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Abstract: This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect
several chemicals using the microwave frequency range. The frequency response of the presented
SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel,
which also causes a difference in the effective permittivity. The fluidic channel on this structure is
either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is
always a different resonant frequency when any chemical is injected into the fluidic channel. The
maximum amount of chemical after injection is held in the center of the SIW structure, which has the
maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this
research is achieved by perturbing the electric fields of the SIW structure.
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1. Introduction

In the modern era, chemicals in the fluidic state have been used in diverse industrial applications.
These fluidic chemicals are normally classified and stocked as per policies of globally harmonized
systems (GHS) which have regulations for labeling and categorization of fluidic chemicals, and also the
Material Safety Data Sheet (MSDS). However, unlabeled or non-categorized liquid fluids frequently
occur in experimentations. Quite a few of these liquids are unsafe for human health and the body.
For instance, methyl alcohol is injurious to the human nervous system and can be a cause of severe
medical conditions such as coma, blindness or immediate death if it is inhaled [1]. Consequently, the exact
quantification or detection of chemical fluids used in many industrial applications is very important.

For analyzing chemicals or manipulating them using infinitesimal quantities, we have
microfluidics as a valuable tool and the proposed method for applications such as analyses of blood
and bioassays, and for monitoring industrial value or quality of service [2–6]. Previously, the methods
engaged for examining bioassays and assessing liquid quality required huge volumes of fluidics to fill
the valves or the tubing [7,8]. A large quantity of those liquids was unused, discarded and never used
for experimental needs. For eradicating this issue of wasting unused fluidic chemicals, microfluidic
arrangements were announced. Analysis of the chemicals or fluids can now be achieved on absolutely
small volumes, normally at the microliter or nanoliter range of liquids. It is very promising due to
the colossal combination of detection and interface electronics, fluidic management geometries, and
micrometer-sized fluidic channels on a single chip [6]. Recent advancements in waveguides have
enabled miniaturization and integration with optical, fluidic and electronic components in a chip for
chemical sensor technology [9–11]. Some of the newly addressed liquid-integrated RF (radio frequency)
structures are using fluids as a new and reusable dielectric material for antennas, RF resonators or
transmission lines [12–14].
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A substrate-integrated waveguide (SIW) structure is illustrated in Figure 1; the SIW is a promising
candidate for advancements in the planar RF structures used for applications in wireless systems and
many more [15–21]. Figure 1 shows that the SIW construction contains two rows of vias (cylindrical
conductor) joining the top and bottom plane, and in between the structure is sealed with any low-loss
dielectric material [22]. SIW components have been extensively utilized due to their easy integration
and simple fabrication, coupled to the advantages of a planar printed circuit board (PCB) and metallic
waveguide. As relates to the microstrip lines (MSLs) and coplanar lines, SIW components are easy
to handle, cost-effective, simple in fabrication, compact and lighter. SIW geometries also have the
properties of classic metal waveguides, i.e., the maximum quality factor (QF), lowest losses, proper
shielding and all-out power-handling ability. The biggest advantage of this waveguide structure is
that it allows you to fabricate a complete circuit in a planar formation of coalescing circuits, transitions,
four-sided waveguides and planar antenna configurations by means of classic PCB technology.
Additionally, SIWs also allow you to install one or more than one chipset on the same structure material,
so it can easily be incorporated with different systems having different parameters, also decreasing
overall losses. System-on-substrate (SoS) is an excellent candidate for evolving high-performance,
easy-to-fabricate and cost-effective mm-wave (millimeter) elements. Lately, some significant works
have been reported in the literature towards the study of the miniaturization of SIW technology [23].
This widespread research drive has led to the improvement of exclusive design approaches for SIW
contrivances, and some new procedures and techniques have also been proposed to make it more
efficient and reusable [24].
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surfaces easily. PDMS has a low dielectric constant (2.67) and a high loss tangent (0.0375) [26]. As 
discussed above, RF components also allow the integration of fluidic channels for different sensing 
applications. A microwave and fluidic resonator sensor was presented in [13]. The advantage of a 
fluidic channel is that it creates a convenient environment to gather measurement data from a 
nanoliter amount of liquid. This implies that the resonant frequency of an RF circuit can be switched 
and sensed by the injection of a nanoliter liquid.  
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provides various advantages: (1) low loss; (2) a high quality (Q)-factor; and (3) a light weight, as 

Figure 1. Illustration of SIW structure.

