
sensors

Article

3D Scene Reconstruction Using Omnidirectional
Vision and LiDAR: A Hybrid Approach

Michiel Vlaminck 1,*, Hiep Luong 1, Werner Goeman 2 and Wilfried Philips 1

1 Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, iMinds, Ghent 9000, Belgium; hiep.luong@telin.ugent.be (H.L.);
philips@telin.ugent.be (W.P.)

2 Sweco/Grontmij, Ghent 9000, Belgium; werner.goeman@grontmij.be
* Correspondence: michiel.vlaminck@telin.ugent.be; Tel.: +32-473-413-613

Academic Editors: Gabriel Oliver-Codina, Nuno Gracias and Antonio M. López
Received: 13 September 2016; Accepted: 8 November 2016; Published: 16 November 2016

Abstract: In this paper, we propose a novel approach to obtain accurate 3D reconstructions of
large-scale environments by means of a mobile acquisition platform. The system incorporates a
Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed
with genericity in mind, and hence, it does not make any assumption about the scene or about the
sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals
explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end,
we keep track of a global 3D map of the environment, which is continuously improved and refined by
means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive
generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope
with drift, the system incorporates loop closure by determining the pose error and propagating it back
in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building,
a university campus and an industrial site of a chemical company. Experiments demonstrate that it is
capable of generating highly accurate 3D maps in very challenging environments. We can state that
the average distance of corresponding point pairs between the ground truth and estimated point cloud
approximates one centimeter for an area covering approximately 4000 m2. To prove the genericity
of the system, it was tested on the well-known Kitti vision benchmark. The results show that our
approach competes with state of the art methods without making any additional assumptions.

Keywords: 3D point cloud registration; Iterative Closest Point (ICP); LiDAR scanning; loop closure;
surface reconstruction; Velodyne; Ladybug

1. Introduction

Reconstructing the 3D scene using a mobile observer, also referred to as mobile mapping,
is used in a variety of applications ranging from navigational tasks for autonomous vehicles to
facility condition assessment or cartography. The former application imposes a real-time constraint
on the processing time of the used algorithms, whereas the latter allows the system to take more
computation time. The application that we have in mind aims at construction site monitoring.
The goal there is to obtain a 3D model of the environment in a reasonable amount of time, which
spans the duration of the intervention. To this end, we propose a system that combines both a LiDAR
sensor (Velodyne HDL32-e) and a panoramic camera system (Ladybug 3) to perceive the environment.
Some systems exist that rely on the output of a regular camera to obtain 3D reconstructions [1,2], known
in the literature as (visual) structure from motion (SfM). In the case of sequential (or incremental) SfM,
the problem is also referred to as simultaneous localization and mapping (SLAM). However, visual SfM
produces rather sparse 3D reconstructions, which require much post-processing to make them more

Sensors 2016, 16, 1923; doi:10.3390/s16111923 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1923 2 of 23

dense. Moreover, they are prone to drift and tend to fail when the images are overexposed because of
the abundance of sunlight. For this reason, the core of our mobile mapping system is based on the
output of a LiDAR sensor, aided by images of a regular camera to perform loop detection. Often times,
mobile mapping systems are also relying on GPS to estimate the trajectory of the observer. However,
in the environments we have in mind, i.e., construction sites with many overhanging or protruding
structures (e.g., pipelines), the GPS signal is too weak. In closed indoor environments, it is even
completely lacking. Therefore, we developed a system that is fully GPS-independent. In summary,
we propose an entire 3D reconstruction system that covers both the odometry and mapping problem.
It incorporates the alignment of consecutive point clouds, the fusion with a global 3D map and a loop
closure mechanism to cope with drift. The main goal of our approach is to make the system as generic
as possible and, hence, to make as little assumptions as possible about the environment and about the
sensor set-up. Doing so, we are able to use our system in combination with a drone-mounted LiDAR
sensor and camera in the future. The main contribution of this work is that our solution deals explicitly
with the inhomogeneous density of point clouds produced by LiDAR scanners. This latter refers to the
fact that some parts of the point cloud have a higher point density than others due to the inclination
of the laser beams and the proximity of the objects present in the scene. Generally, regions close to
the sensor origin will be densely sampled, whereas more distant objects will be sparsely sampled.
As has been shown in numerous studies [3–5], traditional point-to-point registration techniques
(e.g., Iterative Closest Point (ICP)) fail in these situations. For that reason, we propose a number
of improvements over standard point-to-point strategies and incorporate them in one framework.
The main contributions can be summarized as follows:

1. We propose a surface analysis technique that is used to build a topological space on top of
the point cloud, providing for each point its ideal neighborhood and taking into account the
underlying surface.

2. We keep track of a global 3D map that is continuously updated by means of a surface
reconstruction technique that allows us to resample the point cloud. This way, the global 3D map
is continuously improved, i.e., the noise is reduced, and the alignment of the following point
clouds can be conducted more accurately.

3. The topological space is used to compute low-level features, which will be incorporated in
an adapted version of the ICP algorithm to make this latter more robust. The alignment of
consecutive local point clouds, as well as the alignment of a local point cloud with the global 3D
map will be conducted using this improved ICP algorithm.

4. We incorporate the residual of the ICP process in the loop closure process. Based on this
residual, we can predict the share of each pose estimation in the final pose error when a loop
has been detected.

2. Related Work

Regarding LiDAR odometry and mapping, existing solutions can roughly be divided in four main
classes: based on ICP, normal distribution transform (NDT), features and planar surfaces. The majority
of the approaches presented in the literature are based on the iterative closest point (ICP) algorithm
in order to perform scan matching and to identify the transformation between sensor poses [6–8].
However, the standard ICP algorithm has many limitations, and therefore, many improvements have
been presented in literature. One of the main drawbacks lies in the fact that it is often difficult to
find good point to point correspondences between two point clouds, especially in the case of a sparse
point density or when the speed of the moving platform is too high. The authors of velocity ICP [9]
therefore propose to perform velocity estimation over the ICP iterations. Doing so, the distortion of a
scan due to motion can be compensated by re-projecting all points acquired during one sweep to the
position of the sensor at the beginning of the sweep. In [10], the authors tackle the correspondence
problem by defining low-level features that are used to guide the ICP process. The authors focus on

Sensors 2016, 16, 1923 3 of 23

pair-wise registration of datasets that do not exhibit large changes. They do not investigate a full
sequential 3D reconstruction approach that incorporates a global 3D map or loop closure. The authors
of Velodyne SLAM [11], on the other hand, incrementally build a map of the environment by aligning
each newly arrived Velodyne scan with the whole map using ICP. Their global map is improved over
time by adapting incoming measurements according to already existing adapted neighbors. However,
the refinement of the global map is limited as they do not perform a surface analysis or re-sampling
of the point cloud. Moreover, they do not incorporate a loop closure mechanism to cope with drift.
Finally, some studies focus on combining the ICP-based scan matching with (stereo) visual odometry.
For example, in [12], the authors propose a solution that uses the output of visual odometry to obtain a
rough estimate of the ego motion upon which consecutive point clouds are registered. The generalized
ICP algorithm [13] is then used to refine the motion estimation, and finally, the output is combined
with reduced IMU outputs. Although these latter solutions seem effective, these studies, in contrast to
ours, do not investigate how LiDAR odometry itself can be improved.

