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Abstract: Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique,
this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process
gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous
rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU)
is proposed in this paper, in which the extended observation equations are used for the Kalman
filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy.
Theoretical and numerical comparisons between the proposed algorithm and the traditional ones
are presented. The experimental results show that the new continuous rotation alignment algorithm
using the extended observation equations in the Kalman filter is more efficient than the traditional
two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h,
a north-finding accuracy of 0.1° (1¢) is achieved by the new continuous rotation alignment algorithm,
compared with 0.6° (1) north-finding accuracy for the two-position alignment and 1° (1¢) for the
fixed-position alignment.

Keywords: cost effective north-finding; stochastic modeling; Coriolis vibration gyroscopes;
continuous rotation IMU alignment

1. Introduction

Cost effective north-finding technology is widely required for many applications. North-finding
is sometimes based on Digital Magnetic Compasses (DMCs) [1]. However, DMCs is easily degraded
by magnetic interference. Although Dynamically Tuned Gyros and Ring Laser Gyroscopes are suitable
for precise north-finding, they are generally bulky and expensive [2,3]. In contrast, Coriolis vibration
gyroscopes (e.g., a kind of cost effective medium precision Hemispherical Resonator Gyroscopes
(HRGs) [4,5]) are generally compact and low-cost and suitable for a cost effective north-finding system.
However, the drift errors of these gyroscopes are big problems, which limit the north-finding accuracy.

To improve the accuracy of the north-finding system using cost effective gyroscopes, several
methods have been designed. Lee [6] proposed a multi-position alignment algorithm to increase the
azimuth accuracy. For the same purpose, Yu [7] used analytic optimization of Strapdown Inertial
Navigation System (SINS) multi-position alignment. Renkoski [8] and Sun [9] improved the accuracy
of North-finding system through continuous rotation.

This paper focuses on Inertial Measurement Unit (IMU)-based north-finding systems using a
Kalman filter for applications such as dynamic orientation and dead reckoning. Stochastic modeling
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for a Coriolis vibration gyroscope is obtained using the Allan variance technique. It is shown that
the Rate Random Walk (RRW) and Markov noises are the main errors which limit the north-finding
accuracy. A new continuous rotation IMU alignment algorithm is therefore proposed using extended
observation equations in the Kalman filter to solve this problem. Experimental results as well as
theoretical analysis are also presented.

This paper is organized as follows: Section 2 analyses the random error model of a Coriolis
vibration gyroscope using the Allan variance technique. The north-finding errors due to the main
parts of the gyro drift error are presented. Section 3 presents three different IMU based north-finding
algorithms or three different error compensation approaches: two-position alignment, continuous
rotation alignment, and a new continuous rotation alignment algorithm with extended observation
equations for a Kalman filter. Section 4 presents theoretical and simulation analyses of the performances
of the methods mentioned above. Section 5 reports north-finding experimental results and comparisons.
The Allan variance analysis results for the equivalent east gyro are presented for the interpretation
of effectiveness of the gyro drift error compensation approaches. Section 6 concludes the paper.
The appendices show detailed theoretical proofs.

2. Error Model for a Coriolis Vibration Gyroscope

IMU errors can be classified into two types: deterministic errors and random errors. Major
deterministic error sources including constant bias, scale factor errors and misalignment can be
removed by calibration and compensation [10]. The random constant bias (turn to turn bias) and
random noises are the main error sources in the North-finding system. Therefore, we focus on the
stochastic modeling for a Coriolis vibration gyroscope.

2.1. Error Model Based on Allan Variance Analysis

Traditionally, random constant bias, ARW (Angle Random Walk), RRW and Markov process are
used to develop stochastic error model for gyros. The error model of a gyroscope can be expressed as
follows [11,12]:

e=¢p+ey+w,+ e 1)

where ¢ is the stochastic drift error of the gyroscope measurements, ¢;, is the random constant bias with
the variance of sz, & is the Markov process, w, is the ARW, ¢, is the RRW.
The random bias can be described as an unpredictable random quantity with a constant value,
that is:
ey =0 2)

wa € N(0,07) 3)

where ¢? is the variance of w,.
The Markov noise is the low-frequency component in the error sources. Usually, the noise is
modeled as a First order Gauss-Markov process [11]:

. 1
&m = —?sm + Wy, wy € N(O, 0',%1) 4)

where T is the process time constant, w;;, is the zero-mean Gaussian white noise, (731 is the variance
of wy,:

. 2

& = wy, wy € N(0,07) (5)

where 07 is the variance of w,.

In Equation (1), the characteristics of the stochastic errors are usually estimated by an optimal
estimation algorithm, such as a Kalman filter [13]. The parameters of the stochastic error model are
necessary for a Kalman filter algorithm. Hence, there is a need to determine the parameters of the
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error model using Allan variance analysis. The sampling data of a HRG in 3 h is present in Figure 1a.
The Allan variance results of the HRG are presented in Figure 1b. The sampling frequency is 10 Hz.
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Figure 1. (a) Measurements of a HRG in 10Hz; (b). Allan variance of the HRG.

