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Abstract: This paper proposes a novel zero velocity update (ZUPT) method for a foot-mounted
pedestrian navigation system (PNS). First, the error model of the PNS is developed and a Kalman
filter is built based on the error model. Second, a novel zero velocity detection algorithm based on
the variations in speed over a gait cycle is proposed. A finite state machine including three states
is employed to model a gait cycle. The state transition conditions are determined based on speed
using a sliding window. Third, the ZUPT software flow is illustrated and described. Finally, the
performances of the proposed method and other methods are examined and compared experimentally.
The experimental results show that the mean relative accuracy of the proposed method is 0.89%
under various motion modes.
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1. Introduction

The rapid development of micro-electromechanical systems (MEMS) has facilitated the production
of inexpensive, lightweight and small-sized inertial sensors with low power consumption. These
properties are desirable for a PNS. PNS’ that employ MEMS inertial sensors are proposed in [1–6].
In this paper, a strapdown inertial navigation algorithm [7,8] is applied to a PNS. Such a PNS is useful
for locating and guiding emergency first responders, blind individuals and security personnel.

The major challenge of MEMS-based PNS concerns how to restrain the rapid accumulation of
navigation errors. For example, position error is proportional to time cubed. Without an error-resetting
algorithm, this error can exceed a meter in ten seconds [1]. A zero velocity update (ZUPT) algorithm
could be employed if the PNS is mounted on a shoe. During normal walking cycles, a foot periodically
returns to a stationary state and remains on the ground for a brief period of time (approximately
0.1~0.3 s); this interval is referred to as the zero velocity interval. When a stationary state is detected,
the velocity error can be employed as an observation to estimate and can correct the sensor bias errors,
attitude errors and position errors using a Kalman filter [9,10]. Researches show that the performance
of a PNS can be significantly increased using a ZUPT algorithm.

The detection of the above static periods is a critical step in ZUPT, and many detection methods
have been developed [5,9–11]. In [11], the zero velocity intervals are determined based on a likelihood
ratio test (LRT) detector. The detector provides good performance at low gait speeds (approximately
0.83 m/s). In [5], an algorithm based on a hidden Markov model is constructed using a segmentation
of gyroscope outputs. The algorithm shows good reliability under walking and running conditions.

Sensors 2016, 16, 139; doi:10.3390/s16010139 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 139 2 of 13

However, the state transition model is complex and not easy to implement. In [9], a stance phase
detector that consists of one footstep detector and two zero velocity detectors is proposed. The detector
can successfully detect zero velocity during walking, stair climbing, and running. However, the
detector is easily confused when the pedestrian randomly alternates between walking and running.
In this paper, a zero velocity detection algorithm based on the variations in speed during a gait cycle
is proposed.

This paper is organized into seven sections. In Section 2, the inertial navigation algorithm of the
PNS is provided. In Section 3, the dynamic and measurement models for the ZUPT Kalman filter
are summarized. In Section 4, foot-stance phase detection based on variations in speed is presented.
In Section 5, the software flow of the PNS is provided. The performance of the proposed method
is experimentally verified in Section 6. The last section includes the conclusion and directions for
future studies.

2. Inertial Navigation Algorithm of the PNS

The inertial navigation algorithm of a PNS is similar to traditional inertial navigation
algorithm [12,13]; however, certain simplifications are made based on the characteristics of a PNS.

The body frame is defined as a right-handed (x,y,z) Cartesian coordinate system (x—forward,
y—left, z—upward). The navigation frame is defined as east-north-up (ENU). We use the subscripts b
(body) and n (navigation) to denote the project of a vector in a corresponding frame.

The traditional complete form of the velocity differential is:

.
V

n
“ Cn

b f b
ib ´ p2ωn

ie `ωn
enq ˆVn ` gn (1)

where Cn
b is the transformation matrix from the b frame to the n frame and f b

ib is the specific force in
the body frame.

For a PNS, the term p2ωn
ie ` ωn

enq ˆ Vn can be omitted, and gn can be regarded as
approximately constant.

The differential equation of the attitude is:

.
C

n
b “ Cn

bpω
b
nbˆq (2)

ωb
nb represents the angular rate of the body frame relative to the navigation frame. ωb

nbˆ represents
the cross product matrix of ωb

nb.
The position can be updated using the following difference equation:

Rnpkq “ Rnpk´ 1q `VnpkqTs (3)

where Ts is the sampling period and is set to 10 m¨ s. The calculation period of the attitude, velocity
and position is equal to Ts.

