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Abstract: In terahertz (THz) materials science, imaging by scanning prevails when low power THz
sources are used. However, the application of array detectors operating with high power THz sources
is increasingly reported. We compare the imaging properties of four different array detectors that are
able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging
in the 8-14 um wavelength range, but are based on different absorber materials (i) vanadium oxide;
(if) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based
on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz
wavelengths of 96.5 um, 118.8 pm, and 393.6 um from a powerful far infrared laser were used to
assess the technical performance in terms of signal to noise ratio, detector response and detectivity.
The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the
potential and limitation for real-time digital holography are discussed.

Keywords: terahertz; digital holography; array detector; micro-bolometer; pyroelectric detector;
real time imaging

1. Introduction

Imaging with scanning methods is based on scan mirrors or translation stages for displacing
the beam or the object, respectively. In contrast, imaging with array detectors allows for dynamic
measurements, provided the detector is sensitive enough to terahertz (THz) radiation. In recent works
on THz imaging and THz holography, micro-bolometer arrays were used as THz detectors. Bolometers
are thermal detectors like pyroelectric detectors, Golay cells [1] and bi-material micro-cantilevers [2].
Indirect thermal methods record the temperature increase of a plate induced by absorption of THz
radiation. This is based on thermography cameras or on thermally sensitive phosphor plates, which
are read out with a CCD-camera [3]. For many practical applications, the scene imaged by the thermal
detector is at room temperature. Therefore, the noise content of the image is dominated by the
thermal radiation noise. As this thermal noise from the scene cannot be reduced substantially by
using a cooled detector, uncooled array detectors are attractive. Uncooled micro-bolometer arrays for
thermal imaging started to be used in the THz range around 2007 [4-6] after a first thorough study
at the U.S. Naval Research Lab (NRL) [7]. A review on the use of uncooled bolometer-type infrared
detectors for real-time THz imaging has been given by Oda [8] and Dem’yanenko [9]. Moreno et al.
have compared various micro-bolometer absorber material systems [10]. While the main application
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of uncooled micro-bolometer arrays is thermal imaging, some arrays are optimized for detecting
THz radiation. The latest developments of micro-bolometer arrays for use in the THz range above
0.6 THz, viz. wavelengths shorter than 500 um, include cameras from the National Optics Institute
(INO, Québec, Canada) [11], the NEC Corporation (Tokyo, Japan) [12], and the French Alternative
Energies and Atomic Energy Commission (CEA Leti) [13,14]. Very recently a non-thermal large-size
two-dimensional detector based on a commercial Si CCD has been reported for the visualization
of intense THz pulses [15,16]. The CCD sensor shows a great potential for imaging applications
demanding high spatial resolution. The visualization process, however, is nonlinear.

In this contribution, we focus on the applicability of thermal detector arrays to digital THz
holography in an off-axis configuration, especially on real-time applications. We compare four detector
arrays in a common experimental set-up, analyze their signal-to-noise ratio for applications of beam
profiling and off-axis holography, and discuss the limits for real-time holography.

2. Figures of Merit

One basic figure of merit is the responsivity of the detector element to the power of the incoming
radiation. Voltage responsivity [8] Ry is defined as the ratio of the pixel output signal Vs and the
incident radiant power Py and is given in (V/W):

V.
Ry = =

-5 M

For a micro-bolometer element built of an absorbing membrane coupled to a heat sink, the
responsivity depends on the total absorptance of the element, the temperature coefficient of resistance
(TCR) of the membrane material, and the thermal conductance of the coupling to the heat sink.
Responsivity alone is, however, not sufficient for a comparison of detectors with different working
principles. More meaningful parameters include the noise contributions, such as Signal-to-Noise Ratio
(SNR), Noise Equivalent Temperature Difference (NETD), or Noise Equivalent Power (NEP). NEP
is defined as the incident power that gives a signal-to-noise ratio of one. From Equation (1), NEP is
given by

Ry

If a one Hertz output bandwidth is assumed, which is equivalent to half a second of integration
time, NEP is given in W/v/Hz. Typical NEP values for uncooled micro-bolometer arrays for thermal
imaging are in the range of 200-300 pW/ VHz [8,17].