Polydimethylsiloxane (PDMS), a commercial silicone elastomer with a low Young’s modulus
(<2 MPa), has been routinely used for constructing fluidic geometries [25]. It is very flexible and
contains a low surface energy and low modulus; these assets permit it to be adaptive in attaching
to surfaces easily. PDMS has a low dielectric constant (2.67) and a high loss tangent (0.0375) [26].
As discussed above, RF components also allow the integration of fluidic channels for different sensing
applications. A microwave and fluidic resonator sensor was presented in [13]. The advantage
of a fluidic channel is that it creates a convenient environment to gather measurement data from
a nanoliter amount of liquid. This implies that the resonant frequency of an RF circuit can be switched
and sensed by the injection of a nanoliter liquid.
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In our research, a non-contact fluidic SIW cavity resonator is proposed for chemical
sensing. The initial structure is designed using substrate-integrated waveguide (SIW) technology,
which provides various advantages: (1) low loss; (2) a high quality (Q)-factor; and (3) a light weight,
as mentioned earlier [22]. In our proposed research, a fluidic channel is constructed on the PDMS slab,
which is then incorporated between two layers of the SIW on the top and bottom to achieve a higher
frequency-shifting ability. Hence, the resonant frequency of the structure is widely influenced by the
injection of a very small amount of liquid sustained at the center position of the SIW inside the fluidic
channel. The microwave cavity structure can be seen in the literature [27].

2. SIW Sensor Design

SIW planar structures are simple in fabrication and can be cascaded with millimeter-wave and
microwave-integrated circuits (ICs) as printed circuit boards (PCBs). Electric field distribution of a SIW
cavity structure is given in Figure 2. It is clearly seen from Figure 2 that the highest magnitude of the
electric field is concentrated towards its center. In this work, the SIW cavity resonator is used because
of its easy fabrication, low parasitic loss, and high Q factor [28,29]. Its resonant frequency is dependent
on the effective dielectric constant of a substrate. In addition, its effective dielectric constant can be
changed by injecting chemicals inside the SIW cavity. Therefore, the proposed SIW sensor can detect
the dielectric constant of different chemicals from the variation of the resonant frequency. The layers
of the proposed SIW chemical sensor are shown in Figure 3. A fluidic channel is constructed on the
middle layer (PDMS slab of 1 mm thickness) at a location which corresponds to the center of the SIW
(extreme e-field). The proposed structure has three layers, as shown in Figure 3; two of them (top and
bottom) are built on the substrate of RT/Duroid 5870, which has a permittivity (εr) of 2.33 and a height
h of 0.79 mm. In order to bond three layers, two bonding layers are used. When the height h is way
smaller than the width WSIW and length LSIW, the dominant mode of the operating frequency of the
SIW cavity is given as:

fmn =
1

2π
√
µε

√(
mπ

WSIW

)2
+

(
nπ

LSIW

)2
(1)

where ε is the permittivity, µ is the permeability of the dielectric material, m and n are the modes of the
SIW cavity. The designed SIW is illustrated in Figure 4 and its geometrical parameters are given in
Table 1.
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Table 1. Design parameters of the proposed SIW chemical sensor.

Parameter Dimension (mm) Parameter Dimension (mm)

a (also WSIW) 25 f 9.95
b 30 g 2.7
c 35 i 0.5
d 12.5 w 2.24

e (also LSIW) 10
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As seen in Figure 4, the PDMS layer is a sandwich between two Duroid layers and it has a fluidic
channel (E-shaped) constructed so as to occupy the maximum possible liquid towards the center of
the SIW cavity. The width and depth of the fluidic channel are kept to 0.5 mm. The E-shaped channel
design in the center is chosen to avoid air gaps inside the channel (achieving complete sustainability)
and the width of the channel is maintained the same throughout for smooth flow of the liquids inside
the channel. Several chemicals are injected into the fluidic channel and their respective frequency
responses are recorded.