3. ZUPT Kalman Filter

3.1. Error Model of Attitude

Let Ψ be the rotation vector from the navigation frame n to the computed navigation frame
n1; then:

.
Ψ “ ´εn “ ´Cn

b εb “ ´Cn
b pε

b
r ` εb

gq (4)

where ε is the vector of the gyroscope measurement error, εr is white noise, and εg is the gyro bias. The

gyro bias is regarded as a first-order Markov process,
.
εg “ ´

1
Tg

εg `ωg, where Tg is the correlation

time, and ωg is the driven noise with covariance σ2
g .
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3.2. Error Model of Velocity

The error model of velocity is given by:

δ
.

V
n
“ f n ˆψ`∇n “ Cn

b f b ˆψ`Cn
b∇

b (5)

where ∇b “ ∇b
r `∇b

a is the vector of the accelerometer measurement error, ∇r is white noise, and ∇a

is the accelerometer bias. The accelerometer bias is modeled as a first-order Markov process, namely,
.
∇a “ ´

1
Ta

∇a `ωa where Ta is the correlation time and ωa is the driven noise with covariance σ2
a .

3.3. Error Model of Position

The error model of position is expressed as:

δ
.

R
n
“ δVn (6)

3.4. Kalman Filter Equations

The state vector that is employed in the KF has the form: x “ pΨb, δvn, εb
g,∇b

aqwhere Ψb represents
attitude errors, δvn is the velocity errors, εb

g is the gyro bias., and ∇b
a is the accelerometer bias.

The dynamic error model of the Kalman filter is given by Equation (7):

.
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(7)

The measurement equation can be modeled as:

Z “ Hx` v (8)

H “ r 03ˆ3 I3ˆ3 0 6ˆ3
s (9)

The observation δ v is the difference between the INS velocity and zero, v is the measurement
noise and Ervpt1qvpt2qs “ Qvδpt1 ´ t2q. When the ZUPT is applied, the pedestrian’s foot is usually not
perfectly stationary. The uncertainty is modeled in the measurement covariance matrix. Qv is set to
(0.05 m/s)2I3ˆ3 based on experimental results.

3.5. Feedback Compensation

The estimated state values are used as feedback to the navigation algorithm to correct the
corresponding errors. Observation analysis indicates that the rank of the observation matrix Tobser is
nine, which is less than twelve. Additional analyses conclude that heading error and gyroscope bias
errors cannot be observed. Thus, heading error and εb

g are not used as feedback for the filter.
The position errors are corrected using Equation (10):

δRptq “
1
2

δVnptqt (10)
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4. Zero Velocity Detection

4.1. Variations in Velocity in a Gait Cycle

Most zero velocity detection methods employ comparisons between thresholds and the magnitude
of acceleration, magnitude of angular rate, or their combinations. The primary constraint of these
methods is that the variations in acceleration and angular rate differ greatly under various motion
modes, such as walking, running, and stair climbing. Thus, it is difficult to find a threshold function or
threshold value that is widely applicable. We demonstrate this in Figures 1 and 2.
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Figure 1. The detected zero velocity interval when a pedestrian is walking. The red line represents the
stationary state and moving state. Small values indicate the stationary state. Large values indicate the
moving state.
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Figure 2. The detected zero velocity interval when a pedestrian is running. In these time intervals,
there are no false detections for the accelerometer (upper). However, only two zero velocity intervals
are detected for the gyroscope (lower).
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Two traditional methods are employed: comparisons of acceleration magnitudes with a threshold
and comparisons of angular rate magnitudes with a threshold. Figure 1 shows that although the
angular rate magnitude detector performs better than the acceleration-magnitude detector, both
methods produce false positives during walking. Figure 2 shows that the acceleration magnitude
detector performs better than the angular rate magnitude detector during running; the latter failed to
detect most of the zero velocity intervals.

As shown in Equations (1) and (2), the calculation of the velocity uses both acceleration and
angular rate data; thus, we attempt to use speed (the norm of velocity) to detect zero velocity intervals.
Figure 3 shows the speeds that correspond to walking, running, stair climbing and stair descending.
The variations in speed during a gait cycle are similar under different motion modes, except magnitude,
duration and certain local details. A comparison of Figure 3 with Figures 1 and 2 show that the variation
in speed is simpler and more distinct than the variations in acceleration and angular rate.
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Figure 3. Norm of velocity for different types of gait.
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Figure 4 shows the speed trend and a human limb kinematic during a typical walking cycle.
The lower panel is taken from [14]. During a walking cycle, the speed changes from acceleration to
deceleration, and then changes back to zero. The acceleration interval corresponds to the change from
the heel lift to the swing at the highest point. The deceleration interval corresponds to the change from
the highest point to a flat foot. The zero velocity intervals correspond to the change from a flat foot to a
heel lift.