The parameters of the error models for the Coriolis vibration gyroscopes in an IMU based
north-finding system are given in Table 1.

Table 1. Parameters of the error models for the Coriolis vibration gyroscopes (a kind of cost effective

HRG in this paper).
Bias Instability o, 0.1°/h
ARW o, 0.01°/vh
RRW 0, 0.3°/13/2
Markov time constant T 60 s

Markov process driving noise 0y, 0.02°/h/+\/s

Consider the error models in Figure 1, the major parts of the gyroscope errors are ARW, Markov
process, bias instability and RRW, which indicates that the error model in Equation (1) is sufficient to
characterize the gyroscope. The parameters of the models show that the primary error source for the
gyroscope are Markov noise and RRW.

2.2. Propagation of Gyroscope Errors in a North-Finding System

The drift error of the equivalent east gyroscope ¢g in an IMU based north-finding system
propagates to the azimuth misalignment ¢p, which can be expressed as follows [14]:

€E
_ 6
P = NeosL ©)

where () is the earth rotation rate, L is the local latitude.
Similar to Equation (1), eg can be expressed as follows:

€ = €pg + WuE + & + EpE ()

where the random constant bias ez, the ARW w,g, the RRW ¢, and the Markov process e,
correspond to g, wy, € and &, in Equation (1).
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The RMS (Root Mean Square) of azimuth misalignment oy, , 0y, 0pp, and oy, due to ey, waE,
¢, and e, can be expressed as [15,16]:

OpE
pr— 8
%00 = OycosL ®)

O4E
Op, — —— 9
P00 = "/t Obcos L ©)

oreVtn

Opp, = 10
$or V3Q cos L (10)
V1202, (2t — te ¥ aret —31) 4+ Py (0)T(1— 2 H 4 e )
Toom = t,QcosL (11)

where t, is the alignment time. agE, ‘TaZEf cTrZE and 031 r are the variances corresponding to e,g, w,e, W,g
and wy,g in the error model of the equivalent east gyroscope. P;, . (0) is the variance of the initial value
of Markov process. The proofs of Equations (8)—(11) are shown in Appendix A.

It should be explained that the initial value of RRW noise can be regarded as part of a constant
bias. Thus the RRW starts from zero.

Assuming the alignment time ¢, is 10 min, the local latitude is 28.22° N, the RMS values of the
azimuth misalignment can be obtained from Equations (8)—(11). The azimuth misalignment due to the
equivalent east gyroscope errors are shown in Table 2.

Table 2. The azimuth misalignment due to the equivalent east gyroscope errors in 10 min at 28.22° N.

Gyroscope Errors RMS of Azimuth Misalignment
Bias Instability o 0.1°/h Opp, = 0.43°
ARW 0,5 0.01°/vh Ogp, = 0.10°
RRW 0, 0.3°/13/2 Ogp, = 0.31°
Markov process T 60 s Cpmy = 0.20°

Markov process 0y, 0.02°/h/+\/s

Although the azimuth misalignment are most affected by the bias instability, the random constant
bias can be easily eliminated through north-finding algorithms (such as two-position alignment [6]
and continuous rotation alignment [9]). And compared with RRW and Markov noise, the azimuth
misalignment due to ARW is slim. RRW and Markov process are the main error source in a
north-finding system.

3. Error Compensation Approach for IMU Based North-Finding System

3.1. System Error Model for IMU Based North-Finding

A local level NED (North-East-Down) frame is used as the navigation frame. The common SINS
error equations in the navigation frame can be expressed as follows [14]:

- n

¢ = (W + @) x 9" = Cpowy, (12)
oV =1 x @ — (w!, + 2w x oV 4 Crof° (13)

T
where ¢" is the attitude error, ¢" = [ ¢oN ¢ ¢D } , N, E and D represent north, east and down

T
in navigation frame respectively; év" is the velocity error, 6v" = { duy Ovgp dup } . ¢" can be
estimated by the observation of 6v" in an alignment process. f" is the measurement of specific force in
frame n, C}} is the coordinate transformation matrix from the IMU frame b to the navigation frame 7,
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wy,, is the turn rate of the navigation frame to the earth frame in the frame n, w?!, is the turn rate of the
earth frame to the inertial frame in the frame n, dw?, is the error of the gyroscope measurements, 5f” is
the error of the specific force measurements.

