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Abstract: The conventional method of grading Harumanis mango is time-consuming, costly and
affected by human bias. In this research, an in-line system was developed to classify Harumanis
mango using computer vision. The system was able to identify the irregularity of mango shape and
its estimated mass. A group of images of mangoes of different size and shape was used as database
set. Some important features such as length, height, centroid and parameter were extracted from
each image. Fourier descriptor and size-shape parameters were used to describe the mango shape
while the disk method was used to estimate the mass of the mango. Four features have been selected
by stepwise discriminant analysis which was effective in sorting regular and misshapen mango.
The volume from water displacement method was compared with the volume estimated by image
processing using paired t-test and Bland-Altman method. The result between both measurements
was not significantly different (P > 0.05). The average correct classification for shape classification
was 98% for a training set composed of 180 mangoes. The data was validated with another testing set
consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating
the performance of mass estimation. The average success rate of the classification for grading based
on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a
great potential in automatic fruit sorting according to its shape and mass.

Keywords: machine vision; mango; Fourier descriptor; disk method; shape; volume estimation;
image processing; mass estimation

1. Introduction

External quality of an agricultural product is the first criterion used by consumers beforehand
in determining its eating quality. External quality can be described as the quality of the fruit as
described by its color, texture, size, shape and visual defects [1]. These parameters are the proper
standards for grading and classifying of the product before sale to the consumer. Harumanis
mango—which is the most famous fruit at Perlis Province in Malaysia—has a very high value in
the export market. The increasing demand from local and overseas consumers requires the process of
classifying and sorting the mango to be more stable, accurate, non-destructive and fast. The current
method of weighing Harumanis mango is done manually using a scale, while classifying the bad and
normal shape was done by human labor. This method proves to be time-consuming, inefficient and
labor intensive.
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There are two common methods of measuring the volumes of agricultural products and
foodstuffs [2]. First is the liquid displacement method—which is the easiest and simplest way.
The object will be immersed in liquid and the displacement will be measured, but the product
may be damaged during the process. This method is inaccurate, especially for fragile or porous
objects [3,4]. The gas displacement method preserves the condition of the food and leaves it intact,
but it is not suitable for a fast measurement system. Most fruits have an irregular shape, but they can
be described as having a standard shape such as round, oblong, and elliptical. The uniformity of the
presumed shape of the fruit will determine the accuracy of the estimated volume. Model equations
were developed to estimate the volume of citrus and kiwi fruit by using the length and major and
minor diameters [5,6]. Another model was developed using geometrical features to estimate the mass
of mangoes (cv. ‘Manila’) [7]. The predicted value and the measured value have a high correlation
(R2 = 0.93). However, both methods used mechanical means to measure the required dimensions.
The measurement methods were subject to human error and an inefficient approach for sorting a large
quantity of product.

A classifying system which can rapidly calculate the volume is needed by the commercial sorter
industry. The system also needs to be cheap and easy to implement in the available machinery.
Structured light projection [8,9] has the potential to give accurate estimated volumes. However,
it needs extra hardware to be interfaced with the computer, leading to additional high costs. Machine
vision has gained much interest from many researchers in determining the volume and mass of
agricultural products. Forbes developed a machine vision algorithm using a neural network to
estimate the volume of pears [10]. The RMS percentage error was slightly reduced when multiple
images were used compared to the single image analysis. Another method to obtain the volume is by
using the ellipsoidal method. Omid [11] divided citrus fruit images into numbers of elliptical frustums.
The volume then calculated by summing all the individual volume frustums. The results show that the
computed volume has some good agreement with the actual volume. Koc [12] also used this method to
determine the volume of watermelons. Both methods used samples that can be categorized as spherical
shapes, thus only one dimension was measured and use to estimate the volume. Chalidabhongse [13]
used multiple cameras to capture multiple silhouette images of mango. These images were then used
to obtain a 3D volume reconstruction of the mango. However, the experiment setup can only be
applied as an offline system.

