angle when a unit
source of flat spectrum (i.e., a perfect source with irradiance 1 W ·m−2 · nm−1) is incident on the surface
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of water. Thus, it is the ratio of the upwelling radiance from the water column to the downwelling
irradiance that enters the water column. On the other hand, the radiometric data measured by a remote
sensing satellite sensor, such as MODIS or OLCI is the top-of-atmosphere (TOA) upwelling radiance
measured over multiple narrow band channels of the sensor. It contains the upwelling radiance due to
atmospheric aerosols, reflection from the ocean’s surface, as well as the upwelling radiance from the
ocean’s water column.

For the past several years, satellites have started providing the estimate of Rrs through the
calibration of the measured data with extra-terrestrial solar irradiance values and the predictions of
atmospheric aerosols properties. The extra-terrestrial solar irradiance values are obtained once every
few months in the near-infrared region and interpolated to the visible range channels of the satellite
sensors (more details can be found in the MERIS handbook [7]).

Our proposed method alleviates the need for estimating or interpolating different components of
upwelling radiances as measured by satellite. It instead uses the concept of white balancing where
the radiometric data of clouds is used to compensate indirectly for the downwelling irradiance at the
time of measurement of the ocean color data. Furthermore, it stores a lookup table for the radiometric
projections of the spectral distributions representing the classes. The white balanced radiometric data
is then compared with the entries in the lookup table to identify the spectral class of the data. We note
that our method can also be used for classifying the Rrs estimates of the satellites by skipping the
process of white balancing. We further show that our approach may enable non-satellite sensors such
as the multi-band SeaPRISM sensor and extend the use of the trichromatic consumer cameras for
environmental sensing. This indicates potential use of robot-mounted consumer cameras as practical
and cost-effective environmental sensors.

We highlight that clustering of in situ or sensor estimates of remote sensing reflectance spectra
is not the main proposition of the paper. The aim is to assign a known class, which may be obtained
by clustering or may correspond to the IOPs of the water column, to the measured data directly.
Thus, it is categorically different from [8–10] in its aim. A trivial difference is that our classes are
defined in the hyperspectral space, thus the same classes can be projected onto any sensor to create a
corresponding lookup table. On the other hand, the clustering in [8–10] is done on the multispectral
space. However, our main proposition is to use cloud pixels or white references for white balancing
the multispectral data such that better classification accuracy is achieved:

• without requiring atmospheric correction for satellite sensors, despite the contribution of the
remote sensing reflectance being only a small part of the TOA radiances, or

• without requiring mutlispectral sensors, such that airborne broad band sensors such as consumer
cameras can be used.

We note that [8–10] use the remote sensing reflectance estimates of the satellite data, i.e., level 2 data
product of the satellite sensors. On the other hand, the utility of our method is being able to derive
direct correspondence between sensor’s actual measurements and the classes of remote sensing
reflectance which indicate some useful characteristics of remote sensing reflectance.

2. Information about Datasets and Sensors for Synthetic Experiments

Here, we present the details of the datasets and sensors that we use throughout the paper for the
synthetic results.

Dataset 1: The authors of [11] have collected the in situ remote sensing reflectance spectra of
samples collected from all over the world, from the East China Sea in the east to Hawaii in the west, as
reported in Table 1 of [11]. The data is spectrally diverse and from sources spanning shallow waters,
deep oceans, prolific algal masses, and harmful red algae bloom with distinct red tinge. Further details
about the data can be found in [11]. The remote sensing reflectances of the 281 locations from [11] are
reproduced in Figure 1. For the ease of reference, we call this dataset Dataset 1.
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Figure 1. Spectral remote sensing reflectances ~Rm in Dataset 1.

Dataset 2: Dataset 2 contains 350 data points collected at several times and locations in the South
Florida and West Florida bay. The data has been taken from the oceanic data repository [12]. The
remote sensing reflectances of the data points in this dataset are reproduced in Figure 2a.

(a) (b) (c)

(d) (e) (f)

Figure 2. Normalized spectral data and spectral clusters of Dataset 2. The thick black lines in subfigures
(b–f) show the centroids ~ρ◦ of the clusters. (a) Reflectances ~Rm; (b) normalized reflectances ~ρm;
(c) Class 1; (d) Class 4; (e) Class 6; (f) Class 8.

Sensors: Six satellite remote sensors—MODIS (8 bands), MERIS (11 bands), SeaWiFS (7 bands),
CZCS (4 bands), OLCI (15 bands), and VIIRS (7 bands)—are used in the synthetic experiments. A field
measurement multiband photometer SeaPRISM from CIMEL Electronique has also been included.
Their spectral bands are noted in Table 1. Additionally, our paper considers two consumer cameras
as examples of unconventional airborne sensors, Canon 1Ds Mark III and Nikon D40, the spectral
responses of which are presented in Figure 3.
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Table 1. Information of the bands of satellite sensors.

