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Abstract: In recent years, with the emergency of high precision inertial sensors (accelerometers and
gyros), gravity compensation has become a major source influencing the navigation accuracy in
inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary
results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel
gravity compensation method for high-precision INS, which estimates the gravity disturbance on
the track using the extreme learning machine (ELM) method based on measured gravity data on the
geoid and processes the gravity disturbance to the height where INS has an upward continuation,
then compensates the obtained gravity disturbance into the error equations of INS to restrain the
INS error propagation. The estimation accuracy of the gravity disturbance data is verified by
numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved
by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas,
respectively. To further validate the proposed gravity compensation method, field experiments with
an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area
and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity
compensation method can significantly improve the positioning accuracy. During the 2-h field
experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2,
when the navigation scheme is compensated by the proposed gravity compensation method.

Keywords: gravity compensation; error modelling; extreme learning machine (ELM); high
precision free-INS

1. Introduction

Precise navigation is an essential factor of modern carriers. Nowadays, most modern vehicles
and aircraft depend on the Global Positioning System (GPS) for position update as they navigate. GPS
utilizes the signals from navigation satellites to realize high precision locating. However, normally,
GPS cannot work when the satellite signals are not available due to physical blockage, such as inside
a cave or under water. The inertial navigation system utilizes the laws of Newtonian physics to
realize autonomous navigation worldwide in all weather conditions. Due to INS’s inherent character,
it can overcome the disadvantages of GPS and widely serve in all branches of military and many civil
applications [1,2].

With the rapid improvement of the inertial instruments (accelerometers and gyros), gravity
compensation in INS has already become an important way to further improve the navigation accuracy.
Estimating the gravity field for navigation with INS is known as gravity compensation. In other words,
it uses the position provided by INS to estimate the gravity disturbance vector δg [3].
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To achieve high accuracy for INS navigation, there are mainly three feasible ways for gravity
compensation [4]. First, the traditional method obtains the gravity disturbance on the trajectory using
a gravitational gradiometer that senses the gradient of the potential field [5]. This case depends on
augmenting the INS with a sensitive instrument that has a long history of technology development,
but very little operational experience. The second method is to use existing gravity field models
(like DQM2000, GFZ97, EGM2008, etc.) and perform compensation on the location results directly by
calculating the position errors with the gravity disturbance given [6]. However, the accuracy of these
models cannot satisfy the requirements of high precision INS, especially in rough topography, such as
mountains, plateaus and oceanic trenches [7]. The third way is to obtain the gravity disturbance using
the interpolation method based on measured gravity data on the geoid, then to process the gravity
disturbance to the height where INS has an upward continuation [4,8]. In recent years, the most
popular interpolation methods used in the geodetic and geophysical communities have been the
inverse distance weighted (IDW) interpolation method and the bilinear interpolation method [9,10].
A relationship exists between the position point, and the value of gravity data is different in different
areas: linearity in a plain area; nonlinearity in a rough topological area. The above two interpolation
methods can achieve a high accuracy when applied in a plain area, yet have bad performance for areas
where fierce gravity variation exists, especially in rugged mountain regions. In this paper, a novel
gravity disturbance estimation method that uses extreme learning machine (ELM) is proposed to solve
this problem. ELM has extensive applications because of its simple structure and mature technology.
It provides a new approach for the nonlinear approximation. This motivates this paper to apply
ELM to estimate the gravity disturbance on the trajectory [11]. The ELM-based gravity disturbance
estimation algorithm is utilized in the training process to establish the prediction model, with the
carrier position (longitude and latitude) that the INS provided as input and the gravity disturbance on
the geoid as output, then processes the obtained gravity disturbance to the height (provided by the
altimeter) where INS has an upward continuation [12,13]. Finally, the estimated gravity disturbance
on the trajectory is compensated in the INS error equations incorporated with gravity disturbance to
restrain the error propagation in INS. In this paper, numerical tests and field experiments were carried
out to verify the accuracy and effectiveness of the proposed gravity compensation method.

The paper is organized as follows: in Section 2, the error analysis of the INS solution incorporated
with gravity disturbance is proposed; in Section 3, a brief review of the artificial neural network
(ANN) is introduced; in Section 4, the theory and framework of the ELM-based gravity disturbance
compensation method are proposed; in Section 5, the numerical tests are designed to prove the accuracy
and superiority of ELM-based gravity disturbance estimation method; in Section 6, field experiments
in a city area and a mountain area are presented. Finally, Section 7 concludes the paper.