Shape is another factor that mostly been used to measure the quality of fruit during the
grading and classification process. This process is usually done in the packing house, where the
graders will judge the fruit shape base on the difference from the normal characteristic shape of the
variety. Abnormality in shape mostly leads to rejection of foreign consignments [14]. Misshapen and
malformation are the most common words to describe a product’s poor symmetry and abnormal
concavities [15]. A fast and effective machine vision system is needed to grade the Harumanis mango.
There are two main categories to characterize fruit shape which are size dependent measurements
and size independent measurements [14]. Size-dependent measurements are a combination of size
measurement features such as roundness, elongation, eccentricity and others. The combination
will form a descriptor which can describe the regularity of the fruit shape. For size independent
measurements, boundary-based and region-based method is used to analyze the shape of the fruit.
Some methods developed using this concept include the Fourier descriptor (FD), Chain code and
Wavelet descriptor. The Fourier descriptor method mostly been used to obtain the shape characteristics
of fruit because it is computationally inexpensive, robust and each of its FD have meaning [16].

The objective of this research was to develop a rapid, real-time automatic classification and
grading method for Harumanis mango using machine vision based on its shape pattern and estimated
mass. A conveyor machine was used to transport the mango to each station. An algorithm was
developed to grab the image and analyzed the shape, volume, and mass of the mangoes on the in-line
system. Mango with defective shapes will be classified as reject fruit while the normal shaped fruit
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will be graded into three categories according to its volume. The system has been fully tested in the
Perlis Department of Agriculture to grade their Harumanis mango production.

2. Materials and Methods

One hundred and eighty Harumanis mangoes were randomly picked at an orchard managed by
the Perlis Department of Agriculture, Malaysia. All the mangoes picked had been harvested in the
past 24 h. Each sample was measured using a caliper to obtain its dimensions including maximum
length, maximum wide and maximum height. The measurement was taken with an error of ±1.0 mm.
The measurements were used to compare the image measurements with the real measurements.
Each mango was weighed using a precision digital scale (PL1502E portable balance, Mettler Toledo,
Greifensee, Switzerland) with ±5 g accuracy. The water displacement method was used to measure
the actual volume of each mango. A square container was filled full with water. The mangoes were
submerged into the container and the volume of water displaced by the mango was measured using a
1000 mL beaker.

2.1. Element of Machine Vision

The image capturing platform as shown in Figure 1a consists of a rectangular box made from
PVC-coated aluminum with dimension of 100 cm × 60 cm × 100 cm, a CMOS camera (a 2 megapixel
acA1600-60gc digital camera with 4.5 µm × 4.5 µm pixel size, Basler, Ahrensburg, Germany) with
a GigE interface and four LED light sources (20 W). A lens with 8 mm focal length was attached to
the camera. A computer of 8 GB RAM memory and 3.2 GHz processing speed was installed with the
LabVIEW 2012 (National Instruments, Austin, TX, USA) visual programming language. The platform
was placed on a conveyor system. The box was made to ensure fully isolated conditions which prevent
outside lighting. The camera was mounted perpendicular to the conveyor surface with a height of
45 cm above the conveyor. With the GigE interface, images’ raw data were packed and send through
the Ethernet cable to the computer with speeds up to 1000 Mb/s. After a data packet had been received,
the NI-IMAQdx driver extracted the image and passed it to the program. The entire light source
mounted on top of the box with the direction facing downward to the conveyor surface. Figure 1b
shows the setup inside the platform. The direction was adjusted to avoid any bright spots and specular
reflection on the mango. LED bulbs were used rather than compact fluorescent (CFL) bulbs because
they did not produce any flicker effect. This allowed each captured image to have a constant luminance
which simplifies the process of identifying and analyzing the mango. A plane reflected mirror was
mounted on the conveyor with the angle of 65◦ from the conveyor surface. This mirror provides the
side view of the mango, hence allowing the side view to be captured by the camera.
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Each mango was placed on white background tray which enhanced the contrast between the
object and the background. These trays traveled from loading area to capturing platform and finally to
the sorting area by means of a conveyor. The conveyor was designed with a closed loop rectangular
path system. The camera has a frame rate up to 60 frames per second (fps) which allows the image to
be captured as if it was in a static state. Movement of the conveyor and the actuator was controlled by
the computer using the Compact-RIO module (National Instruments, Austin, TX, USA).

