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Abstract: This paper investigates the joint target parameter (delay and Doppler) estimation
performance of linear frequency modulation (LFM)-based radar networks in a Rice fading
environment. The active radar networks are composed of multiple radar transmitters and
multichannel receivers placed on moving platforms. First, the log-likelihood function of the received
signal for a Rician target is derived, where the received signal scattered off the target comprises
of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then,
the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian
coordinates of target position and velocity are calculated, which can be adopted as a performance
metric to access the target parameter estimation accuracy for LFM-based radar network systems in a
Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear
combination of both DS component and WIS components, and it also demonstrates that the joint
CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted
waveform parameters, as well as the relative geometry between the target and the radar network
architectures. Finally, numerical results are provided to indicate that the joint target parameter
estimation performance of active radar networks can be significantly improved with the exploitation
of DS component.

Keywords: Cramer-Rao lower bound (CRLB); Fisher information matrix (FIM); joint parameter
estimation; linear frequency modulation (LFM) signal; Rician target; active radar networks

1. Introduction

1.1. Related Works and Motivation

With widely separated transmitters and receivers, the distributed radar networks, also known as
spatial distributed multiple-input multiple-output (MIMO) radar systems [1–3], can view the target
from different aspect angles and provide spatial and signal diversities. To be specific, for a distributed
radar network system with M transmitters and N receivers, the various transmitter-receiver pairs
observe the different aspects of the target. In this way, we can obtain the equivalent of MN radars
by optimizing the selection of the transmitted signals from different transmitters. However, the
conventional radar observes only single aspect of the target. As we can conclude in [4], the advantage
of the radar network is that the average received energy across all the transmitter-receiver pairs is
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approximately constant, and it overcomes deep fades other than the conventional systems. Therefore,
the radar network systems have attracted considerable attention and on a path from theory to
practice [4–10].

The Cramer-Rao lower bound (CRLB) is an important tool for analyzing the performance of
radar networks, which can provide the smallest variance estimates for any unbiased estimation [11,12].
The mean-square error (MSE) of the maximum likelihood estimator (MLE) is close to the CRLB when
the high signal-to-noise ratio (SNR) is satisfied. It is also worth mentioning that the performance of
multiple signal classification (MUSIC) in computational time-reversal (TR) applications is studied
in [13,14], where the closed-form MSE matrix of TR-MUSIC is calculated for the single-frequency
case in multistatic co-located and non co-located scenarios. Simulation results show that TR-MUSIC
can predict a more accurate MSE than CRLB, while it is a sub-optimal estimator since it does not
asymptotically achieve the CRLB as the MLE. In the last couple of years, there is a growing interest
on the CRLB studies for the target estimation performance of distributed radar networks [11–19].
The authors in [11] derive the analytical expressions of CRLB for both noncoherent mode and
coherent mode in MIMO radar systems, which shows that the CRLB is inversely proportional to the
carrier frequency and signals averaged effective bandwidth. In [12], the problem of target parameter
estimation for noncoherent MIMO radar is addressed, and the joint CRLB of target position and
velocity is computed. Reference [15] further extends the results in [12] to a multiple targets scenario.
Later, He et al. investigate the coherent MIMO radar performance when the oscillators at each
transmitter and receiver are aligned in phase [16]. The work in [17] studies the target localization
accuracy for MIMO radar systems with static phase errors. In [18], the CRLBs of the joint time
delay and Doppler shift estimation are derived for an extended target, and the effects of transmitted
waveform parameters on the CRLBs are analyzed. Assuming that the approximation state of the target
is unknown without previous target detection, a generalized CRLB for distributed active and passive
radar networks is calculated in [19].