The detectivity D* is often reported, which incorporates the measurement bandwidth and the
area of the detector element. The detectivity relates to the NEP and is given in cm\/I—E/ W by [1]

NEP = @)

AyinB

*
b™ = NEP

®)
where A, is the area of the detector element and B is the measurement bandwidth which is sometimes
included in the NEP value as explained above.

For an uncooled thermal detector, it is common to state the NETD as the figure of merit which
is defined as the temperature increase of a blackbody that increases the signal to noise ratio of the
detector by one [1]. The NETD of a thermal camera includes the 1/f and Johnson noise of the bolometer,
the thermal fluctuation noise, as well as the read-out noise [18]. It further depends on the optics and
the wavelength range of operation. Since in digital holography cameras are used without optics, the
reduced expression for the NETD is appropriate:

NEP

NETD = @
Apix x (dE,/dT) |[A1,A2]
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For the long wave infrared range (LWIR) micro-bolometers used in our work, the dependence
of the spectral irradiance E, , on the temperature is evaluated in the wavelength band [8 um, 14 um]
which yields (dE,,/dT) |[8’1 4
used to calculate D* as appropriate, see Table 1.

1= 2.62Wm~2K~! at room temperature [1]. Equations (3) and (4) are

Table 1. Specifications according to data sheets of the terahertz (THz) detectors compared in this work.
D* is calculated using Equations (3) and (4) as appropriate. Range figures in brackets are calculated.

Detector Type LWIR-Bolometer LWIR-Bolometer THz Bolometer Pyroelectric Camera
Product Devitech IR-032 XENICS Gobi 640 NEC IRV-T0831 Spiricon Pyrocam III HR
Identification Caml1 Cam?2 Cam3 Cam4
Detector material VOx a-Si SiN LiTaO3
Designated operationrange ~ 8-14 um (22-37 THz) ~ 8-14 pm (22-37 THz) ~ (43-300 um) 1-7 THz ~ 1-06-3000 stm 0.1-300
Pixel size (um) NA NA NA 75
Pixel pitch (um) 25 17 23.5 80
Number of pixels 640 x 480 640 x 480 320 x 240 160 x 160
Detector size (mm?) 16.0 x 12.0 109 x 8.2 7.5 x 5.6 12.8 x 12.8
NEP (nW/+/Hz) NA NA <0.1@4THz 12.8
NETD (mK) 50 50 NA NA
Sensitivity NA NA NA 96 nW /pix
D* (cm+/Hz/W) 3.05 x 107 449 x 107 2.35 x 107 5.86 x 107
ADC (bit) 14 16 14 16
Frame rate (fps) 50 50 30 50

While the noise level can be estimated from a set of nominally equal images, the signal level
needs to be defined for the practical situation at hand in order to calculate a meaningful signal-to-noise
ratio. For a beam profiling instrument, the signal is obtained from the position of the maximum beam
intensity; for interferometric measurements, the signal corresponds to the contrast of the interference
pattern. In turn, for real-time imaging, a minimum useful SNR may be defined from which one may
calculate either the limiting integration time or frame rate for a given THz power, or vice versa. Other
factors influencing the performance of a detector array in digital off-axis holography are the number
and size of pixels, which limit the lateral resolution in object space.

To take into account drifts of the laser power during the experiment as well as different integration
times of the cameras, the SNR that is measured, SN Ry;;¢ss, is transformed into a SNR,, f for a reference
power level P, and a reference integration time 7,,¢ according to

P T,
SNRref = SNRmeast ref

Prieas \ Tmeas

©)

Equation (5) reflects the fact that the signal level is proportional to the THz power, while the
noise level is reduced with the square root of the integration time or the square root of the number of
averaged images. Note that the latter case is applied to the pyroelectric detector, as this instrument
works in chopped mode.