In the North finding scenario discussed here, since the IMU is stationary on the Earth:

wl =0 (14)

A : b ,,,G,l,,j,,p,b_fé,,,
x(t) = [----7-- SREEEE (t)+  Osx3 | W(t) (15)
Ogx5 1 T Osx5 ! Iixs
‘ x

where:

x(t):[(svl\] ove ¢N ¢ ¢pD Vacex vaccy

(epx + &rx) (Eby + ‘C—ry) (epz +€rz)  Emx Emy Emz

T (16)

Vacex and Ve, are the bias error states of the accelerometers, e, Eby and ¢, are the random
constant bias error states of the gyroscopes, ¢y, €+, and ¢, are the rate random walk of the gyroscopes,
€mx, Emy and &y, are the error states for the Markov process of the gyroscopes.

For the filter noise vector:

T
w(t) = [wuccx Waccy Wax Way  Waz Wrx Wry Wrz Wmx Wmy Wmz (17)

where W,y and Waccy are the white noise of the accelerometer x and the accelerometer y, respectively.
That is:
Wacex, Waccy € N(O, agcc) (18)

where Uu2cc is the variance of the white noise w;q.y and Waccy-

Wax, Way and wg, are the angular random walk of the gyroscope x, the gyroscope y and the
gYTOSCope z, Wy, Wiy and Wy, are the driving noise in the Markov process of the gyroscope x, the
gyroscope y and the gyroscope z.

0 —2QsinL | 0 g 0
20sinL 0 | -g 0 0
Fi=| o 0 ' 0 —QsinL 0 (19)
0 0 ' QsinL 0 Qcos L
0 0 0 —QcosL 0

where g is the local gravity.
The matrix F, is defined as follows:

E = _C§2x202X302X3 (20)
2 Osx2 | —CJ 1 —CJ
where CZsz is defined as:
T
" 1 0 211 0 0
Cb2><2 = 010 Cb 1 0 (21)
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The matrices Gy and T are defined as follows:

oo 023 ] r— [Osxsﬂ‘)w] 22)

where T is the Markov time constant of the gyroscope.

As shown in the analysis above, based on the condition that the system is stationary on the earth,
the horizontal velocity errors are used as observation states. Thus, the observation model can be
written as:

7,
ZU)Z[iglzzHﬂﬂ+UU)1{=[qu 02 23)
T ~ ~
where v(t) = [ Uoy  Uog } is the observation noise vector. Uy and Ur represent north and east

components of the estimated velocity, respectively.

3.2. Traditional Two-Position Gyrocompassing

Two-position alignment is demonstrated in Figure 2 [6].
Xp
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Figure 2. Schematic diagram of two-position alignment.

As shown in Figure 2, the axis x;, and y;, of the IMU frame lie on the turntable plane, the axis
zp, coincides with the rotation axis. We define the by frame when x; coincides with the turntable
null indicator:

Ch = Ch,Gr (24)

where Cﬁo is the coordinate transformation matrix from the frame # to the frame by.
CZO can be written as:

10 0
01 0| t<th
00 1

C{;O(t): o0 o (25)
0 -1 0| t>h
0 0 1

where [t1,t] is the short time period when the IMU changes the angular position through the
turntable rotation.

3.3. Continuous Rotation Gyrocompassing

As an alternative to the two-position alignment, continuous rotation is another efficient method
to reduce the alignment errors.
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In contrast to the two-position alignment, the coordinate transformation matrix Cj is varying as
Cso changes by continuous rotation, that is:

cos(wpt)  sin(wpt) 0
CZO = | —sin(wpt) cos(wpt) 0O woT =27 (26)
0 0 1

where wy is the rotation rate of the turntable. T is the rotation cycle.

Except for the coordinate transformation matrix C; and C, the error model and the
observation equation between the continuous rotation gyrocompassing are the same as that of the
two-position gyrocompassing.

3.4. A New Continuous Rotation North-Finding Method Based on an Extended Observation Model

Although the constant random biases of gyroscopes are mostly eliminated by the above
compensation approaches, the noise of the gyroscopes will also still affect the efficiency of the Kalman
filter. For Coriolis vibration gyroscopes, the noise level is high. It is difficult to estimate the drift errors
of the gyroscopes exactly. The accuracy of the North-finding system is limited. To solve the problem,
we present an extended observation model for the continuous rotation alignment.