MODIS MERIS SeaWiFS CZCS OLCI VIIRS CIMEL
(VisNIR) SeaPRISM

No. of bands 9 11 8 4 21 9 9
No. used (B) 8 11 7 4 15 7 6

Bands 405–420 405.2–419.6 402–422 425–460 407.5–417.5 402–422 407–417
used (nm) 438–448 435.0–449.5 433–453 500–535 437.5–447.5 436–454 435–445

483–493 482.3–496.9 480–500 535–565 485–495 478–498 495–505
526–536 502.2–516.8 500–520 650–685 505–515 545–565 526–536
546–556 552.1–566.7 545–565 555–565 600–680 545–555
662–672 612.0–626.6 660–680 615–625 662–682 670–680
673–683 657.0–671.6 745–785 660–670 739–754
743–753 674.5–686.6 670–677.5

700.7–715.3 677.5–685
747.0–759.0 703.75–713.75
755.8–764.1 750–757.5

760–762.5
762.5–766.25
766.25–768.75
771.25–786.25

Bands 862–877 845–885 392.5–407.5 846–885 (I2)
unused (nm) 855–875 846–885 (M7) 865–875

880–890 931–941
895–905 1015–1025
930–950

1000–1040

(a) (b)

Figure 3. Spectral responses of the various channels of sensors of the consumer camera considered in
this paper. (a) Canon 1D Mark III; (b) Nikon D40.

Dataset of illumination spectra for downwelling irradiance: For the synthetic experiments, we
use the illumination spectrum of D65 light shown in Figure 4a since it is considered similar to the
daylight illumination spectrum [13]. Barnard dataset is a dataset of illumination spectra measured in
outdoor conditions on different days and times [14]. These illuminations are shown in Figure 4b and
the major indicative trends are shown in thick lines.
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(a) (b)

Figure 4. Illumination spectrum of D65 illumination (a) and 25 illuminations measured in outdoor
scenarios at various locations and times in Barnard dataset (b). The thick lines show the general trends
of these illuminations in (b).

3. Proposed Classification Approach

In this section, we present the details of the proposed approach. For the ease of following
the notations, we have listed them in Table 2. We first layout the foundations for our approach by
modelling the radiometric measurement as the projections of remote sensing reflectance spectra and
the downwelling irradiance. Next, we discuss the proposed classification approach. We also include
an example of forming the lookup table.

Table 2. Useful notations for our method and their meaning are presented here.

Symbol Meaning

n; N index of the wavelength sample λn; total number of wavelength samples

m; M index of the location of measurement; total number of location samples

c; C index of the spectral class; total number of spectral classes

b; B index of the channel in a sensor; total number of channels in a sensor

L(λ) Upwelling radiance measured at the sensor

Lwater(λ) Upwelling radiance leaving the water column

Latmos(λ) Upwelling radiance at radiance due to atmospheric scattering and reflection from
water surface

Lsun(λ),
Lshd(λ),
Lcloud(λ)

Upwelling radiance at sensor at sunny, shadowed, and cloud regions, respectively

Edown(λ) Downwelling radiance at the water column

Edown,diffuse(λ) Portion of Edown(λ) corresponding to atmospheric scattering

r(λ); rn remote sensing reflectance at wavelength λ; rn = r(λn)

~Rm remote sensing reflectance at the mth location Equation (1)

~ρm normalized remote sensing reflectance at the mth location Equation (20)

~ρ◦c normalized remote sensing reflectance representing the cth spectral class

rcloud Spectrally flat remote sensing reflectance of cloud

β(λ); β Ratio Latmos(λ)
Lsun(λ)

; constant approximation of β(λ)

α; αm Constant α = rcloudβ; class assigned to mth data point by our algorithm using
Equation (19)
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Table 2. Cont.

Symbol Meaning

S sensor’s spectral response matrix given as
[
~S1~S2, . . .~SB

]
~Sb spectral sensitivity of the bth channel of sensor given as

[
s(b,1), s(b,2), . . . , s(b,N)

]T

~X sensor’s radiometric measurement (data) given as [x1, x2, . . . , xB]
T

~Xw sensor’s white data computed differently for satellite and airborne sensors

~Υ◦c canonical class representative (CCR) of the cth class stored in the lookup table

~Ym canonical data obtained using data ~Xm and ~Xw in Equation (14)

~Υm canonical normalized data (CND) computed using Equation (16)

3.1. Radiometric Measurements as Functions of Remote Sensing Reflectance Spectra

Let the remote sensing reflectance corresponding to mth data point (a geographic location) be
represented as:

~Rm = [rm,1, rm,2, . . . , rm,B]
T (1)

where rn is the remote sensing reflectance r(λ) corresponding to the wavelength λn, the superscript T
denotes vector and matrix transpose, and the number of wavelength samples N is sufficiently large to
represent the spectral reflectances.

Let the sensor, satellite or airborne, have B bands (channels) where the bth channel is characterised
by its spectral sensitivity ~Sb. The spectral response of the sensor be denoted as:

S =
[
~S1 ~S2 . . . ~SB

]T
(2)

The measurement at a sensor corresponding to the mth data point is given as:

~Xm = [xm,1, xm,2, . . . , xm,B]
T (3)

and is related to the incoming upwelling radiance~Lm = [Lm,1, Lm,2, . . . , Lm,B]
T as:

~Xm = S~Lm (4)

Below, we describe the upwelling radiances~Lm at satellite and airborne sensors as functions of
the remote sensing reflectances ~Rm.