3. Experimental

3.1. Thermal Array Detectors

Two thermal LWIR micro-bolometers with different absorbing layer materials, VOx (Devitech
IR-032) and a-Si (XENICS Gobi 640), are compared to a THz micro-bolometer (NEC IRV-T0831) and
a pyroelectric array camera (Pyrocam III HR with a THz transparent window made of low density
polyethylene (LDPE)). The specifications of the cameras are summarized in Table 1.

3.2. THz Laser Source

A far infrared gas laser system FIRL-100 (Edinburgh Instruments Ltd, Edinburgh, UK) was used
as the THz source, which includes a CO, pump laser with a maximum of 60 W of single line output
power. Methanol CH3zOH or formic acid HCOOH was evaporated into the far infrared laser cavity
as the lasing medium. Three THz wavelengths were selected to assess the detector performances
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across the THz range by tuning CO; emission lines to pump the respective gas emission lines. The
methanol line at 118.8 um (rated maximum power 150 mW) and the formic acid line at 393.6 um
(40 mW), corresponding to 2.53 and 0.76 THz, respectively, were used to document the variation of the
responsivity at two distinct points of the THz spectrum, while the methanol line at 96.5 um (3.11 THz,
90 mW) was used to assess changes in performance around 3 THz. The diameter of the beam at the
laser exit port is 10 mm (1/e? point).

3.3. Experimental Set-Up

In order to realize reproducible measurement conditions, all four cameras were mounted onto
a common rail and aligned in such a way that the array detectors were located on a single plane
perpendicular to the laser beam, see Figure 1. The THz power was controlled with an independent
pyroelectric detector mounted in the low power arm of a beam splitter plate. As only the comparison of
detectors was of interest in this work, the absolute THz power reaching the detector was not measured.
A shutter was inserted into the beam in order to allow measurement and subtraction of the infrared
background radiation. In order to prevent a saturation of the camera, the THz beam was attenuated by
inserting Teflon plates of appropriate thickness at the laser exit port.

THz laser

Figure 1. Experimental set-up, schematic. A: Teflon absorber plate; PD: Pyroelectric detector;
M: Focusing Mirror; BS:; 10/90 beam splitter; S: shutter; Camn: Camera #n.

Figure 2 shows the two set-ups used in the experiment area. For the measurement of the beam
profile and the detector homogeneity, the THz laser beam was collimated with a pair of Tsurupica
lenses with 100 mm and 50 mm focal length, respectively, to a diameter of 5 mm at the detector plane,
Figure 2a. In the set-up of Figure 2b, the THz laser beam was split by using a polished steel cube and
recombined through a set of two mirrors such that the beam overlap was located at the detector plane.
This arrangement was used for the alignment of the cameras and for providing a regular interference
pattern. The alignment of the cameras was achieved by sequentially illuminating a pin placed in the
beam overlap area in front of the camera. The camera was then displaced along the beam propagation
z direction such that the distance between the two diffraction patterns on the detector plane was the
same for all cameras.

1 \ 1 \
@ Lo ® :
S S — 1 _ 1

>< ' THz-beam <=

THz-beam

Figure 2. Experiment area, schematic. (a) beam collimation with lenses L; and L;; (b) two-beam
interference, based on a surface reflecting beam splitter cube (BSC) and two mirrors (M).
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3.3.1. Camera Response

The detector plane of the camera was centered on the collimated THz laser beam, Figure 2a. Care
was taken not to saturate the detector by inserting Teflon blocks of appropriate thickness. For a better
comparability, images were scaled to the effective THz power measured. While this result is sufficient
to compare the performance of the cameras when used as a beam profiler, for THz holography, the full
area of the detector is used, and variations of the camera response across the image are important. It
has to be noted that with coherent radiation the image does not only depend on detector responsivity,
Equation (1), but also on other camera components, e.g., the cover plate or the housing. To assess this
variation, the cameras were displaced in regular intervals in two directions through the beam and
an image was recorded at each position. A combination of the images allowed extracting a relative
camera response map as well as a corrected THz image.