After each 360° turn, the integration of the measurements of the gyroscopes can be written as:

T T T (€ + €rx) + Emx T (epx + erc) + mx
i abdt= [T whdt+ |, (epy +ery) *emy |dt = [, (web +Cp clo )dt +T| (epy+ery) +emy | (27)
(ebz + t‘:rz) + Emz (gbz + Srz) + &z

While the integration of the estimated measurements of the gyroscopes can be written as:

ftt+T ~b dt t+T g-wsb + A%,)dt
T, wb dt+fj+ Chandt

_ ‘it Zb t+T ¢ ~b bo 1510 b ho n (28)
=/, dt+ft {C [I+¢"x]wj, + Cy C'dw}y }dt
t+T t+T b b
= [ (web +Ch Chowp, )dt + |, {c;;oc,f[—wig ¢ + Ch Cibdco, }t
QcosL —0LQOsinL
wi = 0 dwll, = 0
—QsinL —6LQ cos L (29)
cos By cos ¢ cos 6 sin ¢g —sin 6
Czo = | —cosypsin g+ sinygsinfycos @y  cosbycos @o + sinypsinbysingpy  sin yg cos by
€os Yp sin By cos ¢y + sinypsin ¢y — sinyg cos @o + cos ygsinfp sin ¢y cos yg cos Gy

where |, tHT Wl ,dt represents the integration of the gyroscope measurements in a rotation Cycle of the
turntable, @ b represents the estimated measurements of the gyroscopes in the b-frame, w;, represents
the earth rotatlon rate in the n-frame. ¢y, 6y and g are the Euler angles of the by-frame relative to the
n-frame. Cl, is the estimated coordinate transformation matrix with attitude errors.

Considering ¢y and ¢ are very small after coarse alignment:

oN 0
¢n = ¢ ~ 0 (30)
¢D ¢
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From Equations (29) and (30)

t+T b by 0
A Ch Clowtdt = QT 0 (31)
cos L(cos yg sin 8y cos ¢g + sin g sin ¢g) — sin L cos yg cos 6
HT o o
I o ;
= [, Gy Gl [~wiix]¢" + Cp CiSwit Yt
’ ’ (32)
= ¢p QT L SLOT
o€ cos — sin g cos ¢o+ * — sin L(cos yg sin 6y cos ¢g + sin 7y sin ¢g) —
€os 7yp sin O sin @g cos L cos yg cos 6y
Under static conditions, we have:
t+T b 0
/t whdt=| 0 (33)
27
Substituting Equations (28), (31)—(33) into Equation (27) gives:
0 0
(px +&rx) + Emx 0 0
T (ehy +ey) *emy | —¢pQTcosL — sin o cos @o-+ —oLOT —sinL'cos '.yO sinqo cos @o
(epz +&r2) +&mz 05 v i1 B0 sin — sin L sin 7y sin ¢g
"0 08I Po — cos L cos g cos b (34)

_ T ~p t+T ~p
= [ @ydt— [ dpdt

0 0
_ 4T ~p

(cos yg sin By cos Pg + sin g sin @) cos L — cos g cos B sin L 27

When there is latitude error and heading error, the estimated measurements of the gyroscopes are
inaccurate. After each 360° turn of the turntable, the equivalent east gyroscope error caused by these
errors can be calculated as follows:

m”~Ho1ovwmﬂm% (35)
ibE — T ; by -b ib

The equivalent east gyroscope error caused by heading error and latitude error is shown in
Equations (36) and (37) respectively:

(5wﬁ,E,¢D = (— sinyg cos g + cos ¥ sin f sin q)o)ngDQ cos L (36)

oWhp s = (sin g cos ¢y — €os Y sin By sin @g) [cos ¥ sin Hp cos @o tan L

37
+ sin yg sin ¢ tan L + cos 7y cos 6p]6LQ cos L 37)

where dwjy p - is the equivalent east gyroscope error caused by heading error, dwjy 5, is the equivalent
east gyroscope error caused by latitude error L.
Assuming that:

Y0 =00 =5 (38)

Equations (36) and (37) can be written as:

OWiyE g, A 0.01¢pQcos L, dwjyp 51 ~ 0.16LQ cos L (39)
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In general, the initial heading error is less than 5° (¢p(0) < 5°) and the latitude error is less than
0.1° (6L < 0.1°). Considering Equation (39), the equivalent azimuth error caused by initial heading
error and latitude error can be ignored when tilt is smaller than 5°.

The additional observation can be obtained using the integration measurements of the gyroscopes
in each 360° turn of the turntable.

The observation model can be written as:

z(t) = Hx(t) + v(t) (40)

[ N ] when 2(k—1)m < wot < 2km

UE
Z<t> = N (41)
UE when  wot = 2k
t+T ~p t+T ~p
o wgdt— [T @t
k=1,2,3,...
{ Lo 0r43 1 02x8 } when Z(k* 1)7‘[ < wot < 2k7t
H = bhya 0px3 i 0202 Ooxz 0oy
fffffffffffffff PSSR 200 when wot = 2kt
[ O3x2 D 1 03x2 Thaxs Tlaxs 0
k=1,253,... (42)
0 0 0
D=]10 0 0
0 0 (—sinygcos g+ cosygsinbysin @g)QT cos L

T
[ Uoy  Vog } when 2(k—1)m < wot < 2k7t

v(t) = T
{UUN Vop  Vwy  Uuwy vwz} when  wot = 2k (43)

k=1,23,...