3.1.1. Satellite Sensors

Let us denote the total TOA upwelling radiance as L(λ), the upwelling radiance due to the water
column as Lwater(λ), and the downwelling irradiance as Edown(λ). For convenience, we combine the
upwelling radiance due to atmospheric aerosols and reflection from the ocean’s surface and refer to
them as atmosphere’s upwelling radiance Latmos(λ). Thus, TOA upwelling radiance is given as:

L(λ) = Latmos(λ) + t(λ)Lwater(λ) (5)

and Lwater(λ) is given as:
Lwater(λ) = r(λ)Edown(λ) (6)

where t(λ) denotes the transmittance from the water surface to the TOA as a function of wavelength.
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For a shadow region in the satellite image, it is showed in [15,16] that Latmos(λ) can be
computed as:

Latmos(λ) = Lsun(λ)−
Lsun(λ)− Lshd(λ)

1− Edown,diffuse(λ)
Edown(λ)

(7)

where Lsun(λ) and Lshd(λ) are the values of L(λ) at close-by regions in sunny and shadowed ocean.
Edown,diffuse(λ) is the component of Edown(λ) corresponding to the diffuse downwelling irradiance
due to atmospheric scattering. Furthermore, in the cloud and shadow method discussed in [15,16],
after deriving Latmos(λ) using Equation (7), the remote sensing reflectance r(λ) is computed as:

r(λ) = rcloud
Lsun(λ)− Latmos(λ)

Lcloud(λ)− Latmos(λ)
(8)

where rcloud and Lcloud(λ) are the reflectance of the cloud and the TOA upwelling radiance from the
cloud to the sensor, respectively. We note that in the visible region, rcloud is spectrally flat for optically
thick clouds [17,18].

Here, we derive approximations for Equations (7) and (8) such that the remote sensing reflectance
is an approximate expression of the TOA upwelling radiances measured at the ocean in a sunny
location and a nearby cloud. It is noted in [15,16] that Latmos(λ) is relatively less sensitive to the ratio
Edown,diffuse(λ)

Edown(λ)
because Lshd(λ)

Lsun(λ)
is close to 1. In order to verify this, we perform a synthetic experiment

for an arbitrary λ, where we assign values in the range 0.9 to 1 to Lshd
Lsun

and values in the range 0 to 0.5

to Edown,diffuse
Edown

. For these values, we compute Latmos
Lsun

and plot them in Figure 5. It is seen that, despite

significant variation in the ratio Edown,diffuse
Edown

, the value of the ratio Latmos
Lsun

remains more than 0.8. Thus,

practically, Latmos(λ)
Lsun(λ)

can be represented as β(λ), where β(λ) is close to 1. Since β(λ) is close to 1, it can
be safely represented as a constant β ≈ 1. Here, we have used β = 0.75 in order to allow for potentially

more variation in Edown,diffuse(λ)
Edown(λ)

and Latmos(λ)
Lsun(λ)

in practical scenario. Later, in Section 4.2.4, we show that
the proposed classification algorithm is not too sensitive to the value of β. Thus, Equation (8) can be
modified as follows:

r(λ) = α
Lsun(λ)

Lcloud(λ)− βLsun(λ)
(9)

where α = rcloud(1− β) is a constant and can be suppressed from further consideration. In addition,
we suppress the subscript sun. Thus, the radiometric data measurements corresponding to L(λ) and
Lcloud(λ) are represented as ~X and ~Xcloud, respectively.

Figure 5. The ratio Latmos
Lsun

is plotted as a function of Lshd
Lsun

and Edown,diffuse
Edown

for an arbitrary wavelength λ.
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3.1.2. Airborne Sensors

For an airborne sensor close to the water surface, the measured upwelling radiance is the product
of the remote sensing reflectance and the downwelling irradiance, i.e.,:

L(λ) = r(λ)Edown(λ) (10)

As opposed to the use of radiometric data at cloud for satellite sensors, the airborne sensors have
the flexibility of using a white patch or other white references including the clouds in the scene, such
that the reference white data at the sensor corresponds to:

Lwhite(λ) = rwhiteEdown(λ) (11)

where rwhite is the reflectance of the reference patch and is expected to have almost
flat spectrum. Consequently, it can be dropped from further consideration as a constant.
Combining Equations (10) and (11), we get:

r(λ) =
L(λ)

Lwhite(λ)
(12)

3.2. Classification Approach

We first describe the canonical space, which is the space of white balanced radiometric data as
well as the entries of the lookup table. The lookup table contains the reference radiometric data values
for the representative spectra of the spectral classes, which we call as the canonical class representatives
(CCRs). This is discussed next. Lastly, we discuss the classification scheme itself. The classification
process is illustrated in Figure 6.

Figure 6. Illustration of the process of classification of the data using the lookup table.

Canonical space for measurements at TOA for satellite sensors: Suppose that under a given
downwelling irradiance Edown(λ), the sensor generates a radiometric data ~X at the data point and
the radiometric data ~Xcloud at the nearby cloud. See a discussion on the criterion for proximity of the
cloud to the data point in Section 4.2.5. Using Equation (9), we define canonical data ~Y as follows:

~Y = (Xw)
−1 ~X (13)

where Xw = diag
(
~Xcloud − β~X

)
and the space of ~Y is called the canonical space. We note that this

operation of compensating the data using the white data is called white balancing in the field of image
processing [19].

Canonical space for airborne sensor measurements: Suppose that under a given illumination~L,
an airborne sensor generates radiometric data ~X and white data ~Xw. Then, using Equation (12), we
define a canonical data ~Y as follows:

~Y = (Xw)
−1 ~X (14)
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where Xw = diag
(
~Xw

)
and the space of ~Y is called the canonical space.

Canonical space for pre-estimated Rrs: If the classification of pre-estimated Rrs is sought instead
of the measured radiometric data, the conversion to the canonical space through Equation (14) need
not be performed and we note that in this case ~Y is the projection of the Rrs only on the sensor space,
i.e., ~Y = S~Rm.

Lookup table: The spectral classes are represented by their normalized reflectance spectra {~ρ◦c }.
The normalized reflectance spectra here mean that the L2 norm ‖~ρ◦c ‖ of each of these vectors is 1,
where the L2 norm is defined as the square root of the sum of squares of all the elements of the
vector. The lookup table for a sensor contains the canonical radiometric data ~Υ◦c corresponding to the
normalized reflectance spectra {~ρ◦c } representing the spectral classes:

~Υ◦c = S~ρ◦c (15)

The CCRs stored in the lookup table are ~Υ◦c . An example of the formation of the lookup table is
discussed in Section 3.3.