Aside from ICP, the normal distribution transform (NDT) [14] is another common technique
that is often used for laser scan matching [15–17]. It is based on an alternative representation of a
point cloud similar to an occupancy grid. In each 3D cell, a normal distribution is stored, and both
scans are matched using Newton’s method. Compared to ICP-based methods, the main advantage of
this method is that there is no need for correspondence estimation. The main limitation is however
that the accuracy of NDT is strongly related to the cell size, which is difficult to define in the case of
inhomogeneous point clouds.

Another way to cope with correspondence estimation is to introduce the use of features.
Feature-based methods have significant advantages as they concentrate on strong cues, such as
corners and lines and filter out irregular points, such as vegetation or tree leaves. One very interesting
feature-based system has been developed by Zhang et al. and described in [18,19]. Their technique
is based on the extraction of only two different shape features, representing sharp edges and planar
surface patches. Edge points of the source cloud are associated with edge lines, while planar patches
are matched with other planar patches in the target cloud. In [19], the same authors elaborated on their
method by incorporating data from a regular camera to perform visual odometry.

Finally, in [20–22], the authors use yet another approach based on the registration of planar
surfaces. These planes can lead to very accurate alignments as they serve as strong cues and can be
estimated by an accumulation of data, hence reducing the noise. However, although these methods are
very effective, the lack of planes in the scene can cause them to fail and, hence, make them less generic.

In this work, we will adopt a hybrid approach in the sense that we combine ICP-based registration
with feature extraction and surface reconstruction. To this end, we adopt the strategy of [10] by
incorporating low-level features that describe the underlying surface in a simple way, i.e., using three
main classes, linear, planar and volumetric. We exploit these properties to identify for each point an
ideal neighborhood and, hence, a topological space representing the captured scene. The low-level
features will further be used to guide the ICP process in such a way that the alignment concentrates
itself near the most reliable regions, i.e., lines and corners instead of irregular points or clutter.
Our approach can benefit from large planar surfaces while at the same time remaining generic.
It is thus more widely applicable. In addition, we keep track of a global map, which will continuously
be improved and refined with newly-captured points. More specifically, we use a surface reconstruction
technique after which we resample the point cloud and improve its topological space. Finally,
we incorporate loop closure to cope with the remaining drift.

3. System

3.1. Acquisition Platform

Our acquisition platform consists of a Velodyne High Definition LiDAR (HDL-32e) scanner
combined with a Ladybug panoramic camera system. Because of this combination, we named it the
Vellady platform. As can be seen in Figure 1, the Ladybug camera is mounted perpendicular to the

Sensors 2016, 16, 1923 4 of 23

ground plane, whereas the Velodyne is tilted on its head, making an angle of approximately 66◦ with the
ground plane. The Velodyne LiDAR scanner is equipped with 32 lasers mounted collinear and covering
a vertical FOV of 41.3◦, hence resulting in a vertical resolution of 1.29◦. The vertical FOV covers 30.67◦

below the middle point of the Velodyne and 10.67◦ above it. The head is continuously spinning at
approximately 10 Hz, resulting in a horizontal FOV of 360◦. Figure 2 shows an example of a point
cloud obtained by this Velodyne sensor. The Ladybug on the other hand is a fixed system that comes
in the form of a pentagonal prism consisting of five vertical-oriented sides, each one incorporating
a camera. A sixth camera is mounted on top pointing upwards. It is shooting images at one frame
per second. A stitched image obtained by this Ladybug camera system, corresponding with the point
cloud of Figure 2, is depicted in Figure 3. We mounted this Vellady platform on a moving vehicle,
i.e., a kitchen cart or four-wheel trolley (see Figure 1). Our platform is hence not able to rotate
around its roll angle. A rotation about its pitch angle is only possible in the case that the ground
plane has a slope, but these situations were not encountered during the experiments. However, we
did not exploit these facts as we want to retain the option to mount the platform on a drone in the
future. Our system thus operates as a full six degrees of freedom SLAM algorithm incorporating three
unknown position coordinates x, y, z and three rotation angles θx, θy, θz. The main features of our
platform are summarized in Table 1.

Figure 1. Two pictures of our mobile acquisition platform Vellady mounted on a kitchen cart (right)
and close-up (left). The platform consists of a Ladybug panoramic camera (mounted at the top) and a
Velodyne HDL32-e LiDAR scanner (mounted at the bottom).

Figure 2. A 360◦ point cloud acquired by the Velodyne HDL-32e LiDAR scanner, associated with the
stitched lady bug image of Figure 3, captured at the Dow chemical company.

Sensors 2016, 16, 1923 5 of 23

Figure 3. An image acquired by stitching the six images of the Ladybug together. The image shows the
starting point of a video sequence captured at the Dow chemical company.

Table 1. A summary containing the main features of the acquisition platform.

Sensor Feature

Ladybug system - 6 camera’s in pentagonal prism, one pointing upwards
- resolution of 1600 × 1200 per image
- 1 frame (6 images) per second
- mounted perpendicular w.r.t. the ground plane

Velodyne HDL-32e - 360◦ horizontal FOV, 41.3◦ vertical FOV
- 32 lasers spinning at 10 sweeps per second
- ±700,000 points per sweep
- mounted with an angle of 66◦ w.r.t. the ground plane

3.2. Terminology

As mentioned in the previous section, the Velodyne is spinning its head, thereby producing
360◦ point clouds. A full rotation of the head is also referred to as a sweep. Throughout this paper,
we use right subscript k, k ∈ Z+ to indicate the sweep number and Pk to indicate the point cloud
perceived during sweep k. This point cloud is expressed using the local coordinate system of the
Velodyne Vk at the time that sweep k has started. We will use right superscript i to denote a single
point pi

k. Finally, we define Ij to denote the j-th set of images. Recall that the Ladybug only outputs six
images simultaneously each second, and hence, some point clouds will have no accompanying visual
information. However, both sensors were synchronized, and as a result, the following condition is
always warranted: ∀ j ∈ Z+, ∃ k ∈ Z+ : t(Ij) = t(Pk). In this expression, t is a function that returns the
timestamp at which respectively the j-th set of images was captured and sweep k was started. As the
Velodyne is spinning at a frequency of 10 Hz, there will only be visual information available for every
tenth point cloud Pk.