3.3.2. Interference Fringe Contrast

The two-beam interferometer set-up, Figure 2b, was used to generate an interference pattern with
a regular fringe spacing of A = 0.7 mm in horizontal x-direction for the 118.8 pm wavelength in the
overlap region. The fringe spacing was adjusted such that all cameras had a sufficient number of
pixels across one fringe to reliably determine the modulation signal. The detector was placed into the
overlapping beam area to record the interference fringe pattern which is written as

2
I = Iy + Iy + Iycos (:x + ¢0> ©)

where I} is the thermal background, Iy the average THz intensity, I)s the modulation intensity of the
THz fringe pattern, and ¢y is a phase shift. An ideal sinusoidal pattern was extracted from the recorded
fringe pattern. The signal level was identified with 2Ij;. The noise level was again obtained from the
pixel fluctuations of consecutive images. Illuminating the entire detector reveals interference effects
that can severely affect a hologram such as diffraction from the detector housing due to the coherent
nature of the THz radiation.

3.3.3. Real-Time Holography

The SNR obtained from the modulation intensity and the noise level of the interference pattern,
forms the basis for a calculation of the capability of the cameras for real-time off-axis holography. If we
define a real-time experiment to be a video-rate experiment, the frame rate is typically 25 fps. From the
maximum SNR of the interference fringe pattern and the corresponding effective camera integration
time, we obtain the SNR of a 40 ms integration time corresponding to an output bandwidth of 12.5 Hz.
If, in addition, we set the limit for useful experiments at a value of SNR > 4, we can determine the
minimum THz power at which this level is obtained, assuming linear integration on the camera,
according to Equation (5).

While for real-time imaging the discussion of integration time vs. SNR is sufficient, for real-time
holography, additional issues arise. Real time holography is based on the evaluation of amplitude
and phase from a single hologram. In off-axis holography, this can be achieved using, e.g., a Fourier
transform phase retrieval method [19]. Three conditions must be fulfilled: (i) the SNR of a single
frame must be high enough to be evaluated; (ii) the limiting resolution of the digital holography set-up
must be appropriate [20]; (iii) the Fourier peak of the carrier fringes must be well separated from the
background peak.

The calculation of the limiting resolution involves the convolution with the resolution functions
given by the pixel size p and the numerical aperture [21]. While the resolution function due to pixel
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size is a rectangle of width p, the intrinsic resolution function in Fresnel approximation takes the form
of a sinc function with a first zero found at

8
dy = A=2— @)
w NP

where A is the wavelength, g the reconstruction distance and N the number of pixels in the considered
direction. Resolution increases with smaller pixel pitch p and larger detector size Np.

To evaluate the phase of the diffracted object wave using the Fourier transform phase retrieval
method, it is necessary to separate the spectrum of the object wave around the carrier frequency in
the Fourier plane from the image background found around the zero frequency peak. The carrier
frequency is ideally located at half the maximum frequency, which guarantees a good separation from
the zero frequency peak, but at the same time avoids aliasing effects. This frequency corresponds to a
fringe spacing of Apin = 4p or a maximum angle amax between the object and reference beam in the
off-axis holography set-up given by

. A
SiN Amax = 7 ®)

4p
4. Results and Discussion

4.1. Beam Profiling

Figure 3 shows a beam profile measured with the four cameras at A = 118.8 ym. The image areas
are scaled identically to represent the relative detector areas, such that the measured beam should have
the same width. Note that the apparent shape of the beam is asymmetric, especially for Cam1 and
Cam4, Figure 3e. This may be caused by the inhomogeneous response across the detector area of some
cameras and will be discussed in Section 4.2 below. The SNR is calculated by dividing the average
signal value at the beam center by the noise level. The noise level is determined from the variation
of two consecutive images by averaging the squared difference of neighboring pixel values. For the
micro-bolometer detectors (Cam1, Cam2 and Cam3), the noise is dominated by the fluctuations of the
thermal background, while the THz radiation does not contribute appreciably. Values for the SNR are
compiled in Table 2 for two wavelengths of A = 118.8 pm and A = 393.6 pm.