The hyperspectral remote sensing reflectances of the classes are projected onto the sensors
through Equation (15). In the context of the sensor, whose data is actually being classified, the
projected multispectral class reflectances do not introduce any loss of the spectral information since the
information lost in hyperspectral-to-multispectral projection cannot be captured by the sensor anyways.

Classification of the data: We normalize the input data transformed to the canonical space ~Y to
form the canonical normalized data (CND) ~Υm:

~Υm =
~Ym

‖~Ym‖
(16)

Due to the normalization, ~Υm is directly comparable to the CCRs ~Υ◦c . Now, for classification, we
compute the angle between the mth CND and the cth CCR as follows:

θm,c = ∠
(
~Υm,~Υ◦c

)
(17)

where

∠
(
~a,~b
)
= cos−1

 ~a ·~b
‖~a‖

∥∥∥~b∥∥∥
 (18)

The class αm of the mth data is then identified as:

αm = arg min(θm,c; ∀c) (19)

3.3. An Example of Finding Characteristic Rrs Spectra for the Lookup Table

We present an example for forming the lookup table by finding characteristic Rrs spectra of
classes in the lookup table from in situ remote sensing reflectance spectra. Additionally, for a data
point’s Rrs spectrum, assignment of the class is also discussed. Our lookup table is formed assuming
that the Rrs spectra of the classes are known a priori. For this paper, we identified such classes by
unsupervised clustering of remote sensing reflectance spectra of the Dataset 1, shown in Figure 1,
using the popular k-means clustering approach [20], which has been found useful in ocean data
classification as well [10]. Such an approach is useful when the knowledge of corresponding IOPs is
unavailable. During k-means clustering, we included the magnitudes of reflectance spectra as a feature
in order to separate classes with similar spectra but different amplitudes, potentially correlated to
different chlorophyll concentrations. However, such unsupervised clustering may not be needed if
IOPs are known.
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Determining suitable number of clusters: The k-means clustering approach, though
unsupervised, requires that the number of classes be specified. An estimate of the number of classes can
be obtained by determining the number of linear independent components sufficient to represent the
entire dataset well. Here, we use singular value decomposition to obtain this estimate. Singular value
decomposition gives the orthogonal independent basis vectors representing the data and the singular
values represent the strengths of these independent vectors [21]. Figure 7a shows log values of the
normalized singular values σn/ max(σn), where σn are the singular values obtained using singular
value decomposition of the matrix R =

[
~ρ1 ~ρ2 . . . ~ρM

]
and ~ρm are the normalized Rrs spectra

given by:
~ρm = ~Rm

/
‖~Rm‖ (20)

(a) (b)

Figure 7. Estimating a suitable value for the number of clusters can be done by analyzing the singular
values of the reflectance data (a); illustration of the formation of the lookup table in given in (b).

It is seen that n = 8 corresponds to a very small ratio of σn/max(σn) (<1%). This indicates that
the data can be represented well by 8 independent clusters. Thus, we have used C = 8 clusters.

k-means clustering of in situ remote sensing reflectance spectra: The algorithm of k-means
clustering aims at clustering M data points into C clusters in which each member of the cluster is
nearest to the centroid (mean) of the cluster. The cth cluster forms a class denoted as Cc and is
characterized by the cluster’s centroid ~v◦c .

For clustering, instead of using only the Rrs spectrum ~Rm as the feature of a data point, we use the
normalized spectrum ~ρm and the amplitude of the spectrum ‖~Rm‖ together to form the data feature.
Thus, the feature vectors ~vm used for clustering are given as:

~vm =

[
~ρm

‖~Rm‖

]
(21)

Taking the normalized spectrum helps in clustering the data which have similar spectra but only
different amplitudes, thus using only the spectral shape rather than the amplitude. On the other hand,
including the amplitude as an additional attribute helps in retaining at least some information about
the amplitude.

After clustering the data, we use the following metric to evaluate the quality of clustering result:

E = ∑
∀c

[dc,min,intercluster − dc,mean,intracluster] (22)
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where dc,min,intercluster is the distance of the centroid of the nearest class from the centroid of the cth
class and dc,mean,intracluster is the mean distance between the members in the cth class. Mathematically,
dc,min,intercluster and dc,mean,intracluster are given as:

dc,min,intercluster = min
(
θc,c′ ; ∀c′

)
(23)

θc,c′ = ∠ (~ρ◦c ,~ρ◦c′) (24)

dc,mean,intracluster = mean (θc(~ρm); ∀~ρm ∈ Cc) (25)

θc (~ρm) = mean
(
∠ (~ρm,~ρm′) ; ∀m′

)
;~ρm,~ρm′ ∈ Cc (26)

where ~ρ◦c is the spectral reflectance corresponding to ~v◦c . Out of 20 executions (or runs), we choose the
clustering results that has the maximum value of E.

The normalized remote sensing reflectance spectra of the samples in the Dataset 1 are shown in
Figure 8a. The clustering results, i.e., classes are shown in Figure 8b–i. The thick black line shows the
centroid ~ρ◦c and the thin lines show the members ~ρm of the class Cc in each sub-figure.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Normalized spectral data and spectral clusters of Dataset 1. The thick black lines in subfigures
(b–i) show the centroids ~ρ◦ of the clusters. (a) Normalized reflectances ~ρm; (b) Class 1; (c) Class 2;
(d) Class 3; (e) Class 4; (f) Class 5; (g) Class 6; (h) Class 7; (i) Class 8.