A data flow programming language or known as G-language was developed along with the
graphical user interface (GUI) to control the movement of the conveyor and capture the images of the
mangoes. The program was constructed and written specifically for this application by optimizing
the parallel programming capability of the software to control the hardware and process the data
simultaneously. All important steps involved in detecting shape regularity and volume estimation of
mango are shown in Figure 2. The first step was for image acquisition and pre-processing. The second
step was for pixel measurement which then used for measurement calibration. The third step was for
calculating the physical features extraction such as centroid, area, length, width, height and perimeter.
The fourth step was for calculating the size-shape features and Fourier-shape features. Two most
important steps were the stepwise discriminant analysis stage and the volume and mass estimation
stage. Discriminant analysis was used to select the most important features that can determine the
shape regularity of the mango. The misshapen shape mangoes were classified as reject while the
regular shape mangoes were analyzed again to determine its volume and mass. Then the mangoes
were graded into three grades according to their mass.
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2.2. Image Acquisition

Each tray has a RFID card which was used for tray identification and data validation at every
station. As soon as a tray is detected by the RFID reader at the image capturing platform, the program
will trigger the camera to capture the images. The 2-megapixel camera can capture a high-quality
image with a resolution of 1600 pixels × 1200 pixels. The drawback of the high-quality image
was the time taken for the data to be transferred to the computer—which can take up to 1 s.
This duration is intolerable when developing a rapid online system. By reducing the resolution
to 1600 pixels × 850 pixels, it only takes 300 ms to capture and transfer the image data packets.

The conveyor did not stop during the acquisition, and the tray traveled along the conveyor with a
speed of 0.8 m/s. In each acquisition, two objects were seen in the image which was the view from the
top and the view from the side of the mango as in Figure 3. This was the major achievement of the
system which reduced the usage of camera and time needed to obtain two different views at the same
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time. The side view of mango was obtained from the image reflected by the mirror. The information
of each mango was stored in the buffer and tagged with the ID number of the RFID card in their
respective tray.Sensors 2016, 16, 1753 5 of 17 
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Figure 3. The top view and side view of mango captured by the camera in a single image.

2.3. Image Pre-Processing

At first, a segmentation process was done to separate the mango from the background. The image
was split into two parts. The first part shows the top view of the mango while the second part shows
the side view of the mango. The images need to be separated as the pre-processing method is different
for each of them. The top view image of a mango has high contrast and very low noise. The white
background has high R, G and B values in RGB coordinate while the mango has a low value of B.
The original image was converted to a grayscale image by extracting the B value of the image as
in Figure 4b. The B value has a range of 0 to 255. From the grayscale image, the multiple global
threshold technique was used to eliminate the background and the stem [17]. Pixel values less than
90 were converted to 0 (black) and pixel values higher than 90 were converted to 255 (white) [12].
Another threshold value was selected to eliminate the stem, which pixel values in the range of 0 to
20 were converted to 255 (white). Dark spots and dirt on the mango, and the conveyor belt outside
the tray area can produce some random noise on the image. A small particle removal method was
used to remove any small connected components that have lower pixel values than a predefined value.
This method only retained the large object which was the mango. An image fill holes algorithm was
used to fill any holes inside the mango area which might form during elimination of the dark spot and
dirt. The resulting image was in binary format image as in Figure 4c, where the white areas represent
the background and the dark areas represent the object which is the mango. Figure 4d shows the shape
boundary of the mango after a thinning process [18]. The Fourier descriptor method was then used to
analyze the shape of mango for any abnormalities by using the thinning image.
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The side view image has low contrast as it is the reflection from the mirror. Furthermore,
some amount of shadow was seen from the side view as the mango obstructs the light from above.
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An additional pre-processing step was needed to eliminate the shadow and obtain the shape of the
mango. Three repetitive global thresholds, first on the B band, second on G band and last on the
B band with different threshold values were applied. A median filter of size 7 pixels × 7 pixels was
used to remove the boundary of the shadow [19]. The binary image was used to crop the original
images for the next global threshold step. Figure 5c shows the final image after the correction process.Sensors 2016, 16, 1753 6 of 17 
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Figure 5. Image processing step involves in background removal for side view image. (a) Original
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2.4. Measurement Calibration