3.3. Reference Coordinate System

As both sensor outputs Pk and Ik are expressed in their own coordinate system, we need to define
a reference coordinate system to harmonize both. To ease this task, the platform was designed in a way
that the origin of both sensors is collinear. Since the Ladybug was put perpendicular to the ground
plane, it is sufficient to determine the orientation of the Velodyne sensor with respect to the ground
plane and nullify the offset of the origins of both sensors. As the Velodyne scanner incorporates three
gyroscopes and three associated two-axis accelerometers, the transformation can be derived from one
of its accelerometers. Specifically, given the accelerometer output a = (ay, az) (cf. Figure 4), the angle
about the x-axis, i.e., the pitch angle, can be computed as α = atan(az/ay). The final transformation

Sensors 2016, 16, 1923 6 of 23

T(vel2lady) ∈ R4×4 from the Velodyne coordinate system V to the Ladybug coordinate system L is then
given by Equation (1):

T(vel2lady) =

[
R t

0>3 1

]
=


1 0 0 tx

0 cos α sin α ty

0 − sin α cos α tz

0 0 0 1

 . (1)

Herein, the values of t = (tx, ty, tz) were determined by subtracting the two vectors that project
both origins to the ground plane. In the case of the Velodyne coordinate system V, the projection of the
origin is performed after applying R. Next, the coordinate system W denotes the global coordinate
system in which the final 3D point cloud is expressed. We decided to set the coordinate system of the
Ladybug at the start of the first sweep L0 as the global world coordinate system W.

α

α

y
L

z
L

V
z

V
y

x
L

66
CABLEa

y

az

VELODYNE HDL

Figure 4. Schematic drawing of the rotation performed after nullifying the offset of the sensor origins.
The angle about the x-axis, i.e., the pitch angle, was computed using the output of the two-axis
accelerometer a = (ay, az) from the Velodyne HDL. In this figure, the subscript L denotes the coordinate
system of the Ladybug, whereas V denotes the coordinate system of the Velodyne.

3.4. Problem Statement

The problem can be formulated as finding the trajectory, i.e., the sequence of sensor poses
S = {S1, . . . , Sk, . . . , SN}, that transforms each point cloud Pk in the world coordinate system W.
The poses Sk are defined as in Equation (2):

Sk =

[
Rk tk
0>3 1

]
= Tk,k−1Sk−1, (2)

S0 =

[
R0 t0

0>3 1

]
= T(vel2lady). (3)

Herein, Tk,k−1 denotes the transformation of the point clouds Pk and Pk−1 acquired in
two consecutive sweeps. The reconstructed 3D point cloudWk after k sweeps have been processed
is given byWk = {P0, . . . , SkPk}. The reconstructed point cloud of the entire sequence containing N
sweeps is finally given byW = {P0, . . . , SkPk, . . . , SNPN}. Figure 5 depicts a schematic drawing of this
problem statement.

Sensors 2016, 16, 1923 7 of 23

W

L
1

L
2

L
3

1
S

2
S

3
S

T
1,0

T
2,1

T
3,2

Figure 5. Overview of the problem statement. Each time a new point cloud Pk has arrived,
its sensor pose Sk in relation to the world reference coordinate system W = L0 is determined using the
concatenation of the previous pose Sk−1 and the transformation Tk,k−1.

4. Approach

A schematic overview of our approach is depicted in Figure 6. As can be seen, it is implemented
as a sequential, i.e., incremental, process in which every newly-arrived point cloud Pk is first processed
and subsequently added to the current world modelWk. The process repeated for every point cloud is
conducted in five steps. First, we project the generated point clouds on a 2D grid (Step 1). Subsequently,
we conduct a surface analysis (Step 2), after which we perform pairwise alignment of two consecutive
point clouds (Step 3), which serves as an initial guess for the current pose. Next, we register the
aligned point cloud with a global 3D map (Step 4) and fuse the new points with this 3D map (Step 5).
This fusion consists of re-sampling the point cloud by means of a surface reconstruction technique.
Optionally, when a loop has been detected, we adopt loop closure to preserve global consistency
(Step 6). This is done by means of pose graph optimization, which propagates the estimated error back
in the pose graph. In the following sections, we will further clarify each of these steps.

3. Local registration

1. 2D projection

2. Surface analysis

ICP

4. Global registration

ICP ICP

5. Map fusion

3. Local registration

1. 2D projection

2. Surface analysis

4. Global registration

5. Map fusion

… …

6. Loop closure6. Loop closure

Figure 6. Overview of the system, which is implemented as an incremental process. Every time a
consecutive point cloud Pk has arrived, it is first projected on a 2D grid (Step 1). Next, it is analyzed
to obtain some low-level surface features (Step 2), after which it is aligned (registered) with the point
cloud Pk−1 acquired during the previous sweep k−1 (Step 3). The obtained transformation serves as
an initial guess to subsequently align Pk with the current world modelWk−1 (Step 4) and to fuse them
together to formWk (Step 5). This fusion consists of re-sampling the point cloud by means of a surface
reconstruction technique. Optionally, when a loop has been detected, loop closure is performed to cope
with the drift and to preserve global consistency (Step 6).

4.1. 2D Projection

The 3D points captured by the Velodyne are organized since the 32 lasers are placed collinear in
the vertical direction. Because of that, we can project the 3D points onto a two-dimensional spherical

Sensors 2016, 16, 1923 8 of 23

grid; cf. Figure 7. Figure 8 shows an example of a 360◦ range image corresponding to the point cloud of
Figure 2. Using this 2D projection, we can exploit the adjacency in the pixel domain, e.g., to quickly find
neighboring points in 3D. We will exploit this knowledge to perform a surface analysis as explained in
Section 4.2.

P(u,v)

P(u+1,v)

P(u,v+1)

P(u,v-1)

P(u-1,v)

Figure 7. The 3D points generated by the Velodyne scanner are projected onto a 2D spherical grid. This
way, we can exploit the adjacency in the 2D domain, e.g., to quickly find neighboring points in 3D.

Figure 8. Example of a 360◦ range image obtained by projecting the point cloud of Figure 2 onto a
2D grid. The blue color means that points are close-by, whereas the red color denotes that points are
located further away.

4.2. Surface Analysis

The surface analysis step is performed twice each iteration, once on the point cloud Pk perceived
during sweep k and once on the point cloud mapWk−1 after the fusion of the previous point cloud
Pk−1. Our proposed algorithm is an extension of the one presented in [10]. It aims to find for
each 3D point the optimal neighborhood size or the most suitable local point set that describes the
underlying geometry. This is an interdependence problem, as geometrical features largely depend
on the choice of the neighborhood, whereas a good neighborhood definition should rely on the
local geometry and, thus, on geometrical features. Let us first define a neighborhood function n as
nr(p) : (x, y, z) 7→ (x, y, z)N . In this equation, r denotes the search radius for neighboring points,
and N denotes the number of points belonging to the neighborhood. Using this neighborhood,
we determine the principal components of the covariance matrix of the points belonging to it.
These principal components are used to decide whether the underlying surface is linear (1D), planar
(2D) or volumetric (3D), cfr. Figure 9. Hence, we first compute the three eigenvalues λ1, λ2 and λ3

and their corresponding eigenvectors v1, v2 and v3. Next, we define the standard deviation along an
eigenvector as σi =

√
λi for i ∈ 1, 2, 3. Using these three values, we can obtain a measure on how

linear, planar or scattered the underlying surface is. To this end, we define the three dimensionality
values as follows:

ψ1 =
σ1 − σ2

σ1
, ψ2 =

σ2 − σ3

σ1
, ψ3 =

σ3

σ1
. (4)

These three values are normalized such that ψ1 + ψ2 + ψ3 = 1; hence, they represent a partition
of unity Ψ. Finally, the dimensionality label l of each point is given by Equation (5):

l = argmax
i∈[1,3]

(ψi). (5)

Sensors 2016, 16, 1923 9 of 23

σ1 ≈ σ2 ≈ σ3 σ1 � σ2, σ3 σ1, σ2 � σ3

Figure 9. Visual representation of the low-level surface features. The values σi =
√

λi represent the
standard deviation along the eigenvectors. When σ1 ≈ σ2 ≈ σ3, the points are volumetric, often times
representing a scatter, such as vegetation. When σ1 � σ2, σ3, the respective points are lying on a line
between planar surfaces or are part of thin structures, such as pipelines. Finally, when σ1, σ2 � σ3,
the points are lying on a planar surface.