Recently, the CRLB has been investigated and applied to passive radar systems that employ
signals of opportunity as illuminators for target detection, estimation and tracking [20–24]. Since
passive radar does not use its own transmitter to radiate electromagnetic wave, it has been a potential
technology for low cost, low probability of intercept (LPI) [25–27], antijamming and other advantages.
The authors in [20] present the CRLB analysis for the joint target estimation of position and velocity in
a frequency modulation (FM) based passive radar networks. In [21–24], the modified CRLB (MCRLB)
is employed as a good alternative to the classical CRLB due to the presence of random parameters in
the transmitted waveforms, which has been shown to offer a looser bound in practical applications.
The target estimation performance of a universal mobile telecommunications systems (UMTS)-based
passive multistatic radar and an orthogonal frequency-division multiplexing (OFDM)-based passive
radar network in a line-of-sight (LoS) environment is analyzed in [23,24] respectively, where the Rician
target model is composed of two components, that is, fixed amplitude or dominant scatterer (DS)
and weak isotropic scatterers (WIS). It is shown that the target estimation accuracy will be increased
with an increase in reflection coefficient, number of transmitter-receiver pairs, the choice of the
transmitter-receiver pairs and duration time. Furthermore, the work in [28] proposes two transmitter
of opportunity selection algorithms for FM-based passive radar network systems, which are formulated
as knapsack problems (KPs) and tackled with greedy selection approaches. On the basis of the research
mentioned above, almost all of previous works focus on stationary platforms. The CRLB analysis for
joint moving target position and velocity estimation of linear frequency modulation (LFM) based active
radar networks with sensors placed on moving platforms operating in a Rice fading environment,
which has not been considered, needs to be investigated.

1.2. Major Contributions

The major contributions of this paper are fourfold:
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(1) We formulate the linear frequency modulation (LFM) signal model and derive the log-likelihood
function of the received signal for a Rician target. The Rician target model is composed of
DS component and WIS components, which are the signals received after striking from the
target [21,22]. It is worth pointing out here that [15,16,27] only study the target parameter
estimation accuracy limits either when the target’ radar cross section (RCS) observes as a Rayleigh
model in a non-coherent scenario or the target is modeled as a point target in a coherent scenario
for all the transmitter-receiver pairs [23]. While utilizing a Rician target model, the estimation
performance can be generalized and evaluated when the target has different RCS models for
different transmitter-receiver pairs.

(2) On the basis of the previous works [15–24,29], almost all the studies concentrate on stationary
platforms. In this paper, we build an LFM-based active radar network configuration and extend it
to a more general case, which consist of multiple radar transmitters and multichannel receivers
placed on moving platforms. On the other hand, only the CRLBs for LFM-based bistatic radar
channels are computed in [29]. To the best of our knowledge, the CRLB for an LFM-based radar
network has not been derived. Thus, the joint CRLB for position and velocity estimation of a Rician
target in LFM-based radar networks is computed, where we assume that the signals scattered off
the target due to different radar transmitters can be received and separated at the receivers. The
cumulative Fisher information matrix (FIM) can be factored into two terms: one term accounting
for the effect of the DS component, and another incorporating the effect of the WIS components.

(3) Simulation results have shown that the DS component can be exploited to decrease the target
parameter estimation errors, which is due to the fact that the reception of DS component increases
the received SNR at the radar receiver. Previous results in [20,29] only show that the CRLB is
a function of the signal parameters as well as the geometry between the target and the radar
network architecture. In this paper, the effects of SNR and target’s RCS on the target parameter
estimation performance are also analyzed. It is demonstrated that the joint CRLB is not only a
function of SNR, target’s RCS and transmitted waveform parameters, but also a function of the
geometry between the target and the active radar network systems.

(4) The closed-form expressions of CRLB can be used as a performance metric to access the target
estimation performance for LFM-based active radar networks in a Rice fading environment.
Since the DS component can be exploited to increase the received SNR at the receiver,
the geometry-dependent CRLB analysis will open up a new dimension for active radar network
systems by aiding the optimal power allocation for radar networks to achieve a given estimation
requirement with the minimum system cost.

1.3. Outline of the Paper

The rest of the paper is organized as follows. Section 1 describes the signal model for LFM-based
radar networks. In Section 2, the joint CRLB is computed for target position and velocity estimation by
deriving the closed-form expressions of FIM. The numerical simulations are provided to demonstrate
our analytical results in Section 3. Finally, conclusion remarks are drawn with potential future work in
Section 4.

Notation: The superscript T represents the transpose operator; E{·} and (·)∗ represent the
expectation and conjugation operators, respectively. | · | denotes the absolute value, <{·} is the real
part, and ={·} is the imaginary part. Si( f ) denotes the Fourier transform of si(t).