2. Error Analysis of INS Solution Considering Gravity Disturbance

2.1. Definition of Gravity Disturbance Vector

The gravity disturbance vector is the vector difference between the actual gravity and the normal
gravity on the same point in space (Figure 1). It is divided into two parts: the tangential component
(vertical deflection) and the orthogonal component (gravity anomaly) [14].

In Figure 1, n is the plumb line on the geoid and perpendicular to the geoid, n’ is the ellipsoidal
normal on the reference ellipsoid and perpendicular to the reference ellipsoid. Suppose the gravity
vector gp and the normal gravity vector γp are at the same point P. The gravity disturbance vector δg is
defined as their difference:

δg = gP − γP (1)

gP and γp are different in value and direction. The angle between the projection of gP on the north plane
and γp is defined as ζ, and the angle between the projection of gP on the east plane and γp is defined
as η. ζ and η together are defined as deflections of the vertical (DOVs), as shown in Figure 2 [14].
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In Equation (3), 0  is the value of normal gravity. 

2.2. INS Error Equations Considering Gravity Disturbance 

The INS error equations when incorporated with gravity disturbance can be defined  
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Figure 1. Description of the gravity disturbance vector.
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δg = [∆gE∆gN∆gU ] (2)

The gravity disturbance δg can be decomposed into Cartesian coordinate system: in the east
direction, it is ∆gE; in the north direction, it is ∆gN ; and in the vertical direction, it is ∆gU . In the
gravity database, the gravity anomaly (∆gU) and DOVs (ζ, η) are given. ∆gN and ∆gE are calculated
by the following equation: {

∆gN = −γ0ζ

∆gE = −γ0η
(3)

In Equation (3), γ0 is the value of normal gravity.

2.2. INS Error Equations Considering Gravity Disturbance

The INS error equations when incorporated with gravity disturbance can be defined as
follows [15,16]:

δ
.

V
n
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.
φ = φ×ωn

in + δωn
in − Cn

b (δKG + δG)ωb
ib + εn (6)

where Vn is the velocity in the navigation frame, δVn is the velocity error in the navigation frame,

δ
.

V
n

is the differential form of δVn, φn is the attitude error, f n is the specific force expressed in the
navigation frame, Cn

b is a direction cosine matrix used to transform the body acceleration vector
into the navigation frame, δKA and δA are the scale coefficient error and the installation angle error
of the accelerometer, respectively, ∇n is the accelerometer bias expressed in the navigation frame,
δgn is the gravity disturbance in the navigation frame, L, λ, h are the current latitude, longitude and
altitude of the body, δL, δλ, δh denote the latitude error, longitude error and altitude error, respectively,
δ

.
L, δ

.
λ, δ

.
h are the differential forms of δL, δλ, δh, δVN , δVE, δVU are the velocity errors of the north,

east and vertical directions, respectively, RM and RN denote the meridian radius and prime vertical
radius, respectively, δKG and δG are the scale coefficient error and installation angle error of the gyro,
respectively, and εn is the gyro drift in the navigation frame; δωn

in can be expressed as follows:

δωn
in = δωn

ie + δωn
en (7)

where ωn
ie and ωn

en are the Earth’s rotation rate and the navigation frame’s rotation with respect to the
Earth, respectively; both are expressed in the navigation frame. Their computational formulas are
defined as follows:

δωn
en =


− δVN

RM+h
δVE

RN+h
δVEtan L

RN+h + δL VEsec2 L
RN+h

 (8)

δωn
ie = [0 − δLωiesin L δLωiecos L]T (9)

From Equation (4) to Equation (9), we can see that the accelerometer’s output error
(δKA + δA) f n +∇n, velocity error δVn and gravity disturbance δgn are the main error sources causing
INS velocity error δVn. The position errors of INS are mainly caused by velocity error δVn and the
coupling error between velocity and position.

According to the above analysis, gravity disturbance δgn firstly influences INS velocity accuracy
through Equation (4) and then affects INS position and attitude accuracy by Equations (5) and (6).
With the high-precision inertial sensors being available, errors due to gravity disturbance are equal to
or even more than the errors caused by inertial sensors, so the influence of gravity disturbance on INS
cannot be ignored and must be compensated to further improve the navigation accuracy of INS.

To better illustrate the effect of gravity disturbance on INS error propagation, we calculated
INS north position errors caused by different values of north-south gravity vertical deflection ζ as
an example using Equation (5); the results are shown in Table 1 and Figure 3.

From Table 1 and Figure 3, we can draw the conclusion that the position error of the north channel
caused by gravity disturbance presents periodic variation on the Schuler cycle (about 84.4 min), and the
amplitude is proportional to the value of the horizontal component of gravity disturbance. Therefore,
the effect of gravity disturbance for high-precision INS cannot be ignored, and effective measures must
be taken to compensate it for achieving a better navigation solution of INS.