4.2. Hidden Markov Model for Zero Velocity Detection

We introduce a hidden Markov model for zero velocity detection. Gait cycles are modeled as a
finite state machine and each gait cycle is divided into three states. The state transition diagram is
shown in Figure 5. State 1 corresponds to zero velocity intervals. State 2 corresponds to acceleration
intervals. State 3 corresponds to deceleration intervals.
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Figure 5. State transition diagram.

A sliding window is used to determine state transitions. The size of the sliding window is N ˆ Ts.
The speeds of the N ` 1 moments, tk, tk`1 ¨ ¨ ¨ tk`N`1, are saved in a buffer. If the current state is
state 1 and the slope of the speed in the window, denoted by slope_s, is larger than the threshold Th_a
(condition 1), then the state moves to state 2. If the current state is state 2 and the speed of tk is the
maximum speed in the window (condition 2), the state moves to state 3. If the current state is state 3
and the speed of tk is the minimum speed in the window (condition 3), the state moves to state 1. Th_a
is set to 0.3 m/s2. N is set to 20.

The first order polynomial fitting method is employed to calculate the slope of the speed, as
shown in Equation (11):

w_spiq “ s0 ` s1 ˆ pi´ 1q ˆ T` zi, i “ 1, 2, ¨ ¨ ¨N ` 1 (11)

slope_s=s1 is the slope of the speed, which can be interpreted as the mean acceleration in the window.

5. PNS Software Flow

The flow chart for the PNS software algorithm is shown in Figure 6.
During the initial alignment, the PNS is initialized with the attitude and position. The initial

pitch and roll are calculated using accelerometer data [15], The initial azimuth is calculated using
magnetometer data [15], the outdoor position is initialized using GPS data, and the indoor position is
initialized using the building plan data, as shown in [2].
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The bias of the gyroscope is estimated during initial alignment as well, too. The average of
the gyroscope data is calculated and used as the approximate gyroscope bias. If the variance of the
gyroscope data is greater than a preset threshold, or if the zero velocity detector has detected motion
of pedestrian in less than 6 s, the estimation of the gyroscope bias is skipped.

The matrices G3ˆN and A3ˆN are employed to store the sampling data of the gyroscopes
and accelerometers in the window. The matrices C3ˆ3pN`1q, V3ˆpN`1q, P3ˆpN`1q and S1ˆpN`1q are
employed to store the attitude matrix, velocity, position and speed in the window.

The zero velocity detection algorithm decides whether the velocity at the starting moment of
the window is zero. If the zero velocity moment is detected, attitude errors, velocity errors, and
position errors are estimated by the Kalman filter and compensated; then, the sampling data in
G3ˆN and A3ˆN are used to recalculate the attitude, velocity and position in the window. After each
navigation calculation and ZUPT calculation, C3ˆ3pN`1q is left shifted by three columns, and G3ˆN,
A3ˆN, V3ˆpN`1q, P3ˆpN`1q and S1ˆpN`1q are left shifted by one column.
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6. Experiments

6.1. The Inertial Measurement Unit

The inertial measurement unit that we employed is the model MTI-G from Xsens Technologies
B.V. (Enschede, The Nethelands). It is configured to provide inertial data at 100 Hz. The IMU includes
three MEMS accelerometers, three MEMS gyroscopes and three magnetometers. The gyroscope bias
repeatability is 0.5 deg/s (max), and the in-run bias stability is 10 deg/h (typical). The accelerometer
bias repeatability is 0.05 m/s2 (max),and the in-run bias stability is 40 µg (typical). The IMU is strapped
on to the front of a shoe or the rear part side of a shoe, as shown in Figure 7.
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Figure 7. (Left) IMU strapped on the front of a shoe; (Right) IMU strapped on the rear side of a shoe.

6.2. Zero Velocity Detection

The experiments were conducted using a pedestrian, a 25-year-old male with a height of 1.73 m
and a weight of 70 kg. The IMU was strapped on to the front of a shoe. The pedestrian conducted six
types of motion: walking, running, stair climbing, stair descending, uphill and downhill. The average
speeds are approximately 1.35, 2.2, 0.7, 1.09, 0.8 and 1.4 m/s, respectively. Figure 8 shows the speeds
and the corresponding zero velocity detector states. The blue line represents the speeds, and the red
line represents the state. “0” denotes state 1, “1” denotes state 2 and “2” denotes state 3. Figure 8
shows that the zero velocity detector state well matches the variation in speed under all motion modes.
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Figure 8. Zero velocity detection using the method proposed in this paper.
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To provide a comparison, we examine the performance of the algorithm in [11] using the same
experimental data. The detected zero velocity intervals are shown in Figure 9. As illustrated by
panel (a), except for one interval, none of the zero velocity intervals, are detected during running.
As illustrated by panel (b), none of the zero velocity intervals are detected during stair climbing.
Moreover, the detected zero velocity intervals during stair descending are incorrect. As illustrated by
panel (c), some of the detected zero velocity intervals during uphill and downhill are correct, although
others are incorrect.
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Figure 9. Zero velocity detection using method proposed in [11]. The vertical unite is
dimensionless numbers.