2. Signal Model

Consider a active radar network architecture comprising of NT radar transmitters and NR

multichannel receivers. Let the ith radar transmitter and the jth receiver be located at
−→
pt

i = [xt
i , yt

i ] and
−→
pr

j = [xr
j , yr

j ] respectively, in a 2-dimensional Cartesian coordinate system for simplicity. The target
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position and velocity are supposed to be deterministic unknown and denoted by −→p = [x, y] and
−→v = [vx, vy]. We define the unknown target state vector:

U = [x, y, vx, vy]
T . (1)

Without loss of generality, we will concentrate on a single target scenario. However, the results
can be extended to multiple targets.

Let τij represent the bistatic time delays corresponding to the path between the ith radar
transmitter, moving target, and the jth radar receiver, which is a function of the unknown target
position −→p = [x, y]:

τij =

√
(x−xt

i )
2+(y−yt

i )
2+
√
(x−xr

j )
2+(y−yr

j )
2

c

=

∥∥∥∥−→p −−→pt
i

∥∥∥∥+∥∥∥−→p −−→pr
j

∥∥∥
c ,

(2)

where c is the speed of light,
∥∥∥−→p −−→pt

i

∥∥∥ denotes the distance from the ith radar transmitter to the

target and
∥∥∥−→p −−→pr

j

∥∥∥ denotes the distance from the target to the jth receiver, respectively. In this paper,

the ith radar transmitter and the jth multichannel receiver are moving with velocities
−→
vt

i = [vt
x,i, vt

y,i]

and
−→
vr

j = [vr
x,j, vr

y,j], respectively. With the aforementioned positions/velocities of the target, the radar
transmitters and receivers, the Doppler shift of the moving target corresponding to the ijth path is the
time rate of change of the total ijth path length:

fDij =
1
λ

∂
∥∥∥−→p −−→pt

i

∥∥∥
∂t

+
∂
∥∥∥−→p −−→pr

j

∥∥∥
∂t

 , (3)

where λ denotes the carrier wavelength,
∂

∥∥∥∥−→p −−→pt
i

∥∥∥∥
∂t and

∂
∥∥∥−→p −−→pr

j

∥∥∥
∂t are the relative velocities for the ith

radar transmitter and the jth receiver, respectively. Then, we have:

fDij = 1
λ

vx

 x−xt
i∥∥∥∥−→p −−→pt
i

∥∥∥∥ +
x−xr

j∥∥∥−→p −−→pr
j

∥∥∥
+ 1

λ

vy

 y−yt
i∥∥∥∥−→p −−→pt
i

∥∥∥∥ +
y−yr

j∥∥∥−→p −−→pr
j

∥∥∥


+ 1
λ

vt
x,i

x−xt
i∥∥∥∥−→p −−→pt
i

∥∥∥∥ + vt
y,i

y−yt
i∥∥∥∥−→p −−→pt
i

∥∥∥∥
+ 1

λ

[
vr

x,j
x−xr

j∥∥∥−→p −−→pr
j

∥∥∥ + vr
y,j

y−yr
j∥∥∥−→p −−→pr
j

∥∥∥
]

,

(4)

which is a function of the unknown target position −→p = [x, y] and velocity −→v = [vx, vy].
The LFM signal transmitted by the ith radar transmitter is given by [29]:

si(t) =
1√
N

N−1

∑
n=0

ui(t− nTR), (5)

where

ui(t) =


1
T

ejπkt2
, |t| ≤ T

2 , (6a)

0, elsewhere (6b)

N is the number of subpulses for each transmitted burst, TR is the pulse repetition interval (PRI)
and T is the duration of each pulse, such that T < TR/2. Moreover, kT2 = BT represents the effective
time-bandwidth product of the signal and B denotes the total frequency derivation. Note that each
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transmitter-receiver pair has its own angle of view for the target because of the widely spaced antennas
that leads to different attenuation factors [20]. It is assumed that the signals from different radar
transmitters are supposed to be received and processed at the multichannel radar receivers. For a
Rician target, it consists of a DS and many independent WIS. In this paper, by utilizing the Rician target
model [23], the reflection coefficient ζij is modeled as a complex Gaussian random variable with mean
dij and variance σ2, i.e., ζij ∼ CN (dij, σ2). Then, the signal from the ith radar transmitter arriving at
the jth receiver can be expressed as:

rij(t) = ζijsi(t− τij)e
j2π fDij

(t−τij) + wij(t), (7)

where wij(t) denotes the additive zero-mean white Gaussian noise of variance corresponding to the
ijth path, i.e., wij ∼ CN (0, σ2

n), which is independent to ζij. We assume that the parameters dij, σ2 and
σ2

n are deterministic and known.
Following the concepts and derivations in [12,23], the likelihood ratio of the ijth

transmitter-receiver pair can be given by:

Λ(rij(t); U) = exp

{
σ2

σ2+σ2
n

∣∣∣∫ +∞
−∞ rij(t)s∗i (t− τij)e

−j2π fDij
(t−τij)dt

∣∣∣2
− 1

σ2+σ2
n

∣∣∣∫ +∞
−∞ arij s

∗
i (t− τij)e

−j2π fDij
(t−τij)dt

∣∣∣2
+ 2

σ2+σ2
n
<
[∫ +∞
−∞ rij(t)s∗i (t− τij)e

−j2π fDij
(t−τij)dt

×d∗rij
si(t− τij)e

j2π fDij
(t−τij)dt

]}
+
(

σ2
n

σ2+σ2
n

)
,

(8)

where drij represents the mean of the received signal rij(t), i.e., drij = dijsi(t − τij)e
j2π fDij

(t−τij).
Furthermore, the log-likelihood ratio is written as:

L(rij(t); U) = σ2

σ2+σ2
n

∣∣∣∫ +∞
−∞ rij(t)s∗i (t− τij)e

−j2π fDij
(t−τij)dt

∣∣∣2
− 1

σ2+σ2
n

∣∣∣∫ +∞
−∞ drij s

∗
i (t− τij)e

−j2π fDij
(t−τij)dt

∣∣∣2
+ 2

σ2+σ2
n
<
{∫ +∞
−∞ rij(t)s∗i (t− τij)e

−j2π fDij
(t−τij)dt

×d∗rij
si(t− τij)e

j2π fDij
(t−τij)dt

}
+ ln

(
σ2

n
σ2+σ2

n

)
.

(9)

Due to the fact that the radar transmitters and receivers are widely separated, the received
signals rij(t) are mutually independent for different transmitter-receiver pairs. Therefore, the joint
log-likelihood ratio across all the transmitter-receiver pairs can be written as the sum of all single
transmitter-receiver pair log-likelihood ratios:

L(r(t); U) = ∑NT
i=1 ∑NR

j=1 L(rij(t); U)

= ∑NT
i=1 ∑NR

j=1(Γ
1
ij − Γ2

ij + Γ3
ij) +C,

(10)

where r(t) =
[
r11(t), r12(t), · · · , rNT NT (t)

]T is the observed signals from the entire set of the
receivers. Γ1

ij, Γ2
ij and Γ3

ij denote the first, second and third terms in (9), respectively. The constant
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C = ∑NT
i=1 ∑NR

j=1 ln
(

σ2
n

σ2+σ2
n

)
is independent of the target state vector U. Therefore, the MLE of the

unknown target state vector U can be expressed as:

ÛML = arg maxU L(r(t); U)

= arg maxU ∑NT
i=1 ∑NR

j=1 L(rij(t); U)

= arg maxU ∑NT
i=1 ∑NR

j=1(Γ
1
ij − Γ2

ij + Γ3
ij),

(11)

where ÛML represents the MLE of the unknown parameter vector U.