Table 1. The north component of gravity and the amplitude of the north position error corresponding
to the gravity vertical deflection.

ζ = 2 s ζ = 8 s ζ = 15 s ζ = 25 s ζ = 35 s

∆gN (m Gal *) 9 38 71 118 166
North position error (m) 117 494 923 1534 2160

* 1 m Gal = 1 × 10−5 m/s2.
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3. Brief Review of Artificial Neural Networks

Nowadays, artificial neural networks (ANNs) have been widely used in most areas. ANNs are
computational models that simulate the process of the human brain, and the structure of an artificial
neuron is much simpler than a biological neuron. A neural network includes a large number of
inter-connected neurons in the input and hidden layers that join to all neurons in the output layer
(which is called a full synapse network). Each neuron can do some simple computation, such as
summation, subtraction and multiplication. Figure 4 presents the structure of an artificial neural
network [17–19].Sensors 2016, 16, 2019 6 of 15 
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Figure 4. Structure of an artificial neural network.

In Figure 4, X1 · · ·XN and O1 · · ·OL are the input and output of the artificial neural network,
respectively; α1 · · · αN are the neuron nodes of the input layer; θ1 · · · θq are the neuron nodes of the
hidden layer; β1 · · · βL are the neuron nodes of the output layer; ωij is the connecting weight between
the input layer and hidden layer; and ωki is the connecting weight between the hidden layer and
output layer.

ANN is a nonlinear statistical data modeling or decision-making method, so it can be used to
model complex relationships between the input and output or to find patterns in data. ANN has
the abilities of being data-driven, having self-learning and self-adaption; meanwhile, it has strong
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capabilities of anti-jamming. Therefore, the neural network-based gravity disturbance estimation
method is proposed in this paper.

4. The Theory and Framework of the ELM-Based Gravity Disturbance Compensation Method
in INS

In recent years, ELM has become a hot research topic for machine learning and artificial
intelligence. Compared with other traditional artificial learning methods, ELM has its own advantages,
which are described as follows [11,12]:

(1) No parameters need to be tuned except the predefined network structure;
(2) ELM is capable of faster learning, and most trainings can be completed quickly;
(3) ELM can achieve a high generalization performance;
(4) ELM has a wide selection range of activation functions that are all piecewise continuous functions

that can be used as activation functions.

Because of ELM’s many advantages, in this paper, we use ELM to estimate the gravity disturbance
on the trajectory based on measured gravity on the geoid and then process the gravity disturbance
on the geoid to the height where INS has an upward continuation. Finally, the estimated gravity
disturbance on the trajectory is compensated in the INS error equations to restrain the error propagation
in INS.

4.1. Extreme Learning Machine

The mathematical model of the ELM is described as below [20,21]:
Input and output: Consider that we have a training set {(xi, ti)}N

i=1 with N distinct examples,
where xi = [xi1, xi2, xi3, ..., xin]

T has n inputs and ti = [ti1, ti2, ti3, ..., tim]
T has m outputs. Here,

we define each input xi to be composed of longitude and latitude, described as xi = [λi Li], and the
output ti is the gravity disturbance on the geoid, described as ti = [∆gEi ∆gNi ∆gUi].

Symbols in the network: Assume that l is the number of hidden neurons, ω is the
l × n input weight matrix connecting the i − th hidden neuron and the input neurons where
ωj = [ωj1, ωj2, ωj3, ..., ωjn]

T , bj is the bias for each single hidden neuron, b is the l × 1 biases vector
for hidden neurons, β is the l × m output weight matrix connecting the i − th hidden neuron
and the output neuron where β j =

[
β j1, β j2, β j3, ..., β jm

]T . Generally, the ELM network function is
shown as [11]:

ti =
l

∑
j=1

β jg
(
ωj · xi + bj

)
, i = 1, 2, ..., N; (10)

where j ∈ {1, 2, ..., l} , ωj · xi denotes the inner product of ωj and xi; the activation function g(x) is the
sigmoid function in the proposed method, which is formulated as:

g (x) =
1

1 + exp [− (ω · x + b)]
(11)

Equation (10) can be simplified as the following simple form:

Hβ = T (12)

where:

H =

 g(ω1 · x1 + b1) · · · g(ωl · x1 + bl)
...

. . .
...

g(ω1 · xN + b1) · · · g(ωl · xN + bl)


N×l

(13)

H is defined as the hidden layer output matrix of the network. T is the output matrix,
and T = [t1, t2, ..., tN ]

T .
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In the ELM algorithm, the input weights and hidden biases are chosen at random, and the output
weights are calculated through the equation below:

β = H+T (14)

where H+ is the Moore–Penrose (MP) generalized inverse of matrix H.
The learning procedure of ELM can be summarized as the four steps in Algorithm 1.