Assigning class to a Rrs spectrum: The class assignment for an in situ remote sensing reflectance
Rrs with the data vector ~Rm can be done as follows:

cm = arg min(∠ (~ρm,~ρ◦c ) ; ∀c) (27)
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This has been used for assigning the classes to the data points as shown in Figure 8b–i for
Dataset 1 and Figure 2c–f for Dataset 2. It is interesting that the data in Dataset 2 can be assigned to
only four classes, viz. Classes 1, 4, 6, 8, as seen in Figure 2.

4. Results

4.1. Synthetic Experiments

Here, we present four synthetic experiments using two datasets of in situ measurements of Rrs,
the details of which are given in Section 2. For these synthetic experiments, the lookup table has been
formed using Dataset 1. Six satellite sensors (see Section 2), MODIS, MERIS, SeaWiFS, CZCS, OLCI,
and VIIRS and one field sensor, SeaPRISM, are used. Classification results are shown in Dataset 1 and
Dataset 2 assuming D65 illumination (see Section 2), which represent a general daylight illumination
pattern (i.e., downwelling irradiance). The robustness of the method to various illumination spectra is
also shown. Finally, we show that our classification approach can be used for commercial cameras as
well, although with reduced performance.

Classification results are quantified using the precision and recall measures, which are defined
as follows:

Precision(c) =
count(αm = cm)

count(αm)
; ∀(cm = c) (28)

Recall(c) =
count(αm = cm)

count(cm)
; ∀(cm = c) (29)

We note that the numerators in both precision and recall are the true-positive classifications while
the denominators of precision and recall are (true-positive + false positive) and (true-positive + false
negative) classifications, respectively. Further, while overall precision cannot be defined for a dataset,
overall recall for a dataset is defined as the ratio of total number of correct classifications to the total
number of data points in the dataset.

4.1.1. Classification Results for Dataset 1

The classification results in terms of precision and recall measures for Dataset 1 are listed in
Table 3 and discussed below. We observe that overall recall for all the satellite and field sensors is more
than 90%, and the recall is more than 95% for MODIS, MERIS, OLCI, and VIIRS.

Table 3. Classification results using the proposed algorithm for Dataset 1.

Sensor Measure Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Overall

MODIS Precision 0.8889 0.8810 1.0000 0.9545 0.9667 0.9706 0.9636 0.9744 −
Recall 0.9231 0.9487 0.9143 1.0000 0.9667 1.0000 0.8983 1.0000 0.9502

MERIS Precision 0.9630 0.9286 1.0000 1.0000 0.9655 0.9706 1.0000 0.9737 −
Recall 1.0000 1.0000 0.9429 1.0000 0.9333 1.0000 0.9661 0.9737 0.9751

SeaWiFS Precision 0.8214 0.8372 1.0000 0.9545 0.9375 0.9412 0.9434 1.0000 −
Recall 0.8846 0.9231 0.8857 1.0000 1.0000 0.9697 0.8475 1.0000 0.9288

CZCS Precision 0.8065 0.8372 1.0000 1.0000 0.9355 0.9394 0.9455 0.9744 −
Recall 0.9615 0.9231 0.8857 0.8571 0.9667 0.9394 0.8814 1.0000 0.9253

OLCI Precision 0.8667 0.8864 1.0000 1.0000 0.9333 0.9706 1.0000 0.9730 −
Recall 1.0000 1.0000 0.9143 0.9048 0.9333 1.0000 0.9322 0.9474 0.9502

VIIRS Precision 0.9259 0.9750 1.0000 0.9545 0.9375 1.0000 1.0000 1.0000 −
Recall 0.9615 1.0000 0.9429 1.0000 1.0000 1.0000 0.9661 0.9737 0.9786

SeaPRISM Precision 0.7931 0.8205 1.0000 0.9545 0.9355 0.8421 0.9245 0.9737 −
Recall 0.8846 0.8205 0.8857 1.0000 0.9667 0.9697 0.8305 0.9737 0.9039

Canon Precision 0.8889 0.6667 0.6923 1.0000 0.7895 0.9167 0.9483 1.0000 −
Recall 0.9231 0.7179 0.7714 0.8571 1.0000 0.6667 0.9322 0.9211 0.8505

Nikon Precision 0.8929 0.7632 0.7027 1.0000 0.7692 0.9310 0.9655 1.0000 −
Recall 0.9615 0.7436 0.7429 0.8571 1.0000 0.8182 0.9492 0.8947 0.8719
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In general, precisions for Classes 1 and 2 are poorer than other classes for any sensor, indicating
that data points from other classes may get misclassified as Classes 1 and 2 with much more likelihood
than other classes. This is not unexpected since the normalized spectral reflectances of Classes 1 and 2
(black line in Figure 8b,c) also represent the general trends of other classes except their peculiarities.

Another observation is that the proposed algorithm performs well for Class 8 across all the sensors.
This is because Class 8 has quite a different spectral pattern in the range 400–600 nm as compared
to other classes and a definite “valley and peak” in the range 650–700 nm, as seen in the black line
in Figure 8i.

4.1.2. Classification Results for Dataset 2

While Dataset 1 was used for forming the lookup table and serves as the training dataset, we
show classification results for an independent dataset Dataset 2 as the test dataset. The process of
identifying the classes of the data in Dataset 2 from the in situ measurements is presented in Section 3.3.
Here, we note that all data in Dataset 2 get classified into one of the four classes only, namely Class 1,
4, 6 and 8.