3. Derivation of Joint Cramer-Rao Lower Bound

It is discussed in [12,16] that the CRLB indicates the smallest variance estimate of any unbiased
estimate, which can be adopted as a performance metric in parameter estimation problems because that
the CRLB is close to the MSE of the MLE when the high SNR is satisfied. Using the derivations in [12,21],
the FIM is a 4× 4 matrix related to the second-order derivatives of the joint log-likelihood function:

J(U) = (5UQT)J(Q)(5UQT)T

= (5UQT)
(
−Er(t);U{5Q[5QL(r(t); U)]T}

)
(5UQT)T ,

(12)

where we define Q as an alternative representation of the unknown parameter vector:

Q =
[
τij, fDij

]T
(∀i, j). (13)

We first derive the Jacobian matrix (5UQT), whose entries can be obtained by taking the
first-order derivatives of the time-delays in (2) and the Doppler shifts in (4) with respect to
target positions:

∂τij

∂x
≡ 1

c

 x− xt
i∥∥∥−→p −−→pt
i

∥∥∥ +
x− xr

j∥∥∥−→p −−→pr
j

∥∥∥
 , (14)

∂τij

∂y
≡ 1

c

 y− yt
i∥∥∥−→p −−→pt
i

∥∥∥ +
y− yr

j∥∥∥−→p −−→pr
j

∥∥∥
 , (15)

∂ fDij
∂x ≡ 1

λ

vx

 (y−yt
i )

2∥∥∥∥−→p −−→pt
i

∥∥∥∥3 +
(y−yr

j )
2∥∥∥−→p −−→pr

j

∥∥∥3

+ vy

− (x−xt
i )(y−yr

j )∥∥∥∥−→p −−→pt
i

∥∥∥∥3 −
(x−xr

j )(y−yr
j )∥∥∥−→p −−→pr

j

∥∥∥3


+

[
vt

x,i
(y−yt

i )
2

‖−→p −
−→
pt

i ‖3
− vt

y,i
(x−xt

i )(y−yt
i )

‖−→p −
−→
pt

i ‖3

]
+

[
vr

x,j
(y−yr

j )
2

‖−→p −
−→
pr

j ‖3
− vr

y,j
(x−xr

j )(y−yr
j )

‖−→p −
−→
pr

j ‖3

]}
,

(16)

∂ fDij
∂y ≡ 1

λ

vx

− (x−xt
i )(y−yr

j )∥∥∥∥−→p −−→pt
i

∥∥∥∥3 −
(x−xr

j )(y−yr
j )∥∥∥−→p −−→pr

j

∥∥∥3

 + vy

 (x−xt
i )

2∥∥∥∥−→p −−→pt
i

∥∥∥∥3 +
(x−xr

j )
2∥∥∥−→p −−→pr

j

∥∥∥3


+

[
−vt

x,i
(x−xt

i )(y−yt
i )

‖−→p −
−→
pt

i ‖3
+ vt

y,i
(x−xt

i )
2

‖−→p −
−→
pt

i ‖3

]
+

[
−vr

x,j
(x−xr

j )(y−yr
j )

‖−→p −
−→
pr

j ‖3
+ vr

y,j
(x−xr

j )
2

‖−→p −
−→
pr

j ‖3

]}
,

(17)

Similarly, the derivatives with respect to the target velocities can be calculated as:

∂τij

∂vx
≡ 0, (18)
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∂τij

∂vy
≡ 0, (19)

∂ fDij

∂vx
≡ 1

λ

 x− xt
i∥∥∥−→p −−→pt
i

∥∥∥ +
x− xr

j∥∥∥−→p −−→pr
j

∥∥∥
 , (20)

∂ fDij

∂vy
≡ 1

λ

 y− yt
i∥∥∥−→p −−→pt
i

∥∥∥ +
y− yr

j∥∥∥−→p −−→pr
j

∥∥∥
 . (21)

After lengthy algebraic derivations, the FIM J(Q) can be correspondingly expressed by:

J(Q) = −Er(t);U{[5QL(r(t); U)][5QL(r(t); U)]T}
= −Er(t);U{5Q[5QL(r(t); U)]T}

= ∑NT
i=1 ∑NR

j=1
8π2σ4

σ2
n(σ2+σ2

n)

[
1 + 2hij +

2hij

(σ2/σ2
n)

]
×
[

εi γij
γij ηij

]
,

(22)

where the terms εi, ηij, and γij are dependent on the radar waveforms, which can be calculated as:

εi ≡
∫ +∞
−∞ f 2 |Si( f )|2 d f −

∣∣∣∫ +∞
−∞ f |Si( f )|2 d f

∣∣∣2
= 1

3 π2k2T2,
(23)

ηij ≡
∫ +∞
−∞ t2 |si(t)|2 d f −

∣∣∣∫ +∞
−∞ t |si(t)|2 d f

∣∣∣2
= 1

12 T2 + 1
12 T2

R(N2 − 1),
(24)

γij ≡ =
{∫ +∞
−∞ ts∗i (t)

∂si(t)
∂t dt

}
−
∫ +∞
−∞ t|si(t)|2dt

∫ +∞
−∞ si(t)

∂s∗i (t)
∂t dt

= − 1
6 kπT2.

