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Abstract: Systems which permit the weighing of vehicles in motion are called dynamic
Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among
the influencing factors that negatively affect weighing accuracy is the pavement temperature.
This paper presents a detailed analysis of this phenomenon and describes the properties of polymer,
quartz and bending plate load sensors. The studies were conducted in two ways: at roadside
Weigh-in-Motion sites and at a laboratory using a climate chamber. For accuracy assessment of
roadside systems, the reference vehicle method was used. The pavement temperature influence on
the weighing error was experimentally investigated as well as a non-uniform temperature distribution
along and across the Weigh-in-Motion site. Tests carried out in the climatic chamber allowed the
influence of temperature on the sensor intrinsic error to be determined. The results presented clearly
show that all kinds of sensors are temperature sensitive. This is a new finding, as up to now the
quartz and bending plate sensors were considered insensitive to this factor.
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1. Introduction

In order to protect roads and bridges against overloaded vehicles, numerous and varied steps
have been taken. One of these steps, though not necessarily an effective one, is static mass and axle
load enforcement. This type of enforcement involves stopping random vehicles and directing them to
a weighing station, where the vehicles are weighed on precise (with a relative error of 1%) static scales.
An alternative is to weigh vehicles directly on the lane that they are traveling on, without the need to
stop them.

Systems which allow the weighing of vehicles in motion are called dynamic Weigh-in-Motion
(WIM) scales. In such systems, wheel or axle load sensors are embedded in the pavement perpendicular
to the traffic direction. Within this group are distinguished Low Speed WIM, High Speed WIM and
Multi-Sensor WIM systems. Each of them can be equipped with various types of load sensors, such as
polymer, quartz, bending plate, capacitive or fiber-optic [1–3]. The number of load sensors used and
their type depends on the desired accuracy of the weighing results. The common systems consist of
two load sensors, and are referred to as High Speed WIM (HS-WIM). The dynamics of a moving vehicle
and the impact of the other disturbing quantities mean that weighing errors in HS-WIM systems reach
as much as 15% for axle load and 5% for gross vehicle weight. For this reason, such systems are not
used by authorities for direct mass enforcement and punishment of carriers using overloaded vehicles.
Currently, such systems are used only for preselection of vehicles suspected of being overloaded,
which are next directed to static scale weighing stations. Figure 1 shows a diagram and a photo of
a WIM system.
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Nowadays, load sensors made with three different technologies are most frequently used: 
polymer, quartz and bending plate [3]. In each case, the sensors are embedded in the road pavement. 
The pavement plays a role in transferring the force of the vehicle’s wheel to the sensor. Thus, the 
fragment of the pavement in which the sensor is installed becomes a part of the measuring system, 
bringing with it a host of negative consequences. This means that the variety of disturbing quantities 
affecting the mechanical properties of the pavement and sensors are difficult to study and describe. 
Figure 2 shows the way that sensors are embedded in the pavement. 

 
Figure 2. Quartz and bending plate sensors embedded in the pavement. 

In many countries extensive research has been conducted over a number of years into the 
application of WIM systems for direct enforcement purposes but without success [4,5]. The 
fundamental problems, which so far have not been solved, involve ensuring high and constant 
accuracy of WIM systems and the quantitative assessment of factors disturbing the weighing process. 
The need for WIM enforcement systems implementation has also been discerned in EU countries, as 
is confirmed by initial reports appearing in international journals [6–8]. 

From the theory of bitumic pavements it is known that the one of the reasons for low weighing 
accuracy in WIM systems is the phenomena which occur in the pavement/load sensor complex, under 
the impact of changes in pavement temperature. 

The phenomena which occur at the juncture of the pavement/sensor complex have not yet been 
studied or explained. Without explanation of these phenomena, it is not possible to build a WIM 
system with accuracy comparable to that of the static scales. Achieving such accuracy will enable the 
use of WIM systems for direct elimination of overloaded vehicles from the road. 

The goal of this paper is to achieve progress on closing the gap within assessment of the 
properties of polymer, quartz and bending plate load sensors for WIM systems. The studies were 
conducted in two ways: at roadside WIM sites equipped with wheel/axle load sensors built with 

Figure 1. Diagram and photo of a WIM station.