When σ1 � σ2, σ3, then ψ1 will be larger than the two other features. This corresponds to lines
between planar surfaces or thin structures, such as pipelines. On the other hand, when σ1, σ2 � σ3,
then ψ2 will be larger, corresponding to planar surfaces. Finally, when σ1 ≈ σ2 ≈ σ3, then ψ3 will be
larger often times representing a scatter, such as bushes or tree leaves. To determine the optimal radius
r∗, we use the concept of Shannon entropy. To this end, we compute the geometrical features for a
growing radius size r ∈ [rmin, rmax]. The Shannon entropy for the partition Ψr = {ψ1, ψ2, ψ3}r is given
by E(Ψr) = −ψ1 ln(ψ1)− ψ2 ln(ψ2)− ψ3 ln(ψ3). This value gives a measure for the uncertainty about
the dimensionality label. The optimal neighborhood radius r∗ is then defined as the minimum of the
entropy function E:

r∗ = argmin
r∈[rmin ,rmax]

E(Ψr). (6)

This radius r∗ leads to an initial guess of the optimal neighborhood V∗p of a point p. As points
within the optimal radius r∗ can still belong to different surfaces and can have different dimensionality
labels, we define a similarity measure S denoting the homogeneity within the neighborhood of
each point:

S(nr(p)) =
1
N ∑

pi∈nr(p)
1l(p)=l(pi)

. (7)

In this equation, 1 represents the indicator function, and N is the cardinality of nr(p). If this value
S is smaller than 0.5, we reconsider the optimal radius r∗ using Equation (8):

r∗ = argmax
r∈[rmin ,rmax]

S(nr(p)). (8)

In the other case, we remove the points belonging to the neighborhood of p that have another
dimensionality label. Hence, we define the optimal neighborhood V∗p of a point p as in Equation (9):

V∗p = {pi : pi ∈ nr∗(p) ∧ l(p) = l(pi)}. (9)

In summary, the proposed method tries to find the ideal topological space T ∗ representing the
underlying surface of the point cloud. For each node (or point) in T ∗, we store a 19-dimensional
feature vector, which is the combination of the eigen values λ = {λ1, λ2, λ3}, the eigen vectors
V = {v1, v2, v3}, the dimensionality values Ψ = {ψ1, ψ2, ψ3}, the dimensionality label l and the values
r∗ and E∗. The last feature we define represents the omnivariance and is given by O = ∏i∈[1,3] σi.
One of the most important features in this vector is the local surface normal ni of a point pi, which can
be approximated by the eigenvector v3 corresponding to the smallest eigenvalue λ3 of the principal
components, which was computed using the optimal neighborhood.

Sensors 2016, 16, 1923 10 of 23

4.3. Local Registration

The majority of the solutions presented in the literature to find the alignment of consecutive scans
or point clouds are based on the iterative closest point (ICP) algorithm. As the name suggests,
it is an iterative method that consists of four main steps in each iteration: (1) point selection;
(2) correspondence estimation; (3) weighting; and (4) transformation estimation. In every iteration,
the transformation is updated until convergence has been reached. In Figure 10, a graphical
representation of the algorithm is depicted. However, the standard ICP approach has some severe
limitations. One of the main issues originates from the fact that the point clouds generated by the
Velodyne scanner have a sparse and inhomogeneous density. As a result, it is hard to find good point
correspondences between two consecutive point clouds (referred to as source and target point cloud),
as most of the time, the determined corresponding pairs will not represent the same physical point in
space. This leads to point clouds that are not aligned accurately, even after a large number of iterations
and, hence, to wrongly estimated sensor poses. In addition, the convergence process will be very slow.
Motivated by this shortcoming, we propose to incorporate the low-level features that we derived in
the surface analysis step to guide the ICP process. Doing so, we will not use the closest points in 3D
as target points directly as is done in traditional ICP. Instead, we present an approach in which we
use the local surface normals that were computed using the optimal neighborhood (cf. Section 4.1).
We then minimize the distance from each source point to the tangent plane of its corresponding surface
patch in the target point cloud. In the following, we will briefly discuss the four main sub-parts
of the process.

iteration 1

iteration 2 iteration N

Pk

Pk-1

Figure 10. Graphical representation of the ICP algorithm. In every iteration, four main steps are
conducted: (1) point selection; (2) correspondence estimation; (3) weighting; and (4) transformation
estimation. In every iteration, the transformation is updated until convergence has been reached and
the two scans are perfectly aligned.

(1) Point Selection

The goal of the point selection step is to focus on the most reliable areas for accurate registration.
An area is considered as unreliable if it is located near the border between several objects or surfaces
or if it belongs to a geometrically complex object. As the points corresponding with a volumetric label
(l = 3) are mainly corresponding to scattered points, e.g., bushes or tree leaves, we will exclude them
from the estimation process, as we consider them less reliable. This is mainly due to the fact that it
is hard to estimate accurate surface normals for these points, as they represent complex structures
and are too sparsely sampled. In addition, we will exclude planar points for which the uncertainty,
i.e., the entropy, is too high. In the experiments, the threshold for the entropy was set to 0.8.

(2) Correspondence Estimation

In contrast with existing systems, we will select the corresponding target point pj
k−1 as the point

having the most similar neighborhood as the source point pi
k in terms of the geometry of the underlying

surface. To this end, we compute the distance from the source point to the target point in feature space.
However, as it is too infeasible to compare every point in the target point cloud with the source point,
we first determine corresponding candidates by selecting the closest points in Euclidean space using

Sensors 2016, 16, 1923 11 of 23

the 2D projection of both point clouds. More specifically, we will look for the points that are only a few
pixels away in the 2D domain. Finally, the target point that has the smallest distance in feature space is
chosen as the corresponding point.

(3) Weighting

In order to make the procedure more robust against correspondence outliers computed in the
previous section, we incorporate robust M-estimators in the iteration process. Thus, instead of using
fixed weights, we adapt them through the iterations resulting in an iteratively reweighted least
squares (IRLS) ICP optimization. Compared to traditional solutions, this weighting is carried out
using the distance of the corresponding pairs in feature space instead of Euclidean 3D space. This is
important as the point clouds are inhomogeneous, and the distance between correct correspondence
pairs, i.e., representing the same physical point, will vary greatly based on the distance of the points
to the origin of the sensor. We want to emphasize that the feature vector of a point itself is not
changing during consecutive ICP iterations, but its corresponding point can be chosen differently,
as the matching process also depends on their Euclidean distance (cf. Section 4.3). Thus, the distance
in feature space can be varying during the iterations.