(25)

The derivation of J(Q) is provided in Appendix A. Then, we can write the final expression for
total FIM across all the transmitter-receiver pairs as:

J(U) =
NT

∑
i=1

NR

∑
j=1

8π2σ4

σ2
n(σ

2 + σ2
n)

[
1 + 2hij +

2hij

(σ2/σ2
n)

]
Jij(U). (26)

The expressions for the elements of the bistatic FIM Jij(U) corresponding to the ijth transceiver
pair are given in Appendix B. The CRLB for the joint position and velocity estimation of a Rician target
can be obtained by taking inverse of FIM in (26), i.e.,

CRLB(U) = J−1(U). (27)

Remark 1. It is obvious that the final expression of FIM in (26) is a linear combination of FIMs due to DS
component and WIS components [23]. In this paper, one of our goals is to increase the SNR value at the
radar receiver by employing the DS component, which leads to lower radar transmit power and better target
estimation performance.

Remark 2. From (26) and (27), we can observe that the MCRLB depends on a number of factors. It not only
depends on the relative geometry between the target and the radar networks, but also depends on the transmitted
LFM waveform parameters such as the duration of each pulse and bandwidth. In addition, it shows dependence
on the target’s RCS and the SNR.
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4. Simulation Results

In the following, numerical results are dedicated to compute the joint CRLB for active active radar
networks as well as reveal the effects of several factors on the CRLB.

For numerical simulations, we consider a radar network with five active radar transmitters and
an equal number of multichannel receivers, i.e., NT = 5 and NR = 5. The Cartesian coordinates of
their positions are provided in Figure 1. The position/moving parameters of the radar transmitters
are shown in Table 1. The receivers are co-located with the corresponding transmitters and have the
same velocities. It is assumed that the target is located at [6000, 6000] m with velocity [30, 50] m/s.
For simulation parameters, we set the LFM signal parameters as follows [29]: the number of subpulses
N = 256, the bandwidth B = 50 MHz, the duration of each pulse T = 1 µs, the PRI TR = 0.1 ms,
and the carrier wavelength λ = 0.03 m.

−1000 0 1000 2000 3000 4000 5000 6000 7000
−1000

0

1000

2000

3000

4000

5000

6000

7000

X position[m]

Y
 p

os
iti

on
[m

]

 

 
Radar transmitter
Radar receiver
Target

(10, 70) m/s

(40, 40) m/s

(60, 50) m/s

(80, 20) m/s
(30, 50) m/s

(30, 50) m/s

Figure 1. Target and radar networks configuration used in the numerical simulations.

Table 1. Location and Moving Parameters of the Radar Transmitters.

Transmitter Index Locations [m] Velocities [m/s]

Transmitter 1 [3000, 1000] [30, 50]
Transmitter 2 [5000, 2000] [10, 70]
Transmitter 3 [2000, 4000] [80, 20]
Transmitter 4 [0, 2000] [60, 50]
Transmitter 5 [5000, 0] [40, 40]

Define the SNR as:

SNR = 10log
(

σ2

σ2
n

)
. (28)

Without loss of generality, we assume that the reflection coefficients are the same for all
transmitter-receiver pairs, i.e., hij = h. In Figures 2 and 3, the MSE curves are plotted versus SNR in
the x-dimension and y-dimension of target position with different h. Solid and dashed curves show the
CRLBs and the MSE curves of the ML estimation, respectively. As indicated in [12], it can be observed
that the MSE is close to the CRLB in value and slope at an SNR threshold, see the green arrows in
the figures. Similarly, we depict the MSE curves of target velocity against SNR in Figures 4 and 5.
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From Figures 2–5, we can notice that as the value of SNR goes up, the MSE decreases for both target
position and velocity estimates.