Table 2. Results of SNR,s for the cameras at a terahertz (THz) power of P,y = 10 mW and an
integration time of T,y = 25 ms. Numbers in brackets correspond to values obtained with an IR-filter
in front of the camera.

Detector Type LWIR-Bolometer LWIR-Bolometer = THz Bolometer Pyroelectric Camera
Identification Caml Cam?2 Cam3 Cam4
SNR, for beam profile at A = 118.8 pm 60 80 60 3
SNR, for beam profile at A = 393.6 pm 10 7 15 3
SNR;f for interference fringes at A = 118.8 pm 85 (70) 50 60 (40) 0.5

4.2. Camera Response

Figure 4a-d shows the camera response at A = 118.8 um relative to the average response as
determined from the images of the beam at different positions on the detector. The diffraction effects
from the borders are clearly visible and assessed in more detail in Section 4.3. There is a huge variation
of the response across the detector area of Cam1, Figure 4a. As such a large variation cannot be the
result of inhomogeneous detector responsivity, this effect is attributed to interference effects inside
the camera, e.g., as a result from a varying distance between the detector array and the cover plate.
To corroborate this hypothesis, the measurement of the camera response was repeated at a second
close-by wavelength clearly showing a shift in the maxima and minima, Figure 4e. Cameras Cam?2,
Cam3 and Cam4 have a more homogeneous response.
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pixels 320

5 mm

Figure 3. Beam profile at a wavelength of A = 118.8 um measured with the four cameras. (a) Cam1;
(b) Cam2; (c) Cam3; (d) Cam4; (e) horizontal cross-section through the measured laser spots and the
beam profile (black line).

4.3. Interference Fringe Pattern

The diffraction originating from scattering off the camera housing represents a systematic
unwanted contribution to a hologram. Figure 5 represents typical patterns from two cameras featuring
diffraction patterns from a linear and a circular edge, respectively. The image contrast has been scaled
to highlight the diffraction patterns.

pixels

5 mm 5 mm

@

Figure 4. Relative camera response across the entire image area at A = 118.8 um (a-d). A value of
one corresponds to the average response of the image area. (a) Cam1; (b) Cam2; (¢) Cam3; (d) Cam4;
(e) Cam1 at A =96.5 um.
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Figure 5. High frequency diffraction patterns caused by the camera housing interfering with the
two-beam fringe pattern, measured at A = 118.8 yum. Cam?2 (Left) and Cam3 (Right).

Figure 6 shows the central area with a size of 5 x 5 mm? from the original fringe patterns recorded
with the four cameras. In order to determine the SNR of these fringe patterns, we remove the high
frequency noise caused by edge diffraction as well as the low frequency background to obtain ideal
sinusoidal fringe patterns. From these, the local modulation intensity I; is determined according
to Equation (6) and is divided by the noise level. The SNR values obtained for the reference values
Pres =10 mW and 7,.¢ = 25 ms according to Equation (5) are compiled in Table 2 for a wavelength of
A =118.8 um. Note that a direct comparison of SNR,,s for beam profile and interference fringes is not
possible due to different experimental conditions. A considerable amount of THz power was lost in
the lens system used for beam profiling, Figure 2a.

:
:

3

i§

1

] ;
-

I pixels 200 1 pixels 294 1 pixels 213

Figure 6. Central part (5 x 5 mm?) of the interference pattern recorded on Cam1 to Cam4 (Left to
Right) at A = 118.8 um.

4.4. Real Time Off-Axis Holography

From the SNR of the interference fringe pattern and the corresponding effective camera integration
time, we obtain the SNR of an equivalent 25 fps camera, i.e., the SNR for a 40 ms integration time
corresponding to an output bandwidth of 12.5 Hz, according to Equation (5). In turn, fixing the THz
power to 10 mW and assuming a limiting SNR of 4 we obtain the necessary integration time; while
fixing the integration time to 40 ms and SNR to 4 allows for calculating the necessary THz power. These
values are shown in Table 3 together with the limiting interference angle enclosed by the reference
and object wave according to Equation (8). As for all bolometer cameras, the relation 4p < A holds
for A = 118.8 pm, the maximum interference angle is unrestricted, while for Cam4 it is 22°. Note,
however, that the housing may prevent using large angles due to excessive diffraction or obstruction
from the housing.
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Table 3. Use of the cameras in real-time holography and limitation on the interference angle, Equation

().