. . . 4T ~ t+T .
where v, Ve, and v, are the observation noise corresponding to ft + wf.’bdt — ft + wf’bdt.

4. Comparisons of the Kalman Filter Convergence Rapidity and North-Finding Accuracy

Comparisons of the Kalman filter convergence rapidity and the north-finding accuracy between
the proposed algorithms and the traditional alignment methods can be made with the covariance
matrix for the estimated states in the Kalman filter.

For the piecewise constant time varying system the covariance matrix of the estimated states P
can be obtained by calculating the discrete Riccati matrix equation [7]:

P1(k) = [®T (k k — 1)P(k — 1)®(k k — 1) + GTQG] "

44
+ HTR-1H k=1,2,3...,n 49

which is based on the continuous system error model and observation equations (Equations (15)-(43))

as follows:
Ok k—1) ~ eAlt-)Ts ~ [+ A(tp_1) T,
G(k,k—1) =~ B(tx_1)

Q=4qT; (45)
q=E{wl(Hw(t)}
R=E{vT(t)v(t)}

where Ts; = 0.04 s is the sampling time.
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In this study, an initial covariance matrix P; (0), spectral density matrix Q of system noise and
measurement noise covariance matrix R are given as follows:

P;(0) = diag{(0.1 m/s)?, (0.1m/s)?, (1°)%,(1°)%,(1°)?,

(107%¢)*, (107%¢)?, (0.2° /h)?, (0.2° /12, (0. 2°/h)2 (o 2°/h)?, ( 0.2° /)2, (0.2°/h)?}

Q = diag{(2 x 10-5m/s), (2 x 105 m/s) (0.127)%,(0.12") (o 1272, (46)
(0.0001° /k)?, (0.0001° /h)?, (0.0001° /1)?, (0. OO4°/h)2, (0. 004°/h) (0.004° /1)*}

R = diag{(0.01m/s)?, (0.01m/s)*}

When using the continuous rotation method based on the extended observation model,
measurement noise covariance matrix R is expressed as follows:

B { diag{(0.01 m/s)?, (0.01m/s)?} when 2(k—1)m < wot < 2k

diag{(0.01m/s)?, (0.01m/s)?, (4")%, (4")%, (4")*} when wot = 2k7 (47)
k=1,23,...
The rotation rate of the turntable is wy = 10°/s. The number of iterations performed for

calculating P using Equation (44) is 15,000 which is equivalent to 600 s. For two-position alignment,
the IMU changes position at 300 s. Since the heading error ¢p is the most crucial error state in the
north-finding system, we focus on the RMS value of ¢p.

Figure 3 shows the RMS values of the heading error in the north-finding process. Obviously, the
new continuous rotation alignment with the extended observation is more efficient than the existing
north-finding algorithms.

---------- Fixed-position alignment
12t === Two-position alignment —
== Continuous rotation alignment

1 Continuous rotation alignment | -

with extended observation

0.8+

0.6

0.4r

0.2+

RMS value of Heading error(degree)

0 100 200 300 400 500 600
time(s)

Figure 3. Kalman filter convergence rapidity and accuracy comparison of the four north-

finding approaches.

In order to analyze the gyroscope error compensation effect of the new continuous rotation
alignment approach, we use Allan variance technique to compare the compensated data with the
uncompensated data of the equivalent east gyroscope, which determines the north-finding accuracy in
a north-finding system.

The uncompensated equivalent east gyroscope data, denoted as @, is the measurement of the
equivalent east gyroscope in the n frame, when the turntable is not rotating, that is:

@hy=10 1 0]Cicral, ch=1 (48)

The compensated equivalent east gyroscope data, denoted as @j; - is the measurement of the
equivalent east gyroscope in the n frame, when the turntable is rotating. The compensated data is



Sensors 2016, 16,2113 11 of 18

obtained after the Kalman filter has converged. The drift error of the gyroscope has been estimated
and compensated by the Kalman filter. That is:

o>

ébx +&x

mx
~ b ~b ~ A A
Opr=[0 1 0 ]C,Z’OCb0 Wi — | &y téry | — | Emy (49)
éhz + &2 Emz

The sampling data are collected over 3 h as shown in Figure 2, and the sampling frequency is
10 Hz. As shown in Figure 4, after compensation, the bias instability of the equivalent east gyroscope is
almost eliminated, but the ARW remains as before. It should be noticed that RRW is almost eliminated
through the continuous rotation modulation.

—#*— Compensated
Markov | —©—Unompensated
process

Bias instability

Allan std var(deg/h)

10 10 10 10 10
Integration time(s)

Figure 4. Allan variance of compensated and uncompensated data of the equivalent east gyroscope.

The experiment demonstrated that the RRW and Markov noise could be compensated by
continuous rotation alignment, but ARW remained unchanged. The theoretical proofs are shown in
Appendix B.