In addition, it should be pointed out that the CRLB decreases significantly with an increase in h.
This is due to the fact that an increase in h provides a rise in target RCS [23], which leads to the
increase in the received SNR at the radar receiver. The CRLB will achieve a maximum value when
DS component does not exist, i.e., h = 0, where the target RCS follows Rayleigh fluctuations in a
non-coherent mode for all the transmitter-receiver pairs. In contrast, the CRLB will be minimum at an
asymptotic limit, i.e., h→ ∞, and the target is idealistically a point target in a coherent mode, which
has a fixed amplitude RCS value for all the transmitter-receiver pairs. For the rest of the other cases,
the CRLB lies in between these two values [23].
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Figure 2. MSE versus SNR for x-dimension of target position with different h.
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Figure 3. MSE versus SNR for y-dimension of target position with different h.
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Figure 4. MSE versus SNR for x-dimension of target velocity with different h.

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR[dB]

M
SE

 

 

CRLB for vy (h=0)
CRLB for vy (h=1)
CRLB for vy (h=3)
CRLB for vy (h=10)
MLE for vy (h=0)
MLE for vy (h=1)
MLE for vy (h=3)
MLE for vy (h=10)

Figure 5. MSE versus SNR for y-dimension of target velocity with different h.

Furthermore, we change the location of the target to different positions to investigate the effects
of the geometry between the target and the radar networks. In Figures 6–9, we show the CRLBs for
both target position and velocity in different position when SNR = 0 dB, h = 3. From these results,
we can observe that the CRLBs on the Cartesian coordinates of target position and velocity are different
when the target is in different positions. This is because the geometry between the target and the radar
network systems impacts the derivatives of the delay-Doppler terms with respect to the Cartesian
coordinates significantly [20,23].
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Figure 6. CRLB for x-dimension of target position in different position when SNR = 0 dB, h = 3.

Figure 7. CRLB for y-dimension of target position in different position when SNR = 0 dB, h = 3.
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Figure 8. CRLB for x-dimension of target velocity in different position when SNR = 0 dB, h = 3.

Figure 9. CRLB for y-dimension of target velocity in different position when SNR = 0 dB, h = 3.

In Figure 10, we depict the square root of CRLBs (RCRLBs) for target position coordinates against
the duration time of each pulse T and bandwidth B at 0 dB with different h. One can notice that
the RCRLBs reduce as the waveform parameters increase, confirming that a waveform with a larger
time-bandwidth product can provide better target estimation performance. It is worth mentioning
that the figures of target velocity are omitted for the sake of brevity, which are similar to the figures of
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target position. Overall, it can be concluded that the CRLB shows dependence on the SNR, target’s
RCS, geometry and waveform parameters.
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Figure 10. RCRLB in the target position dimensions versus waveform parameters when SNR = 0 dB
with different h: (a) T; (b) B.

5. Conclusions

In this paper, we examined the problem of moving target parameter estimation for active radar
network systems with sensors on moving platforms in a Rice fading environment, which consist of
multiple radar transmitters and multichannel receivers. The CRLB for joint position and velocity
estimation of a Rician target has been derived. It should be noted that the cumulative FIM is a linear
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combination of both DS component and WIS components. Numerical examples have been provided
to demonstrate that the joint target parameter estimation accuracy of active radar networks can be
significantly improved with the exploitation of the DS component. Furthermore, it is shown that the
joint CRLB is a function of the transmitted waveforms as well as the geometry between the target and
the radar networks. Also, it depends on the SNR and target’s RCS. In future work, we will utilize this
framework to investigate the problem of optimal power allocation of the radar networks in a Rice
fading environment.
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Appendix A. The Derivation of FIM J(Q)

We have:

Γ1
ij =

σ2

σ2 + σ2
n

∣∣∣∣∫ +∞

−∞
rij(t)s∗i (t− τij)e

−j2π fDij
(t−τij)dt

∣∣∣∣2 . (A1)

Let us suppose ξij =
∫ +∞
−∞ rij(t)s∗i (t− τij)e

−j2π fDij
(t−τij)dt, then the first derivative with respect to

τij is given by:
∂Γ1

ij
∂τij

= σ2

σ2+σ2
n

(
ξ∗ij

∂ξij
∂τij

+ ξij
∂ξ∗ij
∂τij

)
= 2σ2

σ2
n(σ2+σ2

n)
×<

(
ξij
∫ +∞
−∞ r∗ij(t)

∂si(t−τij)

∂τij
e

j2π fDij
(t−τij)

)
.