The classification results of the proposed classification approach using the four satellite sensors
are presented in Table 4. The recall values for MODIS, MERIS, OLCI and VIIRS sensors are more than
94%. This is only a slight degradation from the results of the Dataset 1 presented in Table 3.

Table 4. Classification results using the proposed algorithm for Dataset 2.

Sensor Measure Class 1 Class 4 Class 6 Class 8 Overall

MODIS Precision 0.8000 1.0000 1.0000 0.8438 −
Recall 1.0000 0.9507 0.9040 1.0000 0.9468

MERIS Precision 1.0000 1.0000 0.8986 0.9773 −
Recall 0.9167 1.0000 0.9920 0.7963 0.9580

SeaWiFS Precision 0.6122 1.0000 0.9904 0.7297 −
Recall 0.8333 0.8662 0.8240 1.0000 0.8683

CZCS Precision 0.9286 0.9929 1.0000 0.7941 −
Recall 0.7222 0.9859 0.8640 1.0000 0.9188

OLCI Precision 1.0000 0.9861 0.8052 0.9737 −
Recall 0.5833 1.0000 0.9920 0.6852 0.9468

VIIRS Precision 0.8182 1.0000 1.0000 0.9000 −
Recall 1.0000 0.9648 0.9280 1.0000 0.9608

SeaPRISM Precision 0.5294 1.0000 1.0000 0.6341 −
Recall 0.5000 0.8873 0.7200 0.9630 0.8011

Canon 1Ds Precision 0.8065 0.9342 1.0000 1.0000 −
MarkIII Recall 0.6944 1.0000 0.5520 0.6852 0.7647

Nikon D40 Precision 0.7576 0.9281 1.0000 1.0000 −
Recall 0.6944 1.0000 0.6000 0.6852 0.7815

The performance for SeaWiFS and SeaPRISM sensors degrades significantly, giving a recall of only
86.83% and 80.11%, respectively, for Dataset 2. Its precisions for Classes 1 and 8 are specially quite low.
This is because several data points actually belonging to Class 4 get classified as Class 1, and several
data points actually belonging to Class 6 get classified as Class 8. Notably, band 470–490 nm is crucial
for separating Classes 1 and 4, and this band is missing in both SeaWiFS and SeaPRISM. Similarly,
the crucial band 560–580 nm for separating Classes 6 and 8 is also missing in both of these sensors.

The performance for the CZCS sensor is quite good, experiencing a degradation of less than 1% in
comparison to the result for Dataset 1 in Table 3. It is noticeable from Tables 3 and 4 that the proposed
method can give good results for commercial cameras as well, which have only three bands each and
all the bands are broadband. Thus, while having a large number of bands and good radiometric quality
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indeed ensures good classification, the key factor in separability of the classes is the distance between
the clusters in the sensor space (irrespective of the dimension of sensor space). Here, the relatively
broader bands of CZCS as compared to other satellite sensors, allows for gathering contributions
from the more distinguishing wavelengths, although the contribution gets smeared by other adjacent
wavelengths in the same band. Thus, the loss in number of channels is partially compensated by the
larger bandwidth of each channel, thus allowing for good performance even for CZCS.

4.1.3. Different Illuminations and Classification Accuracy

The illumination spectrum of the daylight may change everyday and several times a day
depending upon the time (sunrise, noon, etc.), cloudiness, rain, etc. Thus, it is important to test
the performance of the proposed classification method and sensor for data that corresponds to a
wide variety of illumination spectra encountered in daylight. We test our method using 25 different
illumination spectra from the Barnard dataset [14], the details of which are presented in Section 2.

The overall recall results for different illuminations are computed. The average value of these
overall results for each sensor is tabulated in Table 5. It is seen that the values are quite close to the
overall results shown for D65 illumination in Tables 3 and 4. The results clearly demonstrate the
robustness of the proposed algorithm in different illumination conditions.

Table 5. The average overall recall results for the 25 different illuminations are shown here for the
different sensors.

Dataset MODIS MERIS SeaWiFS CZCS OLCI VIIRS SeaPRISM Canon Nikon

Dataset 1 0.9502 0.9749 0.9307 0.9267 0.9537 0.9751 0.9004 0.8424 0.8596
Dataset 2 0.9447 0.9581 0.8681 0.9175 0.9107 0.9580 0.8011 0.7622 0.7692

4.1.4. Classification Using Consumer Cameras

In addition to satellite sensors, we also consider if the proposed classification can be used with
consumer cameras as well. For this, we consider two consumer cameras, Canon 1Ds Mark III (Canon)
and Nikon D40 (Nikon), which have only three channels of significantly wider bandwidth than
the satellite sensors. The classification results for Dataset 1, Dataset 2, and different illuminations
experiment are presented in Tables 3–5, respectively. It is seen that despite having three wide band
channels only, these cameras give a recall of more than 85% for the validation Dataset 1 and more than
75% for Dataset 2. Furthermore, the average results for different illuminations are also similar. This
indicates the robustness of the proposed method to the choice of sensor and the utility of the proposed
method for both satellite and ground based sensors.