Measurement calibration was determined using the scale of aerial photograph model. Cohen [20]
explained that the scale of aerial photograph is a function of the flying height of the camera and
focal length of the camera. It is most referred to as the conversion between the number of units on
the ground and the equivalent unit of distance on the photograph. This model can be applied in
this research with some modification as the working method for both of them is similar. The model
uses focal length of a lens to calculate the magnification of distant object with no image distortion.
The equation model as in Equation (1), calculates the object size by using the product of image size
(pixels), pixel size, and the distance between the camera lens and object plane then divides it by the
focal length of the lens. Figure 6 shows the concept of scale magnification used in this research.

Object size = (Image size × Pixel size × Distance)/Focal length (1)
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Koc [12] in his research indicated that as the size of the object increased, the volume estimated
by the image processing was exaggerated. This phenomenon was caused by the change in distance
of the object from the camera. Koc calibrated the measurement only once during his research which
contributed to the error. In order to eliminate this error, the calibration was done in each image
capturing process. The first step was to obtain the height of the mango from the side view image.
The calibration for the side view image was done only once as the height between the camera and
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the mirror was constant as in Figure 6b. Mango placement was always in the center of the platform.
One of the characteristics of the plane mirror is that the distance between the object and the mirror is
identical to the distance between the image and the mirror. Hence, the reflected image was calibrated
by combining the distance from the camera to mirror and mirror to object (h3 + h4) to get the total
distance. The result then was used to calculate the height of the object plane 1, which was the height
of the major length of the mango. Distance from camera to the platform, h2 was deducted with the
previous height to obtain the distance from camera to the object plane 1, h1. The final equation for each
calibration is shown in Equations (2) and (3):

Object size top_view = (Image size × Sensor size × h1)/Focal length (2)

Object size side_view = (Image size × Sensor size × (h3 + h4))/Focal length (3)

Paired t-test and mean difference confidence interval approach were used to compare the length
and height measured using image processing and caliper. The paired t-test was used to identify the
significant difference between the caliper measurement and image processing method. Bland-Altman
approach [21] was used to plot the agreement between both dimension measured by caliper and image
processing. Both of the statistical analyses have also been used to find the difference and agreement
of the volumes measured using water displacement and the disk method in the later stages of the
research. The statistical analyses were performed using GraphPad Prism (GraphPad Software, Inc.,
La Jolla, CA, USA).

2.5. Shape and Fourier Features Extraction

There are many methods to analyze the shape of an object. Elmasry [22] stated that a combination
of measurement features such as perimeter, area, width, and length are used in the conventional
method of shape description. In this research, aspect ratio, area ratio, and roundness were used for
features measurement. Equation (4) to Equation (6) show the formulas used to obtain the stated
feature measurements:

Aspect Ratio = Max diameter/Min diameter (4)

Area Ratio = Area/(Max Diameter/Min Diameter) (5)

Roundness = (4π × Area)/(π ×Max diameter2) (6)

Another method is using the Fourier descriptor (FD). This method has been used widely
to analyze the shape of agricultural products. Agricultural products that have been using this
method are including mango [23,24], potato [22] and pistachio nut [25]. The first step of FD is
to find the two-dimensional centroid (Xc,Yc) which is given by using mathematical equation as in
Equations (7) and (8):

xc =
∑N

k=0 yk

(
x2

k − x2
k−1

)
− x2

k
(
yk − yk−1

)
2 ∑N

k=0 yk (x k − xk−1) − xk (y k − yk−1)
(7)

yc =
∑N

k=0 y2
k (xk − xk−1) − xk

(
y2

k − y2
k−1

)
2 ∑N

k=0 yk (x k − xk−1)− xk (y k− yk−1)
(8)

N represents the total number of pixel boundaries which defined in a clockwise direction. (Xk,Yk)
are the coordinates of each boundary pixel, k. After the centroid value is obtained, the distance of
each boundary point to the centroid was calculated using Equation (9). Figure 7 shows the sample of
regular and misshapen mango while Figure 8 shows the distance signature R(k) of the regular and
misshapen mango.