(A2)

To compute the expectation with respect to the second-order derivative, we have:

−E
(

∂2Γ1
ij

∂τ2
ij

)
= −

2σ2(σ2+d2
ij)

σ2+σ2
n
×E

[
<
(∣∣∣∫ +∞

−∞ si(t− τij)
∂s∗i (t−τij)

∂τij
dt
∣∣∣2

+
∫ +∞
−∞ |si(t− τij)|2dt

∫ +∞
−∞ s∗i (t− τij)

∂2si(t−τij)

∂τ2
ij

dt
)]

.
(A3)

With the derivations in [29,30], hence we obtain:

−E
(

∂2Γ1
ij

∂τ2
ij

)
=

8π2σ4

σ2
n(σ

2 + σ2
n)

(1 + 2hij)εi, (A4)

where hij = |dij|2/(2σ2).
To calculate the expectation with respect to other second-order derivatives, we follow the same

procedure and arrive at the following closed form expression:

−E

 ∂2Γ1
ij

∂ f 2
Dij

 =
8π2σ4

σ2
n(σ

2 + σ2
n)

(1 + 2hij)ηij. (A5)
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The off-diagonal terms can be obtained as:

−E
(

∂2Γ1
ij

∂τij∂ fDij

)
=

8π2σ4

σ2
n(σ

2 + σ2
n)

(1 + 2hij)γij. (A6)

Following the same lines, we can get the expectation of second-order derivatives of Γ2
ij and Γ3

ij
as follows:

−E
(

∂2Γ2
ij

∂τ2
ij

)
=

8π2σ4

σ2
n(σ

2 + σ2
n)

(
−

2hij

σ2/σ2
n

)
εi, (A7)

−E

 ∂2Γ2
ij

∂ f 2
Dij

 =
8π2σ4

σ2
n(σ

2 + σ2
n)

(
−

2hij

σ2/σ2
n

)
ηij, (A8)

−E
(

∂2Γ2
ij

∂τij∂ fDij

)
=

8π2σ4

σ2
n(σ

2 + σ2
n)

(
−

2hij

σ2/σ2
n

)
γij, (A9)

−E
(

∂2Γ3
ij

∂τ2
ij

)
=

8π2σ4

σ2
n(σ

2 + σ2
n)

(
4hij

σ2/σ2
n

)
εi, (A10)

−E

 ∂2Γ3
ij

∂ f 2
Dij

 =
8π2σ4

σ2
n(σ

2 + σ2
n)

(
4hij

σ2/σ2
n

)
ηij, (A11)

−E
(

∂2Γ3
ij

∂τij∂ fDij

)
=

8π2σ4

σ2
n(σ

2 + σ2
n)

(
4hij

σ2/σ2
n

)
γij. (A12)

Appendix B. The Elements of FIM Jij(U)

The elements of the symmetric FIM Jij(U) corresponding to the ijth transmitter-receiver pair are
given by:

J11
ij (U) =

k2π2T2

3

(
∂τij

∂x

)2

− kπT2

3

(
∂τij

∂x

)(
∂ fDij

∂x

)
+

1
12

[
T2 + TR(N2 − 1)

] (∂ fDij

∂x

)2

, (B1)

J12
ij (U) = J21

ij (U) =

{
k2π2T2

3

(
∂τij
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)
− kπT2

6

(
∂ fDij

∂x

)}(
∂τij
∂y

)
+

{
− kπT2

6

(
∂τij
∂x

)
+ 1

12
[
T2 + TR(N2 − 1)

] ( ∂ fDij
∂x

)}(
∂ fDij
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)
,

(B2)

J13
ij (U) = J31

ij (U) =
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6

(
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1
12

[
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∂x

)}(
∂ fDij

∂vx

)
, (B3)

J14
ij (U) = J41
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(
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)
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1
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[
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J23
ij (U) = J32
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