Nowadays, load sensors made with three different technologies are most frequently used:
polymer, quartz and bending plate [3]. In each case, the sensors are embedded in the road pavement.
The pavement plays a role in transferring the force of the vehicle’s wheel to the sensor. Thus,
the fragment of the pavement in which the sensor is installed becomes a part of the measuring
system, bringing with it a host of negative consequences. This means that the variety of disturbing
quantities affecting the mechanical properties of the pavement and sensors are difficult to study and
describe. Figure 2 shows the way that sensors are embedded in the pavement.
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In many countries extensive research has been conducted over a number of years into
the application of WIM systems for direct enforcement purposes but without success [4,5].
The fundamental problems, which so far have not been solved, involve ensuring high and constant
accuracy of WIM systems and the quantitative assessment of factors disturbing the weighing process.
The need for WIM enforcement systems implementation has also been discerned in EU countries, as is
confirmed by initial reports appearing in international journals [6–8].

From the theory of bitumic pavements it is known that the one of the reasons for low weighing
accuracy in WIM systems is the phenomena which occur in the pavement/load sensor complex,
under the impact of changes in pavement temperature.

The phenomena which occur at the juncture of the pavement/sensor complex have not yet been
studied or explained. Without explanation of these phenomena, it is not possible to build a WIM
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system with accuracy comparable to that of the static scales. Achieving such accuracy will enable the
use of WIM systems for direct elimination of overloaded vehicles from the road.

The goal of this paper is to achieve progress on closing the gap within assessment of the properties
of polymer, quartz and bending plate load sensors for WIM systems. The studies were conducted in two
ways: at roadside WIM sites equipped with wheel/axle load sensors built with various technologies,
and at a laboratory using a climate chamber. We present a quantitative assessment of the influence of
pavement temperature on the vehicle weighing error caused by the intrinsic properties of the load
sensors and the thermal properties of the pavement. In particular, the long-term accuracy assessment
of WIM systems equipped with all kinds of sensors has been shown. The characteristics describing the
change in system error as a function of temperature have been experimentally determined. We also
present the effects of the temperature gradient occurring on a multi-sensor site.

In the final part of this paper we will demonstrate that currently adopted recommendations from
COST 323 [9] concerning temperature stability during system calibration and when testing its accuracy
are not correct and need adjustments.

Literature Review

Ongoing research on WIM systems is aimed at their application for enforcement purposes.
Practical implementation of this idea is subject to two conditions: defining detailed procedures for
legalization and metrological control of WIM systems, and defining technical requirements for such
WIM systems. The second problem ensues from the high sensitivity of WIM systems to weather
conditions, environmental influences and factors directly associated with the weighed vehicle and
its behavior at the WIM site [10]. The two main factors with the most significant effect on the WIM
system’s accuracy are the pavement temperature changes and vehicle speed.

At the beginning of the 21st century, Papagiannakis, Johnston and Alavi carried out studies on
piezoelectric sensors. In one such study [11], they focused on laboratory evaluation of the fatigue
characteristics of piezoelectric WIM sensors under wet and dry conditions. In another paper written
by the same authors [12], the results of the field evaluation of WIM sensors of two manufacturers,
namely Vibracoax (VC) and Measurements Specialties Incorporated (MSI), were presented. In these
experiments the influence of the pavement temperature on the sensors’ output signal was investigated.
Studies have shown that the level of the raw signal depends on the temperature sensors installed in
the asphalt concrete pavement. Concurrent with the increasing pavement temperature, the signal level
of the MSI sensors increased, while it decreased for the VC sensors.

Temperature properties of WIM sensors are also addressed in [13]. The paper describes the
laboratory and field tests of the RoadTrax BL sensor manufactured by MSI. During tests, all the
examined sensors exhibited an increase in the signal level with the increased temperature of the
asphalt concrete pavement. The coefficient in this relationship expressed in volts per degree Celsius is
as high as 0.162.