4.2. Classification of Real Satellite Data

Here, we consider examples of classification of the raw radiometric data actually measured
by MERIS. We used full resolution level 1 files which have geolocated and calibrated radiance
information and pixel classification labels for identifying ocean pixels, bright pixels, and the other
pixels (referred to as unlabelled in the context of our algorithm). In the level 1 data of MERIS, the
labels of pixels allow us to select the cloud/bright pixels, ocean pixels, and the unlabelled pixels.
According to the labels of level 1 data, the chosen ocean pixels are essentially the valid, non-coastline,
unsuspicious, fully-measured, ocean pixels in clear sky with no glint risk (determined by level 1
processing); the chosen bright pixels are essentially the valid, non-coastline, unsuspicious, fully
measured, ocean pixels in bright sky with no glint risk (thus cloud). However, the glint labels of level
1 data assume flat ocean surface and thus do not exclude the occurrence of glint due to rough and
dynamic ocean surface. We refer the readers to Section 4.2.6 for consideration of glint while using our
algorithm. The lookup table of our method uses the reflectances learnt from Dataset 1 as discussed
in Section 3.3.
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4.2.1. Classification of MERIS Data over Different Scenes

For each data point, the average radiance for each channel for all the bright pixels within 110 km
radius is used as the cloud data. Then, each ocean pixel is classified using the proposed algorithm.
If the angles between the canonical normalized data at a point Υm and all the spectral classes Υ◦c
are more than 15 degrees, the pixel is left unclassified. The threshold of 15 degrees incorporates the
possibility that the classes may not have represented all the spectra and some spectra may appear
similar to one of the classes but not similar enough. The results are shown in Figure 9. Most pixels are
assigned to Classes 1, 3, 4, and 7. The other classes are also observed in a small percentage of pixels in
scenes A and B. We note that our algorithm does not classify or label certain pixels as unlabelled or
cloud. The unlabelled and cloud pixels are determined by the MERIS data labels. The algorithm then
classifies only the ocean pixels into classes 1 to 8, or labels them as unclassified.

Figure 9. Classification results using MERIS’s raw radiometric data. Data of scene A was taken on
7 May 2011, 15:21 p.m. Data of scene B was taken on 29 September 2005, 15:39 p.m. The Red-Green-Blue
(RGB) projections of the three scenes are also shown.

4.2.2. Correlation with IOP Results in the Same Data

In order to demonstrate some insight into the connection of the spectral classification with the
IOPs, we consider the MERIS data of scene A in Figure 9, which was acquired on 7 May 2011 at
15:21 p.m. We particularly focus of the classification results at Grand Bahamas, for which [22] plotted
the surface concentrations of chlorophyll “a” in Figure 17 of [22]. In order to visually enhance the
correspondence between Figure 17 of [22] and our classification results, the result is plotted with a
modified color map in Figure 10a. The Classes 2, 6, and 7 show good correspondence with the high
chlorophyll “a” concentrations in Figure 17 of [22].
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Figure 10. Classification of MERIS data from scene A shown in Figure 9—(a) the classification result in
Figure 9 but with a different color map; (b–d) classification using nearest cloud Optnearest, clouds in
proximity Optproximity, and all clouds Optall, respectively.

4.2.3. Similarity between Estimated Remote Sensing Reflectances Using MERIS Level 2 Data and the
Proposed Method

Here, we investigate if the normalized canonical data for satellite sensor, obtained through
Equation (16), matches spectrally with the remote sensing reflectances estimated in the level 2 product
of the MERIS data. For this, we consider the Grand Bahamas region. We plot the cosine similarity
(also called the goodness of fit coefficient [13,23,24]) as follows:

γ(~Υ, ~RMERIS) =
~ΥT~RMERIS

‖~Υ‖ ‖~RMERIS‖
(30)

The cosine similarity map for the Grand Bahamas region is shown in Figure 11a, and the histogram
of the similarity values is potted in Figure 11b. It is seen that the similarity is very high across all the
data points, with maximum of data points demonstrating a similarity of 0.91. The mean similarity
for the entire region in Figure 11a is 0.913. This shows good spectral agreement between the remote
sensing reflectances estimated using the proposed method and MERIS level 2 processing.

Figure 11. Similarity between the estimates of the remote sensing reflectance spectra from the proposed
algorithm and the level 2 MERIS data of the same day and time—(a) similarity map (b) histogram of
the similarity values.

4.2.4. Effect of the Value β on Classification

As discussed in Section 3.1.1, although the value of Latmos(λ)
Lsun(λ)

depends upon the ratios Lshd(λ)
Lsun(λ)

and Edown,diffuse(λ)
Edown(λ)

, since the ratio Latmos(λ)
Lsun(λ)

does not change much for the practically valid condition
Lshd(λ)
Lsun(λ)

≈ 1. Thus, the ratio Latmos(λ)
Lsun(λ)

was assigned a constant value β ≈ 1. We mentioned that we have
used β = 0.75. Here, we show that the classification results are relatively not sensitive to the value of β.
Considering three more values of β, β = 0.80, 0.85, 0.90, we plot the classification results for the Grand
Bahamas region in Figure 12. We also tabulate the percentage of pixels classified differently in Table 6.
It is noted that classification results do not vary much with the value of β.
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Figure 12. Classification results for Grand Bahamas region using different values of β. (a) β = 0.80;
(b) β = 0.85; (c) β = 0.90.

Table 6. Percentage of pixels that are classified differently when different values of β are used.
The pixels that belong to land, cloud, or glint are excluded.

β 0.80 0.85 0.9

0.75 2.88 5.97 9.30
0.80 0 3.10 6.45
0.85 3.10 0 3.37

4.2.5. Assumption of Local Uniformity

An underlying assumption in our formulation for both satellite and airborne sensors is that
the downwelling irradiance and general atmospheric conditions such as aerosol concentrations and
earth surface reflections are locally uniform in the region containing the data point and the cloud or
the white reference. Here, we discuss the criterion for calling the downwelling irradiance as locally
uniform. Indeed, the downwelling irradiance is a function of the zenith angle, the local cloud cover,
local weather conditions, the azimuthal angle, etc., which may be different over any two points, besides
the constant factors such as the time of the day and the earth’s position on its orbit. Notably, the
trigonometric and other terms which do not vary with the wavelength do not affect the proposed
algorithm because of the normalization of the canonical data as explained in Equation (16).