R (k) =

√
(x k − xc)

2 + (y k − yc

)2
(9)
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Harumanis mango. Then the transformation is mathematically implemented in the Fourier space 
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Figure 8. Distance signature of regular mango and misshapen mango with non-uniform edge. (a) Raw
distance R(k) from the centroid to the boundary points; (b) Distance signature is normalized by
100 while number of distance point normalized to 512 points. It shows that the presence of non-uniform
edge has affected the boundary profile.

ElMasry [22] linearly normalized the boundary profile to 512 distance points for equal level
of comparison. Figure 8b shows the normalized boundary profile for the mango. The R(k) is then
subjected to Discrete Fourier Transform (DFT), yielding a one-dimensional feature vector of the
Harumanis mango. Then the transformation is mathematically implemented in the Fourier space
using Equation (10):

|F (m)| = 1
N

√√√√[ N

∑
k=0

R (k) cos
(

2πmk
N

)]2

+

[
N

∑
k=0

R (k) sin
(

2πmk
N

)]2

(10)

The descriptors are influenced by the curve shape and the initial point of the curve. Thus,
calculating and examining each harmonic component in |F (m)| provides an indication of the shape.
The plot of Fourier descriptors produces a pattern or fingerprint which uniquely describes this shape.
In theory, the order of Fourier descriptors ranges from zero to infinity [26]. Hence, only the first few
segments of |F (m)| are recognizable and generally required to discriminate the difference between
mango shapes. In order to extract the information of the shape effectively, a method of harmonics,
F(m) multiplied by its magnitude, m was used to obtain the boundary profile of the mango. F(m) × m
can be interpreted as the derivative of the boundary signature while F(m) × m2 is the curvature of the
boundary [22]. The increase power value of h from 1 to 3 contributed to a significant improvement of
the higher frequency component which shows the detailed noise in the profile. Hence, parameter S1,
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S2 and S3 were calculated from the Fourier descriptor using first 10 harmonics to express the shape of
mango as in Equation (10) to Equation (13):

S1 =
10

∑
m=0

F(m) × m (11)

S2 =
10

∑
m=0

F (m) × m2 (12)

S3 =
10

∑
m=0

F (m) × m3 (13)

2.6. Volume and Mass Evaluation Using Image Processing

The boundary of the side view image and top view image was used to calculate the total volume
of the mango by using the disk method [27]. Images of the regular mango were calculated for its
volume while images of the misshapen mango were discarded. Both mangoes boundary image were
combined to obtain a three-dimensional measurement. Each three-dimensional outline image was
considered to be the sum of individual rectangular elements as shown in Figure 9. A cylindrical disk
with elliptic shape was produced by revolving each rectangular element around the x-axis as shown
in Figure 10.
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The volume of each disk calculated by using Equations (14) and (15). Equation (14) shows the
volume, Vi, of one cylindrical disk while Equation (15) shows the cross-sectional area, Ai, of the
same disk:

Vi = Ai∆xi (14)

Ai = π(∆yi/2)(∆zi/2) (15)
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A program was developed using the LabVIEW platform to calculate the area, volume, and sum
of all disks volumes. An algorithm was used to obtain the measurements of the mango using the
boundary image. Each cylindrical disk was considered to have a thickness of 1 pixel. Based on the
diameter of the major axis and minor axis, the volume of each disk was calculated. The total sum value
of these volumes was used to obtain the estimated volume by using Equation (16):

Vtotal =
n

∑
i=1

Vi (16)

The total volume was then used to calculate the mass of each regular mango. The regular mango
was categorized into its grade based on the standard set by the Perlis Agriculture Department as
in Table 1. Grade A is the highest grade of mango which mass is more than 400 g, while grade B
mass is between 351 g and 399 g. Mangoes which mass are lower than 350 g are categorized as
grade C. The mangoes were pre-classified into these grades and the results from the grading system
were evaluated.

Table 1. Market grading standards for Harumanis mango set by the Perlis Department of Agriculture.