(4) Transformation Estimation

In traditional ICP approaches, the transformation between point clouds is estimated by
minimizing the sum of the Euclidean distances between corresponding points, known as the
point-to-point distance. In our approach, we will not match points from the source point cloud
Pk with points in the target point cloud Pk−1, but rather match points of Pk with surface patches of
Pk−1. The goal is to minimize the distance between the points in Pk with the tangent plane of the
corresponding surface patch in Pk−1, known as the point-to-plane distance and given by the following
error metric:

E(Pk,Pk−1; Tk,k−1) =
N

∑
i=1

wi((Tk,k−1pi
k − pc(i)

k−1) · n
c(i)
k−1)

2. (10)

Herein, Tk,k−1 is the estimated transformation matrix; Pk is the source point cloud; Pk−1 is the
target point cloud; ni

k−1 is the surface normal according to target point; pi
k−1, wi is the weight vector;

and c is the vector containing the indices of the N corresponding points. Equation (11) gives the
expression to derive the final transformation matrix Tk,k−1:

Tk,k−1 =

[
Rk,k−1 tk,k−1

0>3 1

]
= argmin

Tk,k−1

E(Pk,Pk−1; Tk,k−1). (11)

In order to solve this optimization problem, we adopt the method proposed by Low et al. in [23].
In that paper, a method is derived to approximate the nonlinear optimization problem with a linear
least squares one in the case that the relative orientation between the two input point clouds is small.
Since we consider point clouds acquired in two consecutive sweeps, this assumption is guaranteed in
our case.

4.4. Global Registration

Once we have found the initial transformation Tk,k−1 between point clouds Pk and Pk−1, the next
step consists of fusing Pk with the current registered point cloud Wk−1. To this end, we first
transform Pk in the world coordinate system using the estimate of the current pose, which is given by
Ŝk = Tk,k−1Sk−1 resulting in P̂k = ŜkPk. As the point cloud P̂k is still not accurately aligned withWk−1,
we perform a second registration step based on ICP as explained in the previous section. However,
regarding the transformation estimation, the cost function that we want to minimize is now given by
Equation (12):

Sensors 2016, 16, 1923 12 of 23

Tk,w =

[
Rk,w tk,w
0>3 1

]
= argmin

Tk,w

E(P̂k,Wk−1; Tk,w). (12)

To find the correspondence points of P̂k in Wk−1, we can still use the criterion explained in
Section 4.3. However, as the world map is growing, it is practically infeasible to look in the entire
map for correspondences. Fortunately, this is not necessary as corresponding points in the map will
be located close to the newly-added point cloud P̂k, as this latter is already transformed with an
estimate of the current pose Ŝk. Therefore, we can first filter the map by means of frustum culling
using the oriented bounding box of the current sweep as a box filter extended with a small offset.
The principal axes of this oriented bounding box are already known as these are previously determined
by the accelerometer output. This box filtering will lower the processing speed without harming
the guarantee to find good point correspondences. As we cannot use the organized structure of the
separated point clouds any more after they have been fused with the point cloud map, we first create a
kd-tree of the points remaining after the box filtering. After the registration of P̂k withWk−1, we define
Sk = Tk,wŜk.

4.5. Map Fusion

After adding Pk to the former world model Wk−1, the point density in this world model will
increase. We can now refine the ideal topological space T ∗ and hence the local surface normals in
the global 3D map by re-estimating them using their new neighborhood. However, as this point
cloud contains noise and has an inhomogeneous point density, we will resample it using the moving
least squares (MLS) surface reconstruction algorithm [24]. In summary, this method will try to locally
approximate the underlying surface by higher order polynomial interpolations between surrounding
data points. Using these polynomials one can resample the point cloud and obtain more accurate
estimates for the surface normals. The procedure can be described as follows. Using the ideal
topological space T ∗, we have for each point p an optimal neighborhood V∗p , as well as the tangent
plane to p defined as Hp , [n, d]. For all points lying within this neighborhood, we can compute
the distance to this tangent plane. Subsequently, we fit a polynomial in the set of distances from
these points to the surface. To this end, we define a local approximation of degree m by a polynomial
p̃ ∈ Πm minimizing, among all p ∈ Πm, the weighted least-squares error of Equation (13):

∑
i∈I

(p(xi)− fi)
2θ(||pi − p||). (13)

In this equation, I is the vector of indices representing the points in V∗p ; {xi}i∈I are the orthogonal
projections of the points {pi}i∈I onto Hp; and fi , 〈pi, n〉 − d is the distance of pi to the tangent plane

Hp. Finally, θ(x) = e−(
x
σr)

2
represents the weighting function that is based on the distances to the

tangent plane and the average separation σr of the 3D points.
Once the parameters of the polynomials are known, we finally project the data points back on the

moving least squares surface. This procedure will hence manipulate the sampled data points in such a
way that they represent the underlying surface in a better way. In addition, we upsample the point
cloud using voxel grid dilation in order to fill small gaps. This latter procedure will first dilate a voxel
grid representation of the world model built using a predefined voxel size. After that, the resulting new
points are projected to the MLS surface of the closest point in the world point cloud. With time,Wk−1 is
becoming larger and larger, and as a result, the search for nearest neighbors becomes quite intractable.
For that reason, we store the map as an octree data structure. Using this octree, we can work on a
downsampled version of the point cloud mapWk−1. The main benefit of this octree representation
is that we can keep all points, but at the same time, we can freely choose the level of density
we want to use.

Sensors 2016, 16, 1923 13 of 23

4.6. Loop Closure

Detecting loops using the acquired point clouds would be too cumbersome, as it would take
ages to compare every newly-generated point cloud with the entire 3D map. For this reason,
we perform loop detection on the images of the Ladybug. We adopt the same strategy presented
in [25] (DBOW2) and improved by [1] (ORB-SLAM). More specifically, we adopt a bag of words (BOW)
implemented as a hierarchical tree that uses a visual vocabulary. This vocabulary is built offline using
ORB descriptors and converts an image into a sparse numerical vector. Each image is thus converted
into a bag of word vector that is used to compare it with other images and to measure the similarity.
This latter is conducted in the same way as described in [25]. In addition, an index is maintained that
stores for each word in the vocabulary the list of images where it is present. Doing so, we are able to
perform comparisons only against images that have some word in common with the query image.

T
s+1,s

sS

s+1
S

e-1
Ss+2

Ss+3

S

eS

Ts+2,s+1

s+3,s+2
T

Te,e-1

Δ

Figure 11. Overview of the loop closure procedure. When a loop has been detected, its loop transform
∆ is considered as an error and is propagated back in the pose graph. To this end, we use the
residual of the minimization step (cf. Section 4.3) to assign a weight to each link in the pose graph.
We assign a higher weight for those transformations that had a high residual in the previous
minimization step. The idea is that a high residual indicates that two consecutive point clouds
were potentially inaccurately aligned.