For the other spectral quantities, it can be assumed that the conditions do not vary significantly
over say few 10 s of kilometers from the perspective of the above defined variables. We note that the
locally uniform assumption here should also be related to the sensor position. For example, an airborne
sensor at a height of several meters will see the local uniformity of the conditions differently than an
airborne sensor at a height of a few kilometers, which, in turn, will see local uniformity differently than
a satellite sensor. Thus, in addition to restricting the distance between the data point and the white
reference to a few tens of kilometers, it is also important to consider the planar angle θ subtended
by the distance between the data point and the white reference on the sensor. If the planar angle θ is
sufficiently small, the geometric projections of the data point on the white reference given by cos(θ)
are close to 1. Suppose that the tolerable difference in the projections is 1%. Accordingly, for θ ≤ 8◦,
the conditions may be considered uniform. For a satellite sensor such as MERIS and OLCI, which are
at a distance of approximately 800 km from the earth, the distance between the data point and the
cloud, neglecting the difference in altitude, is about 110 km. On the other hand, for an airborne sensor
at a height of 80 m from the earth’s surface, the distance is 11 m.
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However, using the example of the Grand Bahamas shown in Figure 10b–d, we show that our
approach is relatively robust against the choice of the cloud region. We consider three options for
choosing the cloud region. The first option, Optnearest, is to use only the radiometric data corresponding
to the cloud closest to the data point. This result is shown in Figure 10b. The second option, Optproximity,
as used for generating the results in Figure 9, is the mean data corresponding to the all the cloud
pixels within 110 km of the data point. The result is shown in Figure 10c. The last option, Optall,
is the mean data corresponding to all the pixels in the scene portion of Grand Bahamas shown in
Figure 10a. The maximum distance between cloud pixel and data point in the scene is about 390 km.
The classification result for this option are shown in Figure 10d. We tabulate the percentage of pixels
classified differently between any two options in Table 7. When the unclassified pixels are included in
computing, the percentage values are determined as pixels classified differently in the two options
out of the total number of ocean pixels. When the unclassified pixels are excluded, the percentage
values are determined as pixels assigned a valid class but classified differently in the two options
out of the total number of ocean pixels that are assigned a valid class in both of the options. The
results in Figure 10b–d show that the Optproximity and Optall options are more robust, resulting in fewer
unclassified pixels. Table 7 further shows that using different options results only in small variations
in the classification.

Table 7. Percentage of pixels classified differently when different options are used for representing
the cloud.

Optnearest,Optproximity Optnearest,Optall Optproximity,Optall

Including unclassified pixels 15.08 14.72 4.52
Excluding unclassified pixels 13.06 12.87 4.06

We note that for satellite sensors, there may be better approaches to determine the distance of
local uniformity, such as through the estimates of aerosol optical depth across a region. However, such
approaches mandate the use of either processed satellite data (such as level 2 data) or other algorithms
for estimating the aerosol depth, which may also introduce further approximations. Therefore, we
consider that the above mentioned approximation may suffice.

4.2.6. Consideration of Glint

We note that our algorithm does not apply for the cases where glint is present. The reason
is that the radiance from glint can exceed the radiance from both the ocean and atmosphere and
the radiance from glint is not considered in the proposed algorithm. Sensors such as MERIS do
not avoid glint. For example, although the level 1 data of MERIS does label pixels with high glint,
advanced processing not assuming a flat ocean surface is needed to identify pixels with low and
medium glint risk [7,25]. Thus, in practice, glint has to be computed using methods such as [26].
Then, either glint can be compensated computationally or the pixels with glint can be identified
and excluded before applying our algorithm. A simple but approximate way of excluding the
possibility of glint is to consider only those pixels for which the angular difference between the
solar specular vector (from the sun to the measurement point) and the view vector (from the sensor to
the measurement point) is more than 30◦ such that the radiance due to glint has a small contribution to
the measurement.

5. Conclusions

In this paper, a classification method is proposed for classifying satellite data into user-specified
spectral classes corresponding to the remote sensing reflectances of water samples. The method can
be used with both the raw radiometric data of the satellites as well as the estimated remote sensing
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reflectance spectra derived from satellites’ post-processing modules. When using the raw data, the
method uses raw data from clouds to compensate for the unknown downwelling irradiance.

Synthetic results show good recall and precision for satellite sensors, giving better than 85% recall
for two datasets of in situ measurements. Robustness against diverse downwelling irradiance spectra
is also verified. As an extension, we show good classification results for two consumer cameras as well,
despite them having only three channels of significantly wide bandwidth. Examples of classifications
using actual MERIS level 1 data are also shown. Several studies are conducted to demonstrate the
robustness of the proposed approach to different parameters. An example of analogy between IOP
results and our classification results is also given. In addition, the Rrs predicted using MERIS data
modules corresponds well with the intermediate normalized spectra computed in our approach.

As future work, it is interesting to design lookup tables in which the CCRs correspond to specific
IOPs of the water samples. The requirement is that the spectra corresponding to distinct IOPs should
be spectrally separable. Then, instead of classifying the water samples, the inverse problem of
reconstructing the IOPs may be cast as determining (potentially linear) combinations of CCRs.
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