Grade Qualitative Measure

A Standardized in shape and size (mass > 400 g)
B Standardized in shape and size (mass 351–399 g)
C Standardized in shape and size (mass < 350 g)

Rejected Not standardized in shape and size

3. Results and Discussion

3.1. Measurement Calibration Results

Fifty random mangoes were selected from among the samples for measurement calibration.
The number of pixels representing the maximum length and maximum height of the mango were
measured on the captured image. These values were used in Equations (2) and (3) to get the
estimated maximum length and maximum height of the mango. Plots of the maximum length and
maximum height measured by caliper and image processing are shown in Figure 11. The coefficient of
determination (R2) of both length and height were 1.000 and 0.993, respectively. R2 provides a measure
of how well observed outcomes are replicated by a model, based on the proportion of total variation of
the outcomes. The closer the R2 value is to 1 means the image processing measurements are closer
to the caliper measurements. The proposed equation of the image processing method yielded above
99% accuracy in estimating mango fruit dimensions. Figure 12 shows the graph for the Bland-Altman
method. The plot indicates that the dimension measurement difference between these two methods
was normally distributed. The 95% limits of agreement for measurement difference were expected to
be scattered between d – 1.96 sd and d + 1.96 sd. The outer line of Figure 12 indicates the 95% limits
of agreement while the center line indicates the mean difference. The 95% limits of agreement for
comparison of image processing measurement and caliper measurement for length and height were
(−0.406:0.418) and (−0.272:0.268), respectively.
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3.2. Shape Features Analysis

The first stage of analysis is to determine the uniformity of the shape which is categorized into
regular shape and misshapen. As for the second stage, mangoes were classified according to their grade
based on the mass value. All mango samples were inspected and classified first by human experts
based on their shape. Approximately 180 fruits were sampled, of which 21 fruits were classified
as misshapen, while the remaining 159 were classified as regular shape. The value of mean and
standard deviation of all shape features which extracted from the dataset of image are shown in
Table 2. From the result, misshapen mangoes have a wide range of variation compared to the regular
mangoes. This assumption was based on the high value of the standard variation for each feature for
misshapen mangoes.

Table 2. Shape features (means + standard deviation) of regular and misshapen mango.

Feature Shape Parameter Regular Misshapen

Size-shape parameters
Aspect Ratio 1.66 ± 0.11 1.58 ± 0.11
Area Ratio 593.79 ± 56.79 653.66 ± 69.18
Roundness 0.73 ± 0.03 0.67 ± 0.05

Fourier-shape
S1 20.49 ± 2.03 25.72 ± 5.094
S2 62.47 ± 9.75 94.25 ± 26.21
S3 311.29 ± 68.01 510.31 ± 190.27
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Size-dependent features and Fourier dependent features were used in the algorithm for detecting
the shape of the mangoes. Fourier dependent features use the Fourier transform equation to calculate
the magnitude of the mango’s polar signature extracted from the boundary pixels. Different values of
Fourier’s harmonic component bear different shape information which could be used to explain the
irregularity of the mango shape. Thus, it was used to calculate the different harmonic component of
the mango and the result indicated that misshapen mangoes have higher values of |F(m)| compare to
the regular-shaped mangoes.

3.3. Discriminant Analysis

Discriminant analysis is basically used to identify a subset of dominant features which are
responsible for splitting a set of observations into two or more groups. The successful application of
shape recognition using machine vision depends on the selection of a decent range and number of
features employed in the calibration model. Stepwise discriminant analysis was applied in this research.
Wilks’ Lambda analysis was chosen to select the best data subset which contains the shape-dependent
features and Fourier dependent features. This method will analyze the data subset; and recognize the
insignificant and highly insignificant or potent features. Variable selection of Wilks’ Lambda method
conduct in an iterative way, systematically removing features variable whose F-statistics which are
smaller than F-to-remove and retaining those value whose F-statistics are greater than F-to-enter
values [26].

Stepwise discriminant analysis was implemented to pinpoint a subset of dominant shape features
(Aspect ratio, Area ratio, Roundness, S1, S2 or S3) which most discriminate mango shape groups.
Summary of shape variable selection is shown in Table 3. At each step, the variable that minimizes
the overall Wilks’ Lambda is entered. It was noticeable from Table 3 that the model only accepts four
features (S1, S2, S3 and Area Ratio) and removes the other two features from the final model.

Table 3. Summary of shape features by discriminant analysis.