The influence of the pavement temperature and vehicle speed on the weighing error in WIM
systems employing piezoelectric polymer sensors is also emphasised in the paper [14]. The results
presented confirm that polymer sensors and ceramic sensors are considered to be temperature sensitive,
while quartz sensors are insensitive to temperature. The comparison of sensors in terms of sensitivity
to changes in vehicle speed resulted in the conclusion that the polymer sensors are the least sensitive to
speed change, the quartz sensors have better accuracy at higher speed, and the results for the ceramic
sensors are more scattered than for the other two types of sensors overall.

A similar conclusion is reached by Vaziri in his PhD thesis [15] and further publications [16].
The aim of that research was to explore the behavior of WIM piezoelectric sensors under different
environmental conditions and vehicle behavior during weighing. The author conducted field tests
on two WIM sites involving three types of load sensors: quartz (Kistler), polymer piezoelectric (MSI)
and ceramic piezoelectric (Electronique Controle Mesure—ECM). Unfortunately, the reliability of the
presented results seems to be very limited. The author measured the temperature of the air instead of
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the pavement and only within a small range (8–16 ◦C), which is insufficient. With respect to the effect
of the vehicle speed on the performance of the WIM sensors, the same objection may be formulated:
test speeds were chosen for 30, 50 and 70 km/h. It seems to not be representative for heavy vehicles,
as the average speed on national roads and highways, depending on the vehicle class, is within the
range of 60–110 km/h.

The properties of WIM sites were also examined by the authors of this paper. Since 2005, a series
of test has been performed at a Multi-Sensor WIM (MS-WIM) site equipped with 16 polymer axle
load sensors provided by MSI [17]. Long-term tests clearly showed a strong relationship between the
pavement temperature and weighing results. A model of this relationship was first introduced by
Burnos in 2008 [18] and further investigated in [19].

From the data obtained during all the aforementioned works, it was not possible to determine
if the increase in the sensor’s output signal is caused by a decrease in pavement stiffness or by the
properties of the sensor itself. Such a study for polymer sensors was undertaken by the authors and
described in [20] where the results of tests in a climatic chamber, as well as of long-term tests at the
WIM site, were presented. Quantitative assessments of the temperature impact on the sensor itself and
on the asphalt concrete pavement stiffness were described.

Almost all the mentioned works exclusively concern the thermal properties of polymer sensors.
Fields that still need more investigation are the influence of the vehicle speed on the weighing
results and the thermal properties of quartz and bending plate sensors. For instance, Kistler gives
a temperature coefficient of sensitivity of −0.02%/◦C [21]. This value, however, refers solely to the
piezoelectric material used, and does not take into account temperature effects occurring after the
sensor installation in the pavement. This paper fills this gap in the knowledge.

2. Methodology and Experiment Setup

Regarding pavement/load sensor complexes, two kinds of weighing errors are distinguished:

• Sensor intrinsic error: the source of this error is a change in the sensor’s electrical parameters
under the impact of the change of the temperature.

• Pavement/sensor complex external error: the superposition of the sensor intrinsic error and errors
which occur after sensor installation in the road pavement. The source of the additional errors
in this case is the pavement, as its properties depend on the temperature and duration of force
applied by the vehicle wheel on the pavement/sensor complex.

Taking into account the two kinds of errors present in the pavement/load sensor complex,
the studies were conducted in two ways: at roadside WIM sites equipped with wheel/axle load
sensors built with various technologies, and at a laboratory using a climate chamber. These two
methods differ in terms of the required infrastructure, the duration of the measurements, the kind
of experiments that can be carried out, and cost. However, they are complementary. Tests at the
climatic chamber allowed the authors to determine the influence of the temperature on the sensor
intrinsic error, and tests at the roadside WIM site permitted the evaluation of the pavement/load
sensor external error.