3. Simulation Results

A full-wave simulation was carried out using an HFSS (high frequency structure simulator). The
PDMS sheet of 1 mm thickness is characterized and its electrical properties are used to define a material
in the HFSS. Ethanol and DI (deionized) water are also characterized at 18 GHz frequency and are
used to fill the fluidic channel in order to validate our design and idea of sensing chemicals in the
microwave frequency range. The simulated reflection coefficients of the ethanol and DI-water-filled
chemicals and their distinct frequency responses are plotted in Figure 5.

Figure 5 shows three different frequency responses. When the channel is empty (air only),
the resonant frequency is 17.08 GHz. When the channel is filled with DI water and ethanol, the resonant
frequency is changed to 14.95 GHz and 15.56 GHz, respectively. Therefore, it is expected that this
structure can work as a chemical sensor to detect several chemicals with different permittivity.
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4. Experimental Demonstration

Figure 6 is a snapshot of the proposed sensor prototype. The top and bottom layers are fabricated
using a PCB etching process, and the middle layer PDMS (with the fluidic channel) is made using
a laser etching machine. In order to bond the Duroid 5870 substrates and PDMS, we used ARcare®92848
manufactured by Adhesives Research, Inc. (Pennsylvania, PA, USA) for the adhesive bonding film.
This film is used in biosensor spacers and general diagnostic device bonding. After bonding all layers,
we drilled holes in order to make metallic vias. Next, silver pins are inserted into the empty holes.
Finally, pins are connected to the top and bottom conductive patterns of the Duroid substrate by
soldering them.
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Two inlet/outlet ports are installed to simplify the injection of the chemicals into the fluidic
channel of the middle layer (PDMS). One is used as an inlet and another is used as an outlet, confirming
that the chemical has completely filled the fluidic channel. Seven different chemicals are injected
one by one in the fluidic channel and the frequency responses are recorded using an HP 8510C VNA
(Vector Network Analyzer) (Hewlett Packard (HP), Palo Alto, CA, USA). Dielectric constants of seven
chemicals (DI water, acetonitrile, methanol, ethanol, acetone, propanol and hexane) in 13–18 GHz
are extracted from the measurement results as listed in Table 2. Because their dielectric constants are
different, it is expected that their resonant frequencies must be different each other. If the effective
dielectric constants of the chemicals are same, it is difficult to detect the chemicals, which is a limitation
of the proposed idea. After each chemical’s response is measured, the sample is drained completely
from the channel to avoid cross-contamination occurring between any two chemicals. The measured
reflection coefficients of the seven chemicals are plotted in Figure 7. Because each chemical has
a different dielectric constant, it gives a different resonant frequency.

Table 2. Extracted dielectric constants of chemicals in 13–18 GHz.

No. Chemicals Dielectric Constant (εr)