Identification Cam1 Cam2 Cam3 Cam4
SNR for 40 ms integration time and 10 mW THz power 136 80 96 0.8
Integration time for SNR = 4 and 10 mW THz power 0.035 ms 0.100 ms 0.069 ms 1000 ms
THz power for SNR = 4 and 40 ms integration time 0.29 mW 0.50 mW 0.42 mW 50 mW
Amax A = 118.8 um 90° 90° 90° 22°
Amax A = 96.5 pm 75° 90° 90° 18°

Figure 7 shows the Fourier power spectrum of the interference pattern taken at A = 118.8 pum for
all cameras. Note that the y-axis has been compressed for convenience of display, while the spectral
intensity is scaled to the intensity of the satellite peaks. While the zero peak and the two main satellites
representing the sinusoidal fringe pattern at 1.4 mm™! are clearly visible for Cam1 to Cam3, they are
difficult to identify for Cam4 in Figure 7d. From Figure 7, it can be concluded that Cam1, Cam2 and
Cam3 can accommodate much higher spatial frequencies than Cam4. Circular diffraction patterns
exemplified in Figure 5 (right) give rise to the elliptic halos in Figure 7a,c.

An estimate of the limiting resolution expected in digital holography as a function of the
reconstruction distance is represented in Figure 8 for all cameras for the long detector axis (x-axis).
In this simulation, a point source at a distance from the detector plane and an off-axis reference
wave with a wavelength of 118.8 um and an angle of 22° were assumed. The interference pattern
was resampled on the pixel grid of the respective camera. The point source was then reconstructed
using the Kirchhoff theory without approximation yielding sinc-like functions. The curves in Figure 8
represent the distance of the first minimum from the central peak. The dotted lines represent the
resolution in Fresnel approximation as described by Equation (7).

0
Spatial frequency [1/mm]

Figure 7. Fourier transform of the interference pattern recorded at A = 118.8 um. (a) Cam1; (b) Cam2;
(c) Cam3; (d) Cam4.
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Limiting resolution for digital off-axis holography

—>Cam1
-©-Cam2 Py
0.25 | -0~ Cam3 : o
Cam4 ’Qj?/
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resolution [mm]
o
=
(9]
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0.05

0.00
0

reconstruction distance [mm]

Figure 8. Radius of the reconstructed point source with a wavelength of 118.8 pm for a set of
source distances. The dotted lines represent the resolution in Fresnel approximation as described
by Equation (7).

5. Conclusions/Outlook

All four cameras assessed in this work can be used for THz imaging and real-time THz holography,
if sufficient THz power is available. More care must be taken when using thermal micro-bolometers. It
has been shown that the camera response may not be homogeneous across the detector area because
of uncontrollable interference effects between the detector plane and the cover plate. In turn, the
dedicated THz micro-bolometer and pyroelectric detector do not show an appreciable variation of
the camera response across the detector area. The SNRs for all three bolometers are comparable,
whereas the pyroelectric camera has significantly lower SNRs around 3 THz. This is also reflected in
the calculated D* values that are within 2.3 and 4.5 x 10”7 cm+/Hz/W for the bolometers, while the
pyroelectric camera is a factor of 40 less sensitive. Note that the D* value of the LWIR-bolometers was
calculated from the specifications given in the 8 to 14 pm infrared band.

Dedicated THz cameras do not yet reach the high lateral resolution of the thermal
micro-bolometers both in number of pixels and in pixel pitch. Currently, they are not well suited for
real-time THz holography. On the other hand, an LWIR bolometer may suffer from inhomogeneous
response due to interference effects. Special care has to be taken of interference effects due to the
camera housing. Additional measurements (with and without samples) or synthetic aperture methods
with overlapping camera positions can be used to suppress such artefacts.
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