Step Entered Removed F

1 S2 0.605
2 Roundness 0.498
3 Area Ratio 0.459
4 S3 0.442
5 S4 0.425
6 Roundness 0.426

Table 4 shows the classification of the mangoes using the developed model of discriminant
analysis for the training set. The features selected by the stepwise discriminant analysis were able to
predict the mango shape with a success rate of 98.3%. The model was able to predict the regular shape
of mangoes with 99.4% success rate, while the rate for the misshapen mangoes is 90.5%. For the next
step, a model was created based on a classification function in order to reduce the error of predicting
the mango shape in each respective group. Two classification functions were created using Fisher’s
linear discriminant function to explain each group. These functions were implemented on model and
tested on each mango and the result was used to determine which group of the mango belongs to.
Equations (17) and (18) were the functions derived from the model based on the values in Table 5.
Both equations then were applied to the system to predict the shape of unknown mangoes.

Regular = −198.85 + 24.96 × S1 − 8.95 × S2 + 0.78 × S3 + 0.34 × Area Ratio (17)

Misshapen = −228.38 + 22.05 × S1 − 6.97 × S2 + 0.59 × S3 + 0.37 × Area Ratio (18)
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Table 4. Confusion matrix of discriminant model for predicting the shape of training set mangoes.

From/To Misshapen Regular Total Percentage

Misshapen 19 2 21 90.5%
Regular 1 158 159 99.4%

Total 20 160 180 98.3%

Table 5. Classification functions coefficient derives from the discriminant model for predicting
mango shape.

Shape Features Misshapen Regular

S1 22.05 24.96
S2 −6.97 −8.95
S3 0.59 0.78

Area_Ratio 0.37 0.34
(Constant) −228.38 −198.85

These final linear equations were tested on the real-time system to predict the mango shape
regularity. The equations were applied to the system to predict the shape of a set of randomly selected
mangoes which consisted of 126 regular mangoes and 14 misshapen mangoes. This step was done
to verify the performance of the mango shape classification during inline operations. Only the top
view of mango was used to determine the shape class. The mango images were analyzed directly
after the image capturing process. The obtained features values from the image were then used by the
algorithm to predict the shape of mango. Table 6 shows the performance of the algorithm in classifying
the randomly selected mangoes. The result shows that the integration of size-dependent features
and Fourier dependent features can predict the shape of mangoes with an acceptable rate of accuracy
which was 98.4% for regular and 85.7% for misshapen ones.

Table 6. Classification accuracy of the shape detection algorithm in on-line operation for sorting shape
in testing set.

Actual/Predicted Regular Misshapen

Regular 98.4% 1.6%
Misshapen 14.3% 85.7%

3.4. Comparison of the Disk Method with Water Displacement

A plot of the volumes measured by image processing using the disk method and water
displacement is shown in Figure 13a. The coefficient of determination (R2) value was 0.9985.
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show the average difference.
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Mean volume difference between both methods was d = −0.400 mL where the 95% confidence
interval ranged from −1.224 mL to 0.4241 mL. Standard deviation for the volume difference was
s = 5.603 mL. The paired samples t-test result showed that mango volumes estimated using the
disk method were not significantly different from the volumes measured using water displacement
(P = 0.3394) as indicated in Table 7. Figure 13b shows the plot for the Bland-Altman method. The plot
indicates that the volume differences between these two methods were normally distributed. The 95%
limits of agreement for volume difference were expected to lie between d – 1.96 sd and d + 1.96 sd.
The outer line of Figure 13b indicates the 95% limits of agreement while center line indicates the mean
difference. The 95% limits of agreement for the comparison between volumes measured using the
water displacement method and the volumes calculated using disk method were −6.995 mL and
15.490 mL.

Table 7. Comparison of the two volume measurement methods by paired t-test.

Paired t-test 95% Confidence Level of the Mean Difference

P = 0.3394 −1.224 and 0.4241

From these results, it can be stated that mango size did not have any effect on the accuracy of
the estimated volume which the P value was higher than 0.05. The overestimation problem which
been state in Koc’s [12] research seems to be solved using the method proposed in this research.
The combination of a more accurate dimension measurement method and a two-dimensional disk
method could successfully determine the accurate volume of Harumanis mangoes.