1 DI Water 79
2 Acetonitrile 42.3
3 Methanol 36.3
4 Ethanol 29.4
5 Acetone 25.2
6 Propanol 2.8
7 Hexane 2.3

It is reported that low-solubility solvents can be used with PDMS without swelling [30].
In addition, the swelling ratio is dependent on the solvent vapor exposure time [31]. Therefore,
the repeatability of the proposed sensor is experimentally demonstrated by sequentially injecting,
extracting and drying it five times. Fast and slow processes are performed with methanol and acetone
as test #1 and #2, respectively. Figure 8a shows the resonant frequency variation at each time point for
test #1. After injecting methanol or acetone in the channel of the chemical sensor, we extracted the
chemical from the channel after 10 s. We dried the empty channel for 20 s using hot air. We performed
this sequence five times. In the fast process with both methanol and acetone, the resonant frequency at
the empty channel was 17.15 GHz and it did not change, although the channel was reused, as shown
in Figure 8a. In addition, as shown Figure 8c,e, the resonant frequencies at the methanol- and
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acetone-filled channels were not changed, although repeatedly tested. Figure 8b shows the resonant
frequency variation at each time for test #2. After injecting methanol or acetone in the channel of the
chemical sensor, we extracted the chemical from the channel after 500 s. It is observed from Figure 8b
that the resonant frequency with methanol was changed from 15.17 to 15.28 GHz after 500 s. Similarly,
the resonant frequency with acetone was changed from 16.24 to 16.37 GHz after 500 s. Therefore,
the proposed sensor is unreliable in the slow process. After extracting the chemical, we dried the
empty channel for 20 s using hot air. In the second sequence, the resonant frequency with the empty
channel was changed to 17.11 GHz while the resonant frequency was 17.15 GHz in the first sequence.
It is observed from Figure 8d that the resonant frequencies with the methanol-filled channel were
15.17, 15.28, and 15.40 GHz for the first, second, and third sequence of the slow process. It is observed
from Figure 8f that the resonant frequencies with the acetone-filled channel were 16.24, 16.37, and
16.52 GHz for the first, second, and third sequence of the slow process. Therefore, the proposed
chemical sensor can be repeatedly used when chemicals are extracted in 200 s after injection. The
measurement results validated the sensing mechanism successfully and it is demonstrated from the
results that our proposed SIW chemical sensor is non-contact, it can detect several chemicals at the
microwave frequency range and it can also be re-used multiple times. Chemical identification and
purity determinations can be done much better with ESI mass spectrometry or colorimetric tests [32,33].
Nevertheless, the proposed RF technology still has benefits because the proposed chemical sensor is
non-contact and reusable. The fabrication process is much simpler than other non-RF chemical sensors.
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In Figure 9, the measured relative frequency change (∆f /f 0) is plotted at the dielectric constant (εr)
of each chemical. In order to see the linearity of the proposed sensor, the calibration curve is plotted.
It is observed from Figure 9 that the relationship between ∆f /f 0 and εr is close to y = 0.0023x + 0.0076
from εr = 2.3 to 79. Linearity cannot be satisfied in all chemicals because the frequency is not linearly
proportional to the dielectric constant, as shown in Equation (1). When sensitivity Sε is defined by the
slope angle of the calibration curve, it is 0.0023 mm−1.

Sε =
δ (∆ f / f0)

δ (εr)
[mm−1], (2)

where ∆f is the frequency shift between an empty state and a chemical-filled state (∆f = f empty − f chemical);
f 0 is the frequency at the empty channel state; and εr is the characterized dielectric material of the
chemical in Table 2.
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test #1 with acetone; (f) measured reflection coefficients of test #2 with acetone. 

Figure 8. Repeatability test of the proposed SIW chemical sensor for methanol and acetone:
(a) frequency variation of test #1 (fast injection and extraction process); (b) frequency variation of test
#2 (slow injection and extraction process); (c) measured reflection coefficients of test #1 with methanol;
(d) measured reflection coefficients of test #2 with methanol; (e) measured reflection coefficients of test
#1 with acetone; (f) measured reflection coefficients of test #2 with acetone.



Sensors 2016, 16, 1829 9 of 11
Sensors 2016, 16, 1829  9 of 11 

 

 
Figure 9. Sensitivity of the proposed SIW chemical sensor. 

5. Conclusions 
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experimentally demonstrated in 14 to 18 GHz. Nanofabrication technology enables the system size 
to be much smaller by increasing the operating frequency to terahertz bands. Therefore, the 
proposed idea can be commercially used as a chemical sensor for chemistry laboratory applications 
where the identification of chemicals is required to manage the chemical shelves or categorize them 
with respect to their level of hazard. 
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Figure 9. Sensitivity of the proposed SIW chemical sensor.

5. Conclusions

It is successfully demonstrated that the resonant frequency of a SIW structure is influenced
enormously when any of the chemical is injected in the fluidic channel on the PDMS layer of the
structure. It makes the proposed microwave sensor highly sensitive, non-contact and reusable, and
it is also compact in size. The feasibility of the proposed sensor is numerically and experimentally
demonstrated in 14 to 18 GHz. Nanofabrication technology enables the system size to be much
smaller by increasing the operating frequency to terahertz bands. Therefore, the proposed idea can be
commercially used as a chemical sensor for chemistry laboratory applications where the identification
of chemicals is required to manage the chemical shelves or categorize them with respect to their level
of hazard.
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