Let us assume that a loop has been detected between image set Ij and Ii. We now consider all
point clouds Pl captured in the interval [t(Ij), t(Ij+1)[(recall that there are ten sweeps in the interval)
and try to find the most similar point cloud Pk captured in the interval [t(Ii), t(Ii+1)[. As the sensor
could have visited the same location from different directions, it can happen that both ends of the loop
have different orientations. Therefore, we first determine the matrix Rk,l that describes the rotation
betweenPl andPk. It is important to note that we compute the transformation on the local point clouds,
which are expressed in their own coordinate system. The rotation estimation is a two-step process,
consisting of an initial rough alignment and a refinement step using the ICP algorithm. The two point
clouds Pl and Pk that have the lowest residual after the ICP step are considered the most similar point
clouds and are denoted by Pe and Ps, representing both ends of the loop. Their poses are respectively
Se and Ss. Next, the difference in pose, i.e., the loop transform, is given by ∆ = (Rs,eSe)

−1Ss. This loop
transform is considered as an error as both poses Rs,eSe and Ss should be equal. The next step consists
of propagating the error ∆ back in the pose graph. To this end, we use the residual of the minimization
step (cf. Section 4.3) to assign a weight ci,j to each link in the pose graph. We assign a higher weight
for those transformations that had a high residual in the previous minimization step. The idea is that a
high residual indicates that two consecutive point clouds were potentially inaccurately aligned. On the
other hand, the ICP process will have already been converging in the right direction. Next, we define
the distance between two poses Sk and Sl as d(Sk, Sl) = ∑i,j ci,j. Herein, {i, j} denotes the set of all

Sensors 2016, 16, 1923 14 of 23

edges in the path from Sk to Sl . Finally, we define a weight wi =
d(Ss ,Si)
d(Ss ,Se)

for each pose in the graph that
specifies the fraction of the matrix ∆ by which the pose has to be transformed. The poses Sk are than
updated replacing tk by tkwk∆ and Rk by slerp(Rk, wk∆). In this latter assignment, slerp denotes the
spherical linear interpolation function as described in [26]. A graphical representation of this loop
closure procedure is depicted in Figure 11.

5. Evaluation

To evaluate the system, we considered two different datasets. The first dataset we have captured
ourselves. It covers different environments, including a university campus and an industrial site.
The latter was captured at a chemical site of the Dow company in Terneuzen in the Netherlands.
In order to be able to compare our system with the state of the art, we also performed some experiments
on the well-known Kitti vision benchmark that was presented in [27].

5.1. Our Dataset

The first set of sequences was captured at a chemical site of the Dow company in Terneuzen.
This environment is part of a disused area that is planned to be demolished. It consists of many
pipelines that were formerly used to carry liquids or gases, as can be seen in Figure 3. Although this
environment seems outdoors, the GPS signal is far too unreliable due to the abundance of pipelines.
The acquired data consists of video sequences recorded with our Vellady platform. The speed of the
platform approximated walking speed, i.e., 4 km/h. Furthermore, accurate ground truth information
by means of terrestrial laser scanning was captured using a Leica system.(www.leica-geosystems.be)
An image of this ground truth point cloud is depicted in Figure 12. As we do not have ground truth
of the actual trajectory, we have to compare the reconstructed point cloud with the ground truth
point cloud. For this comparison, it is necessary that both point clouds are aligned. Hence, we will
first perform a rough alignment based on key points that we manually selected from both point
clouds. Subsequently, we perform ICP to align them in a fine way. The final residual of the ICP
process, i.e., the Euclidean distance between all closest point pairs, can be considered as a measure
for the accuracy of the reconstruction. The experiments demonstrated that the final residual of this
ICP process is approximately 2.1 cm for our reconstruction. However, as the closest point pairs
do not necessarily represent the same physical points in space, the ICP residual is not a perfect
measure for the evaluation of the accuracy. For that reason, we conducted another experiment in
which we use the dominant planes in the scene to make the comparison. More specifically, in both
point clouds, we estimate the parameters of the most dominant planes after which we determine
the corresponding planes. Subsequently, we compute for all inliers of the planes from the source
point cloud the distance to its corresponding plane in the target point cloud. We hence define
the average distance of two corresponding planes Hs , [ns, ds] and Ht , [nt, dt] as d(Hs, Ht) ,

1
|Ht | ∑pt∈Ht〈pt, ns〉 − ds. In addition, we also define the difference in angle of the two corresponding

planes as φ(Hs, Ht) , acos(ns · nt). The results are summarized in Table 2 for the eight most dominant
planes in the scene. The table shows that on average, the deviation in angle of two corresponding
planes is approximately 0.84◦, whereas the average distance between two planes is approximately
1 cm. In Figure 13, an image is depicted in which both the ground truth and estimated point cloud are
shown after alignment seen from a bird’s eye view. In Figure 14, the same models are depicted, but this
time after they have been projected onto the ground plane to make it easier to evaluate the accuracy.
Visually, there are little to no discrepancies noticeable between the two 3D point cloud models.

www.leica-geosystems.be

Sensors 2016, 16, 1923 15 of 23

Figure 12. Part of the ground truth 3D point cloud of the Dow chemical site acquired using a Leica
static terrestrial LiDAR scanning system.

Figure 13. Bird’s-eye view of the ground truth (black) and reconstructed (blue) point cloud aligned with
each other. Visually, one can see that the walls and edges of both point clouds are overlapping. This is
best visible in areas for which the ground truth point cloud has a LiDAR shadow due to occlusion.
The average distance of the corresponding dominant planes (cf. Table 2) is approximately 1 cm, whereas
the average deviation in angle is 0.84◦.

Sensors 2016, 16, 1923 16 of 23

Figure 14. 2D projection on the ground plane of both the reconstructed and the ground truth 3D model
in order to evaluate the accuracy qualitatively. To obtain the image, the ground plane was removed
from both point clouds, and a quantization in 2D cells was conducted. Brighter areas denote a higher
point density in the cell and, hence, emphasize the overlap of both point clouds. Visually, one can
notice little to no discrepancies as the walls and edges of both models are overlapping.

Table 2. The difference in angle between two corresponding planes φ(Hs, Ht) , acos(ns · nt)

(in degrees) and the average distance of two corresponding planes d(Hs, Ht) , 1
|Ht | ∑pt∈Ht

〈pt, ns〉 − ds

(in meter) for the eight most dominant planes in the scene.

Plane d(φg , φr) dµ(Hg , Hr)

1 0.759761 0.00818437
2 0.276246 0.00724192
3 1.12969 0.008299
4 0.286674 0.0115731
5 0.292083 0.0164202
6 0.492578 0.0106246
7 1.80667 0.0118678
8 1.68458 0.00993411

0.841036 0.0105181

By means of comparison, the trajectory of the mobile observer is plotted in Figure 15. Herein,
six plots are depicted representing the trajectories obtained by the visual structure from motion (SfM)
approach using SIFT features, presented in [28] (in red) and the trajectory obtained by our proposed
LiDAR mapping system (in blue). Each red graph is the result of the visual SfM method run on the
output of one camera of the Ladybug system. As can be clearly seen, many poses are missing for this
approach. This is due to the fact that sometimes too few good matches could be found between one
image and the others. As a consequence, the resulting point cloud of the visual SfM is far more sparse
than the one obtained by the LiDAR system. In addition, many outlier poses are present. The graphs
show that the performance of visual SfM is less compared to odometry and mapping using LiDAR data,
and hence, the former is less suited to obtain an accurate 3D model of the environment using a mobile
observer. Finally, Figure 16 shows an image of the estimated trajectory, as well as the obtained 3D
reconstruction using our proposed approach using the LiDAR data acquired by our Vellady platform.