The characteristics that describe the roadside WIM system properties have been determined
using the reference vehicles method [18]. The basis of the method is the assumption that results of
weighing a certain class of vehicles participating in traffic can be used as the reference value. In Poland,
five-axle articulated vehicles, including two-axle tractors and three-axle semi-trailers, are categorized
into this class. The load of the first axle of these vehicles is most weakly correlated with the loads
of the other axles and the gross vehicle weight compared to the other vehicle classes. These features
mean that the load of the first axle of the reference vehicle is stable, and to a small degree it depends
on the carried load. As a consequence, as a reference for the evaluation of the WIM system’s accuracy,
the mean value of the first axle load of the reference vehicles was chosen. In a population of two-axle
tractors with three-axle semi-trailers, the mean value of the first axle load equals 61.670 N. Reference
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vehicles are regular traffic participants and can be easily recognized by the WIM system, because the
distance between the three axles of the semi-trailer is normalized and equals 1.3 m. The population of
such vehicles is usually large in comparison to all other heavy vehicle classes. All these features of
reference vehicles allow for long-term tests at the roadside WIM site, and evaluation of the temperature
properties of the load sensors (measurements taken in different temperatures over the year).
Tests carried out at the roadside WIM site allowed the authors to determine the pavement/load
sensor external error. Multiple repetitions of this experiment at different temperatures make it possible
to define characteristics which give a quantitative description of the influence of disturbing quantities
on the WIM system error.

The accuracy assessment of the load sensors consists of analysis of the weighing results of the
reference vehicles’ first axle at the specified pavement temperature and vehicle speeds. The relative
error of weighing results δ is computed from Equation (1).

δ =
1
N ∑N

i=1
Ldyni − Lstat

Lstat
, (1)

where:

Ldyni—i-th axle weighing results of the moving reference vehicle obtained from the WIM system
Lstat—reference value of axle load, in this case the mean value of the first axle load of the reference
vehicles (61.670 N)
I = 1, 2, . . . , N—number of weighing results of the first axle of the reference vehicles, taken at the
specific value of the temperature and the vehicle’ speed

Averaging in Equation (1) is over the set of weighing results taken at a given pavement
temperature and vehicle speed. This is necessary because of deviation of the first axle load of the
reference vehicles, the vertical bouncing of the vehicle, and other errors that may occur in the WIM
system. For each pavement temperature or vehicle speed, at least several dozens of weighing results
are taken to calculate the relative error.

Regarding laboratory tests, a CTS C-40/100 climatic chamber was used. Model C-40 allows
temperature to be regulated from −40 ◦C to +180 ◦C. The chamber test space dimension is
0.5 × 0.5 × 0.4 m. Tests carried out in the climatic chamber allowed the authors to determine
the influence of temperature on the sensor intrinsic error. No load was applied on the sensor.
The measurements were made for two polymer sensors of the same type. In the first case only
the sensor was placed in the chamber, whereas in the second case the sensor with the cable connecting
it to the measuring system was included.

3. Results

To evaluate the thermal properties of the WIM systems equipped with different types of sensors,
data from three roadside WIM sites located in Poland were analyzed:

• Polymer load sensor Roadtrax® Brass Linguini®—made by TE Connectivity Ltd. [22] (former
Measurement Specialties, Inc., Schaffhausen, Switzerland)—site in the city of Gardawice on
national road No. 81

• Quartz sensor Lineas® made by Kistler (Winterthur, Switzerland) [21]—site in the city of Rudawa
on national road No. 79

• Bending plate sensor PAT DAW 100® made by International Road Dynamics® (Saskatoon,
Canada)—site in the city of Zabow on national road No. 2

The data were collected in different periods depending on the weighing site, but the operating
time of each site was not shorter than six months. The aim of the data collection was to record the
weighing results of reference vehicles. Comparing the weighing result of the first axle of these vehicles
from the WIM system to the mean value of the first axle load allowed the evaluation of the system’s
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accuracy. In total, over four million vehicles of all classes were recorded, including cars, vans, buses,
etc., of which 0.2 million were records of reference vehicles: 75,000 at the site with polymer sensors,
67,000 at the site with quartz sensors and 72,000 for at the site with bending plate sensors.