5. Experimental Results

The experimental platform is shown in Figure 5.

Considering the installation error, it is difficult to determine the absolute north. The previous
north-finding experimental result was used as a reference to evaluate the performance of the
approaches. The assumed azimuth was the mean value of 15 experimental results in two weeks
north-finding tests. In this study, the experimental north-finding system stayed on a fixed azimuth.
For each north-finding algorithm, the north-finding process was repeated five times.

—

Figure 5. The experimental platform.
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Since the errors of the gyroscopes and accelerometers are unobservable in the fixed-position
alignment, which may cause the divergence of the Kalman filter in the practice. We used 5-state
Kalman filter for the fixed-position alignment. From Equations (15)—(23), the model can be expressed
as follows:

x(t) = [6on, 6vE, ¢N, §E, §D]
x(t) = Fi(t)x(t) + G(t)w(t) .
(t) = { Wacex  Waccy Wax  Way Waz :|

z(t) = Hix(t) +v(t) Hy = [ by2 0O2x3 }

(50)

s

The coarse alignment method using the gravity in the initial frame as a reference was employed
in the experiments [17].

As shown in Figure 6a—d, the azimuth errors converged with time, the experimental results are
coincident with the simulation analysis as shown in Figure 3 in which the new continuous rotation
alignment with extended observation is the most efficient algorithm for a Coriolis vibration gyroscope
based north-finding system.

3415 340.4
===Assumed azimuth === Assumed azimuth
a 3402 Estimation of the azimuth | |

340

Estimation of the azimuth

deg)

339.8

Azimuth(degree)
Azimuth
g

339.4

339.2

3 L L L L L 339 L L L L L
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time(s) Time(s)
(a) (b)

=== Assumed azimuth
Estimation of the azimuth

===Assumed azimuth
Estimation of the azimuth |

Azimuth(degree)
g ¢ £

@
8
]

338.5(

38 L L L L L . L L L L
) 100 200 300 200 500 600 [ 100 200 . 300 400 500 600
Time(s) Time(s)

(©) (d)

Figure 6. (a) The accuracy of the heading angle using the fixed-position alignment; (b) The accuracy
of the heading angle using the two-position alignment; (c) The accuracy of the heading angle using
the continuous rotation method; (d) The accuracy of the heading angle using the continuous rotation
based on the extended observation model.

In order to further compare the performances of the north-finding methods, we changed the
azimuth of the north-finding system to 6 different directions as shown in Equation (51):

g1 = —20.337°, gp = g1 + (k—1)60° k=2,...6 (51)

For each azimuth, the north-finding process was repeated for 5 times with the 4 different
north-finding algorithms. Then, the RMS of heading errors for each of these algorithms was calculated.
As shown in Figure 7, the new approach (continuous rotation alignment with the extended observation
model) is the best one, the north-finding accuracy is 0.1° (10).
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Figure 7. The accuracy of the system using four approaches.

6. Conclusions

As analyzed in this paper, it is the gyroscope random drift errors that make it a challenge for a
cost effective gyroscope based north-finding systems to be achieved. Since it is the equivalent east
gyroscope that determines the north-finding accuracy, Allan variance analysis of the equivalent east
gyroscope before and after error compensation provides an efficient technique for the evaluation of
the gyroscope error estimation.

Comparisons of the Kalman filter convergence rapidity and north-finding accuracy have been
made to evaluate the north-finding algorithms. Compared with the other traditional approaches,
the new continuous rotation alignment approach based on the extended observation model can
improve the north-finding accuracy and convergence rapidity effectively. The experiments have shown
that a heading accuracy of 0.1° (1) can be achieved in 10 min at 28.22° north latitude using a HRG
IMU with gyro bias instability of 0.1°/h, compared with 0.6° (10) north-finding accuracy for the
two-position alignment and 1° (10) for the fixed-position alignment.

In fact, ARW, RRW and Markov noise are the main error source of many gyroscopes (e.g., fiber
optic gyroscopes [18]). The new continuous rotation IMU alignment algorithm is not only applicable
to the Coriolis vibration gyros (a kind of cost effective HRGs in this paper), but is also suitable for
many other gyroscopes with similar stochastic error models.
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Appendix A

Appendix A.1. Proof of Equation (9) (Propagation of the ARW in a North-Finding System) [15,16]

The equivalent east gyroscope integration error 00,r caused by the ARW can be expressed

as follows: .
00,5 = Wag, Wag € N(0,0%) (A1)
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P, is the variance of 66, which can be expressed as follows:

Pie = que = U'HZE (
A2)
PaE(t) = qut

where q,r is the variance of w,r. t is the integration time. Suppose t, is the alignment time,
Pip(ty) = ‘T§E tn, the RMS of azimuth misalignment 0y, due to ARW can be calculated as follows:

Pie(tn)  ouevtn O4E

T tnQcosL  t,QcosL  \/t,QcosL (43)

This completes the proof.
Appendix A.2. Proof of Equation (10) (Propagation of the RRW in a North-Finding System) [15,16]
The equivalent east gyroscope integration error 66, caused by the RRW can be written in matrix

form as: .
597E — A 597}5
& ' ErE

wrg € N(0,0%)

+

0
WrE (A4)

The state transition matrix A, and the system noise matrix q, can be written as:

T
0 1 0 0 0 0
S ER L | P R S B

The state covariance matrix P, can be obtained by calculating the Riccati matrix equation:

Pr = AP+ PrArT + qr (A6)
1,23 1242
F071°  S0rt
P(t)=1| 35, 25 A7
Pg(t) = 3078 (A8)

where Py is the variance of 60,¢. Thus, The RMS of azimuth misalignment 0y, due to the RRW can
be calculated as follows:

1.2 .3
el _ VYRR orh o

%oor = thQcosL  t,QcosL /30 cos L

This completes the proof.

Appendix A.3. Proof of Equation (11) (Propagation of the Markov Process in a North-Finding System)

The equivalent east gyroscope integration error 0,,r caused by the Markov process can be
expressed in matrix form as follows:

(s.ém,; _ A, | SOmE
EmE €mE
wne € N(0,02F)

0
WmE (A10)
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The state transition matrix A, and the system noise matrix q,, can be written as:

T
T WmE WimE

2
0 oo
The state covariance matrix P,; can be obtained by calculating the Riccati matrix equation:

Pm = APy + PpAy’ + I (A12)

[ Puty Pa
P“”‘{éhozﬁm}
1
2

1202 (2t — Te~ * + 4Te" T — 37) AP £.2 1 2 (A13)
D3 1—e7) + P, (0)t(e v —e 7t
e T e IO B
1202 (1 —e=F)" 4 By (0)r(e ¥ — ) | 305 (1— ") 4 P, (0)e
1,5 _u _t Sl 2y
Pue(t) =Py (t) = 5T 02t —Te” T +41e T —37) 4+ P, (0)T(1 —2e 7" ¢ 7") (A14)

P .(0) is the variance of the initial value of Markov process.
The RMS of azimuth misalignment 0y, due to the Markov process can be calculated as follows:

 Pue(ta) \/%1'20,2,1(21? —Te T 4+ 4te T —37) + P, (0)T(1 — 2 Tt 4 ¢~ )

Pom — "t OcosL t,Qcos L

(A15)

This completes the proof.
Appendix B

Appendix B.1. Theoretical Proof of the Effects of the Continuous Rotation on the ARW [15]

When the turntable is rotating, the equivalent east gyroscope integration error d0,r caused by the
ARW can be expressed as follows:

wﬁzaww“1 (B1)
Way
in which B, = | sinwgt coswpt }, wax € N(O, UgE),way € N(0, UgE)Suppose:
Wax Wax ! 2. 0 |
e
The state covariance matrix P, can be calculated as follows:
Pa = B,zq,ZB,ZT = [ sinwgpt cos wyt }q :g;zzi = ‘TZE (B3)

which is the same as the Equation (A3). Therefore, continuous rotation alignment has no effort on the
ARW of the gyroscope.

Appendix B.2. Theoretical Proof of the Effects of the Continuous Rotation on the RRW [15]

When the turntable is rotating, the equivalent east gyroscope integration error é6,r caused by the
RRW can be expressed as follows:
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69,5 0 sinwpt coswopt 60, 0
Erx = 0 0 0 Erx + | wey (B4)
éry 0 0 0 Ery Wry
wrx € N(0,0%), wry € N(0,07%)
The matrices A,, B, and q, are:
0 sinwgt coswyt
A, =10 0 0 B, = Ihxo
0 0 0
T (B5)
0 0 0 0 0
qr = E{| wx Wiy =10 (TVZE 0
Wry Wry 0 0 UrZE
The state covariance matrix P, can be calculated by Equation (A6), that is:
i 172 . (72 . 1
202 sin woty & (sin woty 5 (wotn sin woty
7 (tn - wo ) wo wo
0 —wpt cos wyty) + cos woty — 1)
% (sin wot
P, = W 0%n o2ty 0 (B6)
—wqty cos woty)
U’ZE .
Iz t t
o (woty sinwoty, 0 2t
+ coswoty, — 1) |
207 in wot 207
PVE _ rE (tn _ sm wo 7’!) ~ rE tn (B7)
w% wo w%

Compared with Equations (A2) and (A8), Equation (B7) shows that continuous rotation transforms
the RRW into a much small equivalent ARW, which gives an explanation for Figure 5.