Algorithm 1. Extreme learning machine (ELM).

1. Given a training set with N distinct examples Ψ = { (xi, ti)| xi ∈ Rn, ti ∈ Rm}N
i=1, activation

function g(x) and hidden neuron number l;
2. Set input weights ω and hidden biases b from [–1,1] at random;
3. Calculate the hidden layer output matrix H using matrix multiplication;
4. Calculate the output weights β = H+T according to the Moore–Penrose generalized inverse.

4.2. The Framework of the ELM-Based Gravity Compensation Method

The framework of the ELM-based gravity disturbance compensation method is shown in
Figure 5 [22,23].Sensors 2016, 16, 2019 8 of 15 
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The process of the ELM-based gravity disturbance compensation method is described as follows:

1. Get the INS position. Obtain the position value of the INS, longitude (λ) and latitude (L), through
the calculation of INS.

2. Choose the gravity database. Search the adaptive gravity database (provided by Institute of
Geodesy and Geophysics, Chinese Academy of Sciences) according to the position obtained
by Step 1. The gravity disturbance is related to the correlation distances. This means too wide
a training area will not improve the estimation result, and too small a training area will not
include enough information for the estimation of the gravity disturbance. After many trainings,
we found that the size of the training area set as 5′ × 5′ would have the best estimation result.
Therefore, here, the gravity database is set as 5′ × 5′ and takes the position of the INS as the
central point.

3. ELM training: Set λ, L as the inputs of the ELM algorithm, and obtain the gravity disturbance on
the geoid (∆gE0, ∆gN0, ∆gU0) through the training with the gravity database obtained by Step 2.

4. Upward continuation: Process the gravity disturbance with upward continuation to the
height where the INS is. The height of the INS is obtained by the altimeter. In geographic
engineering applications, the most practical upward continuation method is free air correction.
The computational formula is described as follows [24]:

∆g = ∆g0 − 0.3086H (15)

where ∆g0 is the value of the gravity disturbance on the geoid, ∆g is the value of the gravity
disturbance where the INS is and H is the height value between the geoid and INS.

5. Compensate the gravity disturbance calculated by Step 4 in the INS error equations to restrain
the error propagation caused by gravity disturbance.

5. Numerical Test

To test the accuracy of the ELM-based gravity disturbance estimation method, two areas each
with 50 gravity data points derived from the Institute of Geodesy and Geophysics, Chinese Academy
of Sciences, are chosen as the application regions. Additionally, the resolution of the gravity database is
1′ × 1′. Region 1 is in the Huabei plain area in China where there is a mild gravity variation; Region 2
is in the Qinling mountain area in China where there is a rough gravity variation. The gravity anomaly
maps in the two application regions are shown in Figures 6 and 7. In each region, the gravity points
are divided into two parts: 10 points are used as testing data; the other 40 points as training data.
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Figure 6. The gravity anomaly map in the Huabei plain area.
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Figure 7. The gravity anomaly map in the Qinling mountain area.

The evaluation criterions chosen to evaluate the performance of the estimation methods are
mean absolute error (MAE), mean radial error (MRE) and root mean square error (RMSE). MAE
can reflect the possible estimation error range of estimation methods; MRE stands for the ensemble
estimation error; and RMSE reflects the sensitivity and extreme value effect of the estimation results.
The calculation formulae of these three evaluation criteria are described as follows [25,26]:

MAE =
1
n

n

∑
i=1

ABS(Xm,i − Xe,i) (16)

MRE =
1
n

n

∑
i=1

[ABS(Xm,i − Xe,i)/Xm,i] (17)

RMSE =

√
1
n

n

∑
i=1

(Xm,i − Xe,i)
2 (18)

where n is the number of the testing points and Xm,i, Xe,i are the measured and estimated gravity
disturbance values, respectively. ABS is the symbol of the absolute value function.

The performances of the different estimation methods applied in two test regions are listed in
Tables 2 and 3.

Table 2. Performance of the estimation methods in test Region 1. MRE, mean radial error; IDW, inverse
distance weighted method.

Evaluation Criterion
Estimation Methods

IDW Bilinear Interpolation ELM

MAE 0.157 0.138 0.098
MRE 0.059 0.058 0.032

RMSE 0.285 0.279 0.213

Table 3. Performance of the estimation methods in test Region 2.