Sensors 2016, 16, 1923 17 of 23

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5

z
[m

]

x [m]

Visual odometry

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5

z
[m

]

x [m]

Visual odometry

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5

z
[m

]

x [m]

Visual odometry

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5

z
[m

]

x [m]

Visual odometry

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5

z
[m

]

x [m]

Visual odometry

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5 0 5

z
[m

]

x [m]

Lidar odometry

Figure 15. Five plots of the trajectories estimated by the visual structure from motion (SfM) framework
presented in [28] using the images of each Ladybug camera separately (red color). The result of the
camera pointing upwards is omitted. The blue plot represents the trajectory estimated using our
method. For the visual SfM approach, many poses are missing due to the lack of good feature matches.
Moreover, many outlier poses are present.

Figure 16. Bird’s eye view of the obtained 3D reconstruction and trajectory of a data sequence captured
at the chemical site of Dow company using LiDAR data acquired by the Vellady platform. The blue
line is representing the estimated trajectory of the mobile observer.

Sensors 2016, 16, 1923 18 of 23

By means of further evaluation, a second set of sequences was captured at a campus of Ghent
University. Some example images of 3D reconstructions are shown in Figure 17. Unfortunately, there
is no ground truth available for these environments. Visually, we can see that the reconstructions
are adequate. The reconstructions of the indoor environment (images at the bottom) however have a
mirror effect due to the reflectance of the windows.

Figure 17. Some example images of the 3D reconstructions obtained by applying our algorithm on the
recordings of a campus of Ghent University.

5.2. Kitti Vision Benchmark

To further evaluate our system, we performed experiments on the Kitti vision benchmark
presented by A. Geiger in [27], currently one of the main benchmarks related to (visual) odometry.
For that benchmark, a van was driving in the streets of the German city Karlsruhe, thereby recording
data from different modalities, among them a Velodyne HDL-64e LiDAR scanner and a stereo camera
rig. To evaluate our odometry system, we ran our algorithm on the eleven test sequences that were

Sensors 2016, 16, 1923 19 of 23

recorded. Important to note is that the sensor set-up by which the sequences were captured differs
from our set-up in the sense that the LiDAR scanner was placed perpendicularly. In order to evaluate
our results quantitatively, we projected the ground truth and estimated poses on the ground plane as
is suggested by the Kitti vision benchmark. The plots of these trajectories are depicted in Figure 18.
Visually, the graphs show that our method is capable of approximating the ground truth in most cases.
For the very long sequences, the system suffers from drift as is inherent to the SLAM problem. These
results were also obtained without the loop detection and loop closure as described in Section 4.6.
Next, we derived the translational error et and rotational error er from the trajectories. In order to
evaluate both errors, the trajectories were quantized in intervals of length ∆. The sensor pose S f
corresponding with sweep f represents the first sensor pose of the interval, whereas Sl represents
the last sensor pose of the interval. For S f and Sl , the following condition is valid: ||t f − tl ||2 ≈ ∆.
We now define the difference of the two ground truth poses S f and Sl and estimated poses Ŝ f and Ŝl as
S∆ = S−1

f Sl and Ŝ∆ = Ŝ−1
f Ŝl , respectively. The final pose error E∆ is then given by Equation (14):

E∆ =

[
Re te

0>3 1

]
= Ŝ−1

∆ S∆. (14)

Finally, the rotational error er and translational error et are given by Equations (16) and (17):

d =
1
2
(tr(Re)− 1), (15)

er =
1
∆

acos(max(min(d, 1),−1)), (16)

et =
1
∆
||te||2. (17)

The graphs that summarize the translational and rotational errors for ∆ ∈ {100, . . . , 800} are
depicted in Figures 19 and 20. These graphs are the average numbers for the eleven different sequences
of the Kitti dataset. As can be seen, the rotational error decreases from 0.016◦ per meter to 0.006◦ per
meter when the path length ∆ increases from 100 to 800 meter. The translational error on the other
hand increases from 1% to 1.75% per meter for the path length increasing from 100 to 500. After that, it
stabilizes more or less. Regarding the translational error, our algorithm competes with the methods
ranked seventh to 20th in the Kitti vision benchmark. Figure 20 also shows the translational and
rotational errors for an increasing speed. The rotational error varies only slightly when the speed
increases. Regarding the translational error, we can see that it increases for higher speeds, which is
expected. For speeds higher than 70 km/h, the error increases drastically. The reason for this failure is
clear, as for higher speeds, consecutive point clouds begin to differ greatly from each other and no
good correspondences can be found. However, we want to point up that our 3D mapping system is
meant to operate in industrial plants or indoor environments where the speed of a mobile observer or
a drone is always limited. Our system can perfectly cope with speeds up to 30 km/h.

Moreover, our method is more generic, as it does not pose any restriction on the sensor set-up
nor any prior knowledge of the type of the scene. Furthermore, it does not rely on the detection of
the ground plane, and as a result, it does not need to be present in the LiDAR image. Although the
latter assumption could improve the accuracy of the system, we want it to be generic and applicable
in any environment and in combination with any sensor set-up. Finally, some example images of 3D
reconstructions using the Kitti benchmark are presented in Figure 21. These reconstructions are part of
the validation sequences for which no ground truth is provided.

Sensors 2016, 16, 1923 20 of 23

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-1500

-1000

-500

 0

 0 500 1000 1500

z
[m

]

x [m]

Ground Truth
Lidar Odometry

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Lidar Odometry

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Lidar Odometry

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Lidar Odometry

Figure 18. Eleven plots of the estimated (blue) and ground truth (red) trajectories of the Kitti benchmark
presented in [27]. The sequences “00” to “10” are presented from left to right and from top to bottom.
The algorithm was run without the loop detection and closure algorithm. The majority of the results
are satisfying.

Sensors 2016, 16, 1923 21 of 23

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 100 200 300 400 500 600 700 800

R
ot

at
io

n
Er

ro
r

[d
eg

/m
]

Path Length [m]

Rotation Error

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 10 20 30 40 50 60 70 80 90

R
ot

at
io

n
Er

ro
r

[d
eg

/m
]

Speed [km/h]

Rotation Error

Figure 19. Results of the Kitti vision benchmark showing the average rotation error of all test sequences.
Left: the rotation error is expressed as a function of the path length. Right: the rotation error is expressed
as a function of the speed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500 600 700 800

Tr
an

sl
at

io
n

Er
ro

r
[%

]

Path Length [m]

Translation Error

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90

Tr
an

sl
at

io
n

Er
ro

r
[%

]

Speed [km/h]

Translation Error

Figure 20. Results of the Kitti vision benchmark showing the average translation error of all test
sequences. Left: the translation error is expressed as a function of the path length. Right: the translation
error is expressed as a function of the speed.

Figure 21. Results of the Kitti vision benchmark showing 3D reconstructions of the validation sequences
“11”, “13”, “15” and “18” (left to right, top to bottom) for which no ground truth is provided.