3.5. Estimation of the Mass of Harumanis Mango

In-line measurement of fruit mass using physical sensors is a time consuming method. Another
alternative method like volume-based sorting might reduce the processing time and can be more
efficient than conventional weight sorting. A fruit’s mass can be estimated from its volume if the
density of the fruit is assumed constant. Density can vary during the maturation process but the
variation is small and unpredictable [11]. Thus, the usage of weighing devices can be eliminated from
the packaging line. Spreer [28] and Schulze [29] determined the mass of the Chok Anan mangoes and
Nam Dokmai mangoes using the physical properties of the mango. Relationships between the physical
traits were determined and a high correlation between the mass and the physical traits was found.
Sa’ad [24] obtained a high correlation value between Harumanis mango volume estimated using the
cylinder method and its weight with a value of R2 = 0.94. In this research, the estimated volume was
plotted against the actual mass as shown in Figure 14. It shows a high correlation between the two
values with R2 = 0.9978. This high R2 value indicates that the linear formula can be used to estimate
the mass of the mango based on the estimated volume. Equation (19) was the linear formula generated
from the graph in Figure 14.

Mango Mass = 0.9973 × Estimated Volume + 6.778 (19)

The estimated mass equation was tested on the on-line system to evaluate the accuracy of the
classification based on its weight. The correct classification rate of the Harumanis mango by mass
obtained from the proposed method was 94.4%. Table 8 shows the confusion matrix for the validation
set (126 regular mangoes). The classification errors may occur because of the estimated mass falls in
between the grade categories and errors in determining the exact dimensions of mangoes because of
dirt and bruises on the skin.
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Table 8. Confusion matrix of mango grading in the proposed on-line system. The misshapen
mangoes were removed from the size grading process. The regular mangoes were graded cording to
pre-defined thresholds.

Actual/Predicted Grade A Grade B Grade C % Correct

Grade A 40 2 0 95.2
Grade B 1 39 2 92.9
Grade C 0 2 40 95.2

Total 41 43 42 94.4

4. Conclusions

In this work, an image processing techniques to classify Harumanis mangoes based on shape
and mass analysis were developed and presented. An image capturing platform was designed and
constructed to obtain the images from two different viewpoints. The platform has also been used to
test the algorithm’s ability to classify mangoes based on their shape. An algorithm was developed
to grab and process the mango images in real time while the mangoes travel along the high-speed
conveyor. Stepwise discriminant analysis was used to identify the most effective shape parameters
for detecting misshapen mangoes. Three parameters calculated from the Fourier descriptor of the
boundary signature of mangoes along with the area ratio size-shape parameters were identified to be
effective in describing mango shapes. The in-line assessment of the proposed method showed that the
accuracy for detecting mango shapes was 98%.

Another algorithm was developed to automatically calibrate the mango measurement each time
a new image was captured. The method used the known distance from the camera to the object
plane and related information which extracted from the image. The information was then used to
determine the exact measurement of the mango. The relation between the caliper measurement and
image processing measurement was high where the R2 values for the length and height measurement
were 1.000 and 0.993, respectively.

Next the algorithm was used to determine the mass of the mango. Top and side views of mango
were used to estimate the mango volume by using the disk method. The volume estimated using
the disk method was compared with the volume measured using the water displacement method.
The difference between the volumes estimated using this technique was not statistically significant
(P > 0.05). The estimated volume was then used to estimate the mass of the mango. The R2 value
between the estimated volume and actual mass was high (R2 = 0.94), thus indicating that there was a
strong relationship between those two values. A prediction model was fitted with this algorithm to
estimate the mass and tested on the in-line system. The classification result showed an accuracy of 94%
when grading mangoes.

From the results, it can be concluded that the proposed integration between Fourier-shape
parameters and size-shape parameters was very effective in classifying the mango shape.
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The combination between an image calibration method, volume estimation method, and mass
estimation method has been helpful to classify mangoes according to their grade. This system can be
applied at an industrial scale but some modifications need to be done. The image processing method
can be improved in order to detect other features such as bruises, defects, cuts and disease. The process
of image acquisition could be sped up by adding a frame grabber to the system.
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