3.1. Pavement/Load Sensor External Errors Due to Temperature Influence

The analysis of the results of the reference vehicles’ first axle weighing consists of assessment of
the error value (1) at the specified pavement temperature. To limit the impact of changes in the vehicle
speed on the results, the measurements were limited to the range of the reference vehicles’ speeds of
70–80 km/h. Characteristics shown in Figure 3 are a second-order polynomial approximation (the best
fit) of the relative error (1). Each approximated point is the average value of the results of weighing
at least several dozen vehicles. It should be emphasized that these characteristics take into account
the temperature influence on the intrinsic properties of the sensor and on the pavement parameters,
and hence the external relative error of vehicle weighing. All WIM systems were calibrated at
a temperature of 15 ◦C.
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From the characteristics shown in Figure 3, the following conclusions can be formulated:

• WIM systems employing polymer sensors were definitely more sensitive to temperature changes
than quartz and bending plate sensors. For this type of sensor, a temperature change within the
range −10 ◦C to +30 ◦C produced, as an effect, a change in the weighing error of approximately
50%. In the case of quartz sensors and bending plates, that change was approximately 7%.

• Considering the daily variation of the pavement temperature, it was not possible to achieve
better accuracy than 7% in a WIM system equipped with quartz or bending plate sensors without
temperature correction algorithms.

The knowledge of the polynomial models enables online temperature correction of the weighing
error but it requires continuous measuring of the pavement temperature at a depth similar to that at
which the load sensors are installed.

3.2. Influence of a Non-Uniform Distribution of Pavement Temperature along the Site on Weighing Results

In the case of Multi-Sensor WIMs, the length of the site may exceed 10 m. In such a long measuring
system, the pavement temperature distribution along the site, in general, is non-uniform. This yields
the necessity of temperature sensor installation along the site. Figure 4 shows the Multi-Sensor WIM
site equipped with temperature sensors.
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Figure 5a shows sample results of the daily change of the pavement temperature at the MS-WIM
site equipped with five temperature sensors distributed along the site, and 16 polymer load sensors.
The weighing result in the MS-WIM system is determined as the arithmetic mean value of the
measurements obtained from the successive load sensors. The error presented in Figure 5b is therefore
a total weighing error and it consists of errors contributed by all 16 load sensors. The characteristic
presented in Figure 5b describes the case where the temperature correction was not used.
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Figure 5. (a) Daily pavement temperature change at the MS-WIM site at five measurement points,
distributed along the site; (b) A sample daily variation of the weighing error (1) at the MS-WIM site
due to the pavement temperature change.

As can be seen from the characteristics in Figure 5a, the asphalt temperature changed during the
day by as much as 25 ◦C. This may be considered a typical range in the summer season in Poland.
It can also be noticed that the temperature distribution along the site was not uniform. The length
of MS-WIM sites depends on the number of load sensors installed and may exceed 10 m. Therefore,
temperatures at different points of a site may differ significantly, chiefly due to the non-uniform
insolation caused by neighboring trees and high buildings situated along the road. On HS-WIM
sites equipped with only two sensors, the distance between sensors is limited to 1–2 m, thus effects
produced by the non-uniform temperature distribution along the WIM site are much smaller.

3.3. Influence of a Non-Uniform Distribution of Pavement Temperature across the Site on Weighing Results

A non-uniform temperature distribution is observed not only along the site but also across it,
i.e., along each load sensor. In this case also it may be caused by shadows cast onto the pavement by
roadside objects. That means two parts of a load sensor may be exposed to different temperatures.
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Let us assume the situation shown in Figure 6. Two parts of the load sensor (part A and part B) are
operated at different temperatures, but only the temperature of part A is measured.
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Additionally, let us assume that temperature correction of the weighing result based on the
polynomial model (Figure 3) is implemented in the system. If the temperature correction algorithm
uses the temperature measurement of part A it means that such a compensation is not correct because
part B of the load sensor has a different temperature. Daily changes in temperature of both parts of the
load sensor, observable in the summer season, are shown in Figure 7a. Assuming that the temperature
correction is based on the measurement result of the temperature of part A, the relative weighing error
due to the different temperatures of both parts of the load sensor changes during a day is shown in
Figure 7b. This is one of the total weighing error components that is caused by temperature influence.
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3.4. Sensor Intrinsic Errors