6. Conclusions

In this paper, a novel mobile mapping system using a multi-modal sensor set-up was presented.
The platform is unique in the sense that it copes with the inhomogeneity of the point clouds produced
by LiDAR scanners. To this end, it integrates both an intensive surface analysis, as well as a global map

Sensors 2016, 16, 1923 22 of 23

that is continuously updated and improved. Moreover, loop detection is conduction using the output
of the Ladybug images, and a loop closure technique was proposed based on the output of the LiDAR
odometry. Experiments demonstrated that our system is able to reconstruct challenging environments,
such as chemical plants, and can compete with state of the art methods concerning LiDAR mapping in
the field of autonomous vehicles; cf. the Kitti vision benchmark.

Acknowledgments: This research is part of the project entitled Generic Interoperability Platform for Augmented
Reality Applications (www.iminds.be/en/projects/gipa) (GiPA), an ICON (www.iminds.be/en/calls/icon) project
co-funded by iMinds, a digital research institute founded by the Flemish Government. The project partner
is Grontmij, with project support from IWT (www.iwt.be/). The work was made possible by a cooperative
agreement that was administered by engineer Pieter Raes, project manager at Dow Benelux. The ground truth
was provided by the team of Steven Couwels, co-founder of Real to Desk (R2D).

Author Contributions: The research in this work was mainly conducted by Michiel Vlaminck, M.Sc. in Computer
Science and PhD candidate. The research is supervised by Hiep Luong and Wilfried Philips. They provided ideas,
inputs and feedback to improve the work. The development of the acquisition platform, i.e., the construction and
synchronisation of the sensors, was done by Werner Goeman.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Trans. Robot. 2015, 31, 1147–1163.

2. Caruso, D.; Engel, J.; Cremers, D. Large-Scale direct SLAM for omnidirectional cameras. In Proceedings of
the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 141–148.

3. Billings, S.D.; Boctor, E.M.; Taylor, R.H. Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm
for Computing Optimal Shape Alignment. PLoS ONE 2015, 10, e0117688.

4. Pomerleau, F.; Colas, F.; Siegwart, R.; Magnenat, S. Comparing ICP Variants on Real-world Data Sets.
Auton. Robot. 2013, 34, 133–148.

5. Han, J.; Yin, P.; He, Y.; Gu, F. Enhanced ICP for the Registration of Large-Scale 3D Environment Models:
An Experimental Study. Sensors 2016, 16, 228, doi:10.3390/s16020228.

6. Zlot, R.; Bosse, M. Efficient Large-Scale 3D Mobile Mapping and Surface Reconstruction of an Underground
Mine. Field Serv. Robot. 2012, 92, 479–493.

7. Bosse, M.; Zlot, R.; Flick, P. Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to
Mobile Mapping. IEEE Trans. Robot. 2012, 28, 1104–1119.

8. Nüchter, A.; Lingemann, K.; Hertzberg, J.; Surmann, H. 6D SLAM—3D Mapping Outdoor Environments:
Research Articles. J. Field Robot. 2007, 24, 699–722.

9. Hong, S.; Ko, H.; Kim, J. VICP: Velocity updating iterative closest point algorithm. In Proceedings of the
2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, 3–8 May 2010;
pp. 1893–1898.

10. Gressin, A.; Mallet, C.; Demantké, J.; David, N. Towards 3D LiDAR point cloud registration improvement
using optimal neighborhood knowledge. ISPRS J. Photogramm. Remote Sens. 2013, 79, 240–251.

11. Moosmann, F.; Stiller, C. Velodyne SLAM. In Proceedings of the IEEE Intelligent Vehicles Symposium,
Baden-Baden, Germany, 5–9 June 2011; pp. 393–398.

12. Sarvrood, Y.B.; Hosseinyalamdary, S.; Gao, Y. Visual-LiDAR Odometry Aided by Reduced IMU. ISPRS Int.
J. Geo Inf. 2016, 5, doi:10.3390/ijgi5010003.

13. Segal, A.; Hähnel, D.; Thrun, S. Generalized-ICP. In Robotics: Science and Systems; Trinkle, J., Matsuoka, Y.,
Castellanos, J.A., Eds.; The MIT Press: Cambridge, MA, USA, 2009.

14. Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 27 October–1 November 2003; pp. 2743–2748.

15. Sun, Y.X.; Li, J.L. Mapping of Rescue Environment Based on NDT Scan Matching. In Proceedings of the
2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Hangzhou,
China, 22–23 March 2013; Volume 760, pp. 928–933.

www.iminds.be/en/projects/gipa
www.iminds.be/en/calls/icon
www.iwt.be/

Sensors 2016, 16, 1923 23 of 23

16. Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT.
J. Field Robot. 2007, 24, 803–827.

17. Einhorn, E.; Gross, H.M. Generic NDT Mapping in Dynamic Environments and Its Application for Lifelong
SLAM. Robot. Auton. Syst. 2015, 69, 28–39.

18. Zhang, J.; Singh, S. LOAM: LiDAR Odometry and Mapping in Real-time. In Proceedings of the Robotics:
Science and Systems Conference (RSS), Berkeley, CA, USA, 13–15 July 2014.

19. Zhang , J.; Singh, S. Visual-LiDAR Odometry and Mapping: Low-drift, Robust, and Fast. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, DC, USA,
26–30 May 2015.

20. Pathak, K.; Birk, A.; Vaskevicius, N.; Poppinga, J. Fast Registration Based on Noisy Planes with Unknown
Correspondences for 3D Mapping. IEEE Trans. Robot. 2010, 26, 424–441.

21. Grant, W.; Voorhies, R.; Itti, L. Finding Planes in LiDAR Point Clouds for Real-Time Registration.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo,
Japan, 3–7 November 2013; pp. 4347–4354.

22. Xiao, J.; Adler, B.; Zhang, J.; Zhang, H. Planar Segment Based Three-dimensional Point Cloud Registration
in Outdoor Environments. J. Field Robot. 2013, 30, 552–582.

23. Low, K.L. Linear Least-Squares Optimization for Point-to Plane ICP Surface Registration; Technical Report 4;
University of North Carolina: Chapel Hill, NC, USA, 2004.

24. Levin, D. The Approximation Power of Moving Least-squares. Math. Comput. 1998, 67, 1517–1531.
25. Galvez-Lopez, D.; Tardos, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences.

IEEE Trans. Robot. 2012, 28, 1188–1197.
26. Shoemake, K. Animating Rotation with Quaternion Curves. SIGGRAPH Comput. Graph. 1985, 19, 245–254.
27. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite.

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI,
USA, 16–21 June 2012.

28. Wu, C. Towards Linear-Time Incremental Structure from Motion. In Proceedings of the 2013 International
Conference on 3D Vision, Sydney, Australia, 1–8 December 2013; pp. 127–134.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System
	Acquisition Platform
	Terminology
	Reference Coordinate System
	Problem Statement

	Approach
	2D Projection
	Surface Analysis
	Local Registration
	Global Registration
	Map Fusion
	Loop Closure

	Evaluation
	Our Dataset
	Kitti Vision Benchmark

	Conclusions