To examine whether the mounting position of the IMU affects the effectiveness of the proposed
algorithm, we conducted experiments with the IMU strapped onto the rear side of a shoe, as illustrated
in Figure 7. Six types of motion were performed by a pedestrian, specifically, a 30-year-old male with a
height of 1.70 m and a weight of 73 kg. The speed and zero velocity detector states are illustrated in
Figure 10, from which it can be observed that the proposed algorithm performed well.

To test the robustness of the algorithm, we randomly selected three other people from the Beijing
University of Technology to conduct the experiments. They wore different types of shoes, including
leather shoes and sport shoes. One pedestrian conducted the experiments in the same location used
by the 25-year-old male. Another two pedestrians conducted the experiment in randomly selected
locations in our university. We asked the pedestrians to conduct six motion modes as before. The IMU
was strapped onto the front of a shoe. The users can be described as follows: a 26-year-old female with
a height of 1.58 m and a weight of 49 kg, a 40-year-old male with a height of 1.78 m and a weight of
62 kg, and a 38-year-old female with a height of 1.60 m and a weight of 51 kg. We carefully compare the
performance of the proposed algorithm and the algorithm of [11] and draw the following conclusion:

(1) The algorithm presented in [11] performs well during slow walking but does not perform well
during running, stair climbing and descending, uphill and downhill.

(2) The algorithm proposed in this paper performs well under all the above-mentioned types
of motion.
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Figure 10. Zero velocity detection of six types of gait when the IMU is strapped onto the rear side of a
shoe. The parameters are the same as those in Figure 8.

6.3. Field Test Experiments

Experiments under three motion modes, including walking, running and alternating between
walking and running, were conducted around the boundary line of the sports field at the Beijing
University of Technology. The travelled distance is approximately 422 m. The calculated trajectories of
the proposed algorithm and of that in [11] are shown in Figure 11. The IMU was strapped onto the
front of a shoe. The blue line (walking alternating with running) and light blue (walking) line are the
calculated trajectories of algorithm [11]. The red line (walking), yellow line (walking alternating with
running) and green line (running) are calculated trajectories of the proposed method. The calculated
trajectory of method [11] under the running mode is not illustrated because of the excessive position
errors. The mean error (start/end distance) of the proposed algorithm is approximately 4.64 m, or
approximately 1.10% of the travelled distance. The mean error (start/end distance) of the algorithm [11]
is approximately 15.82 m, or approximately 3.75% of the travelled distance.

We also conducted experiments along another more complex trajectory that included uphill
movement and stair descending as illustrated by the red dashed line in Figure 12. The pedestrian
walked along the trajectory defined by the red dashed line. She stopped for a few seconds when
moving uphill (blue), on the horizontal plane (red) and when descending the stair (green). The travelled
distance is approximately 147 m, and the mean error is approximately 0.68% of the travelled distance.

Table 1 summarizes the final return position errors along the two trajectories. The maximum error
is 1.61% during running along trajectory 1. The mean error of the two trajectories is 0.89%. The data in
Table 1 indicate that the proposed algorithm provided robust positioning results under various motion
modes and with different pedestrians.
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Figure 12. Uphill and stair descending trajectory. Path used for testing (left). The calculated trajectories
of the proposed algorithm (right).
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Table 1. Field test return position errors.

Event Average
Speed (m/s)

Travelled
Distance (m)

Position
Error (%)

Trajectory 1
Walking 1.3 422 0.60%
Running 2.6 421 1.61%
Running and Walking 1.8 422 1.10%

Trajectory 2
Stop on the uphill 0.8 148 0.44%
Stop on the horizontal plane 0.7 147 0.67%
Stop on the stair descending 1.2 147 0.93%

7. Conclusions

The experimental results show that the algorithm proposed in this paper can correctly detect zero
velocity intervals under various motion modes. The algorithm is insensitive to the mounting position
of the IMU and differences in pedestrians.

We also conducted experiments under an elevator environment. Because the acceleration of the
elevator was lower than the threshold Th_a, the ZUPT state machine remained in the zero velocity state
regardless of whether the elevator was rising or descending. We will attempt to solve this problem in
the future.

ZUPT cannot estimate or compensate for heading errors, which are a primary error source in PNS.
Other techniques, such as received signal strength (RSS) measurements [16], map matching [2,17],
building heading [7] or computer vision-derived position measurements [18] can be employed to
improve the accuracy of a PNS. We will discuss the integration of these techniques with ZUPT in a
future paper.
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