The objective of the tests carried out in a climatic chamber was to determine the influence of the
temperature on changes of the polymer sensor equivalent parameters of capacitance Cs and dissipation
factor tg(δ). The research has been described in detail in [19,20]. Only polymer sensors were tested
because the sizes of the other sensors exceed the dimensions of the climate chamber. Two cases were
considered. In the first case only the sensor was placed in the chamber, whereas in the second case
the sensor was placed with the cable connecting it to the measuring system. The measurement results
of the sensor equivalent parameters are shown in Figure 8. The measurements were performed over
a temperature range of −30 ◦C to +50 ◦C, according to the requirements of the standard [23].
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The weighing intrinsic error arises from the difference between the actual sensor temperature
value and the reference temperature value at which the WIM system was calibrated (in this test the
reference temperature was +20 ◦C). The relative value of the error is computed from Equation (1).
The plot of error (1) versus the sensor temperature is shown in Figure 9. As follows from this
characteristic, a rise in temperature of 20 ◦C over the reference temperature results in a weighing error
of about 4%. At extremely low temperatures this error may be contained within the range 10%–20%.
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4. Conclusions and Future Work

Achieving a high and known accuracy of WIM systems will enable their use for direct enforcement
purposes. Due to the influence of numerous factors limiting this accuracy, this is not an easy task.

The shape of the characteristic in Figure 3, and at the same time the sensitivity of the weighing
results to temperature changes, depends on the pavement mechanical properties and varies from site
to site. An explanation of system behavior would require to take a stiffness model of the pavement into
account. This model is complex and nonlinear in nature with three variables: the stiffness coefficient,
vehicle speed and axle load. This will be the aim of further studies in cooperation with the Gdansk
University of Technology.

The unequal temperature distribution along and across the WIM site may also be the cause of
significant weighing errors. In order to limit the influence of this factor, it is essential to install at least
two temperature sensors located at the ends of each load sensor. Locations in which this unequal
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distribution is highly likely (such as densely urbanized areas, areas where tree shadows influence
pavement temperature, or road infrastructure objects) should also be avoided as WIM sites.

Finally, comparing the characteristics determined for polymer sensors shown in Figures 3 and 9
allowed two causes of the weighing errors to be separated quantitatively. The influence of the
sensor intrinsic error was −12% to +2%, and the influence of the pavement parameter change
(sensor external error) was −30% to +20% over a temperature change range of −20 ◦C to +30 ◦C.
The intrinsic sensor error caused by the temperature change is dependent on the technology and
materials used in its manufacture.

In the authors’ opinion, the pavement temperature is a significant influencing factor; moreover,
its value varies over a wide range in relatively short time intervals. This phenomenon concerns all
kinds of sensors: polymer, quartz and bending plate load sensors. The results presented show clearly
that in the case of the Lineas load sensors manufactured by Kistler, their temperature sensitivity,
after installation in the pavement, was about 7% within the temperature range of −10 ◦C to +30 ◦C.
It is therefore necessary to reconsider views about the method of WIM system calibration and assessing
their accuracy using the pre-weighed vehicle method proposed in COST 323 [9]. In the future, accurate
Multi-Sensor WIM systems intended for mass enforcement should be calibrated and tested over a wide
range of temperature changes similarly as they are tested over a wide range of pre-weighed vehicle
speeds. Furthermore, as a result of model and laboratory research and on-site experiments, it has been
demonstrated that in order to achieve a high accuracy level, the WIM site should be equipped with
a multi-point temperature measuring system.

The contribution of this work is aimed at developing a Polish WIM system for direct overloading
enforcement. To achieve this goal, in 2014 the authors initiated a group within the Intelligent
Transportation Systems Cluster (ITS Cluster), which brought together Polish universities, research
institutes and commercial companies.

Author Contributions: P.B. contributed to designing the reference vehicle method, collecting measurement results
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analyzing the influence of a non-uniform distribution of pavement temperature along and across the WIM site;
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J.G. wrote 40% of the paper, mostly the conclusions.
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