When the turntable is rotating, the RMS of azimuth misalignment 0, due to the RRW can be
calculated as follows:

207 (tn — M) sin wt
(= =0 e/ 2(tn — =50
_ (B8)

a, = =
¢or t,Qcos L wotnQ cos L

Assuming the alignment time ¢, is 10 min, the rotation rate of the turntable is 10°/s, the variance
of the RRW is 0.02° /112, the RMS values oy, of the azimuth misalignment due to the RRW can be
obtained based on Equations (A9) and (BS).

When the turntable is not rotating:

_ O/E \/a

Opp, = = 0.020(° B9
¢Dr \/50 COSL ( ) ( )

When the turntable is rotating:

OF Z(t 7sinw0tn)
= VT @0 T 48 % 1074(°) (B10)

. =
¢or wotnQcos L

Thus, the RRW of the gyroscope can be eliminated by continuous rotation alignment.
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Appendix B.3. Theoretical Proof of the Effects of the Continuous Rotation on the Markov Noise

When the turntable is rotating, the equivalent east gyroscope integration error 56,,r caused by the
Markov noise can be expressed as follows:

59m5 0 sinwpt coswot 60, 0
émy | =10 -1 0 emy |+ | Wmx (B11)
: 1
Emy 0 0 -1 Emy Wiy
Wmx € N(0,03,), wmy € N(0,02)
The matrix Ay, By, and qy, is:
. T
0 sinwpt coswpt 0 0 0 0 0
Ay=10 —% 0 By = I3xs qm = E{| wmx Winx }=10 U’ig 0 (812)
0 0 -1 Wiy Wiy 0 0 o2
The state covariance matrix P, can be calculated by Equation (A3), that is:
T (—re ¥ 32+ Pw(l—e F) | | 7
2(1+72wy?)> 0 1 1
; ) P ‘
4272wt + 47 cos wote™ T — 412w sin wote ™ T) | |
PO (14 e ¥ 4 w14 e F) ‘ ' ‘ '
(1+r2w02)2 0 | |
t t ' '
—2¢77 cos wot — 2T%wg2e™ T cos woyt) ‘ !
'":"%2173,’"2: ””” S / +t ”””””””””””
P, — m Twope COS Wy Two COS Wy i T 2 1— _2, i (813)
—e ¥ sinwyt — sinw, t) — TPS'"E<0>(—T¢0 e i 1 20m(1=¢"7) ! *
0TI Tt LT P (0)eF
+e~ @ sinwot + Twpe” @ cos wyt) 1 1
R < S Za T [ [
72(1“2“)02)(726 T ere T cos wot : : T2 3
to. . ! - _
+ cos wot — Twee™ T sinwyt + Twy sin wot) | 0 ! 27m 2
e (0), b o _a : L P, (0)e 7
= (e77 —e™ T coswyt + Twpe™ T sinwyt) | ; |
Pue = %[f’re*% — 37+ 2t + TPwy?(1 — e*%) + 272wy%t + 47 cos wote*% — 472w sinwote*ﬂ
2wy
+%[1 e T +12w2(1+e ) — 2e T cos wot — 272wo2e T cos wot] (B14)
T2Wo
~_ T Y 3,,2(1_ o—2 2,524 1 Peue(0) ~2 2 2 -2
~ 2(1+72w02)2[ Te 3T+ 2t + TPwp?(1 — e 7 ) + 21%wp?t] + o)’ [lT+e 7 +1°wp*(1+e 7))

When the turntable is rotating, the RMS of azimuth misalignment oy, due to the RRW can be
calculated as follows:

PmE(tn)
Ppm = #QcosL
1,2 -2 3en2(1—o— 2 20002 2 0011 E (B15)
T\/EU'W(—TE T —3T+2t+ 3w (1—e7 T ) +272wp?t) +Pe,,  (0) (1+e™ T +T2wp?(1+e7 7))

ty Q) cos L(1+72wy?)

Similar to the theoretical proof of the RRW, assuming the alignment time ¢, is 10 min, the rotation
rate of the turntable is 10° /s, the Markov time constant is 60 s, the variance of the Markov driving
noise is 0.02° /h/+/s, the RMS values 0, of the azimuth misalignment due to the Markov noise can
be obtained based on Equations (A15) and (B15).

When the turntable is not rotating:

11252 -z - 1y, 2y
=T%05 (2t —Te 7 +41te = —31)+ P (0)T(1 —2e" 7" +e 7
.~ VAT )+ P (0)7( ) ome) 6
" t,QcosL
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When the turntable is rotating:

2F 2 2F 2F
. _ T\/%U},,(—Te’? —3T+2t4- 73w (1—e™ T ) +272w02t)+Pe, - (0) (14+¢~ T +12wp2(14¢7 7))
$Dm tyQcos L(1+72wg?) (B17)
— 0.02(°)

Thus, the Markov noise of the gyroscope can be eliminated by continuous rotation alignment.
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