Evaluation Criterion
Estimation Methods

IDW Bilinear Interpolation ELM

MAE 0.228 0.203 0.128
MRE 0.076 0.056 0.041

RMSE 0.367 0.314 0.193



Sensors 2016, 16, 2019 10 of 14

From Tables 2 and 3, we can see that the ELM-based estimation method had a better performance
than the other two methods, especially in the mountain area with rough topography. The RMSE of the
ELM estimation method improved by 23% and 44% compared with the bilinear interpolation in the
plain and mountain area, respectively. Additionally, for the other two variables of gravity disturbance,
we had similar estimation results as the gravity anomaly. The estimation performances of the other
two variables with the ELM method were better than the two traditional methods.

6. Experiment

To further validate the proposed gravity compensation method, two field experiments were
carried out in Shanxi province in China: one was in an urban road with a mild gravity variation,
and the other one was in a mountain road with a fierce gravity variation. On the test car were
carried a GPS receiver and the INS, which contained the inertial measurement unit (IMU) and the
processing computer system (PSC). The PSC collects the GPS data and the IMU data for data storage,
then calculates it for navigation. The altimeter and battery were also carried on the test car for
measurement and electricity supply. The test car is shown in Figure 8. The performances of the inertial
sensors and GPS are listed in Table 4. The resolution of the gravity database is 1′ × 1′ (provided by the
Institute of Geodesy and Geophysics, Chinese Academy of Sciences).
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Table 4. Performance of the sensors for the experiment.

Sensors Types Characteristics Magnitude (1 σ)

Gyroscope Constant bias 0.003◦/h

Accelerometer Constant bias 10 µg

GPS velocity Horizontal error 0.03 m/s
Height error 0.05 m/s

GPS position Horizontal error 2 m
Height error 5 m

Altimeter
Measurement error ±5 m

Measurement resolution 0.1 m

Field Test 1 was carried out in Xi’an city area in China, and field Test 2 was carried out in Qinling
mountain area in China. The travel profiles, gravity anomalies and DOVs on the two trajectories are
shown in Figures 9 and 10.
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Figure 10. The gravity anomaly and deflections of the vertical (DOVs) of the two tests.
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The position results without gravity compensation and results with the proposed gravity
compensation method are compared with the GPS result, as shown in Figure 11. In Figure 11a–c are
the position results of Test 1, Figure 11d–f are the position results of Test 2.
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Figure 11. Position errors of the two tests.

Compared with the position results of GPS, the maximum position errors of two tests are listed in
Table 5.

Table 5. The maximum value of position error (m) compared with the GPS result.

Without Gravity Compensation With Gravity Compensation Position Improvement

Test 1 1050 913 137 (13%)
Test 2 1120 790 330 (29%)

The results in Figure 11 and Table 5 show that the proposed gravity compensation method can
both improve the positioning accuracy in the two tests, especially in Test 2 with the rough topography,
because in Test 2 along the trajectory, the value of the gravity disturbance is much bigger and has
a wider variation range. According to the characteristics of the error propagation in free-INS, the error
caused by the gravity disturbance increases with time. This can be verified in Figure 11. The errors
shown in Figure 11 are similar for both methods (without and with the gravity compensation) at the
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beginning of the experiment, but they diverge in the later stages. During the 2-h field experiment,
the maximum value of position error improved by 13% and 29%, respectively, in Tests 1 and 2, when
the navigation scheme was compensated by the proposed gravity compensation method. Therefore,
the effectiveness of the proposed gravity compensation method is verified in the field experiments.

7. Conclusions

In this paper, a novel gravity compensation method for high-precision INS is proposed, which uses
the ELM-based estimation method to obtain the optimal gravity disturbance on the track based on
measured gravity data on the geoid, then processes gravity disturbance on the geoid to the height
where INS has an upward continuation. Finally, the estimated gravity disturbance on the trajectory
is compensated into the INS error equations to restrain the error propagation in INS. The accuracy
of the proposed estimation method was evaluated using the numerical tests, which divided the test
area into two parts, one was in the plain area and the other in the mountain area. The estimation
results showed that the ELM-based estimation method had a better performance than the other
two methods, especially in the mountain area with rough topography. The RMSE of the ELM-based
estimation method improved by 23% and 44% compared with the bilinear interpolation in the plain and
mountain area, respectively. To further verify the performance of the proposed gravity compensation
method, two field experiments were carried out with a high-precision INS, and the experiment results
showed that the positioning accuracy improved by 13% and 29%, respectively, in the plain area and
mountain area with the proposed gravity compensation method. It should be noted that in this work,
the experiment was conducted only in cars at a relatively low speed. In the future, a flight experiment
with relative high travel speed should be carried out to further verify the efficiency of the proposed
gravity compensation method.
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