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Abstract: To improve the effectiveness and robustness of fatigue driving recognition, a  

self-adaptive dynamic recognition model is proposed that incorporates information from 

multiple sources and involves two sequential levels of fusion, constructed at the feature level 

and the decision level. Compared with existing models, the proposed model introduces a 

dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight 

of each feature source can change dynamically with the real-time fatigue feature 

measurements. Further, the proposed model can combine the fatigue state at the previous 

time step in the decision-level fusion to improve the robustness of the fatigue driving 

recognition. An improved correction strategy of the BPA is also proposed to accommodate 

the decision conflict caused by external disturbances. Results from field experiments 

demonstrate that the effectiveness and robustness of the proposed model are better than those 
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of models based on a single fatigue feature and/or single-source information fusion, 

especially when the most effective fatigue features are used in the proposed model. 

Keywords: fatigue driving; multi-source information; correlation analysis; fuzzy neural 

network; evidence theory 

 

1. Introduction 

Safety is a crucial issue in transportation systems. Fatigue driving is a major cause of road accidents, 

and can lead to physical injury, death and/or economic loss. The National Highway Traffic Safety 

Administration (NHTSA) estimates that 100,000 vehicle crashes resulted directly from driver fatigue in 

the USA, resulting in 1550 deaths, 71,000 injuries, and $12.5 billion in monetary losses annually [1]. 

Some studies indicate that fatigue driving accounts for 16% of all crashes and over 20% of the crashes 

on highways [2]. Fatigue driving also increases accident risk four to six times. Therefore, many studies 

have sought to develop effective and robust fatigue driving recognition models to aid accident risk 

reduction and enhance driving safety. 

Past studies [1,3,4] attempt to recognize fatigue driving from different information sources, such as 

driver physiological state, facial expression, and vehicle operation condition. Based on the sources of 

fatigue features, fatigue driving recognition models can be divided into two categories: single-source 

models and multiple-source models. The single-source models mainly focus on detection and fusion of 

the fatigue features coming from a single information source. The multiple-source models can fuse 

multiple fatigue features coming from different information sources. 

In the category of single-source models, physiology-based models [3–9] identify driver’s fatigue 

states by extracting signals of electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram 

(ECG), electromyography (EMG) or heart rate variability (HRV). Although these models can accurately 

recognize fatigue states, electrodes need to contact the skin of the driver for physiological signal 

detection, which can cause an uncomfortable and annoying feeling. Hence, they are not suitable for 

fatigue recognition over a long time period. 

Facial feature based models [1,10–13] recognize the fatigue driving by analyzing facial expression 

changes, such as eye closure duration, blinking, yawning, or eyelid/gaze movement through recognition 

methods based on computer vision theory. These facial features provide an effective mechanism because 

the driver’s fatigue state can be measured in a non-intrusive way. However, the robustness of these 

models may reduce due to environmental interference, such as lighting changes, sudden head movements, 

and darkness at night. 

Another type of single-source models recognizes fatigue driving by detecting vehicle operation 

condition [14] such as the lane departure degree [15,16] or the variation of steering wheel angle [17,18]. 

Their accuracy depends on legible lanes and driver driving habits. For example, the applicability of these 

models may be impeded when a lane marking is blurred or shielded. 

As mentioned heretofore, various types of disturbances (such as sudden lighting changes, missing sensor 

signals, etc.) can interfere with fatigue feature measurements. Hence, it is difficult for single-source-based 

models to accommodate complex environmental changes. To improve the effectiveness and robustness 
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of the fatigue driving recognition under a complex travel environment, models based on multi-source 

information have been developed. Boyraz et al. [19] proposed a recognition model using facial and 

vehicle behavior features. Yang et al. [20] proposed a Dempster-Shafer evidence theory (D-SET) based 

driver fatigue recognition model by combining contextual features, physiological features, and facial 

visual features. However, because these models ignore the temporal correlation of driver’s fatigue state, 

their robustness reduces when some fatigue feature measurements cannot be obtained due to unexpected 

changes of external travel environment. 

Other models attempt to capture the temporal correlation by applying basic probability assignment 

(BPA) in the information fusion to accommodate the external environment changes. Cheng et al. [21] 

proposed a two-level fusion framework that includes feature-level fusion and decision-level fusion for 

fatigue driving recognition. However, the accuracy of this fatigue driving recognition model is not 

reliable because the framework cannot dynamically determine the BPA for each expected fatigue state 

when multiple fatigue features are fused. Lee et al. [22] proposed a fatigue driving recognition model 

based on dynamic Bayesian network. While the model considers the recognition outcome of the previous 

time step, the probability weight of each fatigue feature is predetermined according to experts’ subjective 

experience. The predetermined weights may deteriorate the accuracy of fatigue driving recognition if 

the experts have not factored the travel environment variation. Yang et al. [23] proposed a dynamic 

Bayesian network model in which the Gaussian distribution function is used to determine probability 

weights. A first-order hidden Markov model was used to compute the dynamics of the Bayesian network 

at different time steps. In their model, the probability weights are treated as constants after the 

assignment. As the probability weight of each fatigue feature in all these models cannot be changed 

dynamically to adapt to the environmental variation, the static weights may deteriorate the accuracy and 

robustness of the recognition model. 

The literature review heretofore illustrates that the challenges in improving the accuracy and 

robustness of fatigue driving recognition model arise from disturbances such as sudden lighting changes, 

missing sensor signals, and incorrect feature measurements. This study seeks to improve the accuracy 

and robustness of fatigue driving recognition by developing a self-adaptive dynamic recognition model 

that incorporates the most effective fatigue features. In contrast to existing fatigue driving recognition 

models, the proposed model introduces a dynamic BPA to the decision-level fusion such that the weight 

of each feature source can adapt to real-time fatigue feature measurements. Additionally, the proposed 

model combines the most effective fatigue features in the feature-level fusion and the fatigue state at the 

previous time step in the decision-level fusion to improve the robustness of fatigue driving recognition. 

An improved correction strategy of the original BPA is introduced to accommodate the decision conflict 

caused by external disturbances. 

The study contributes to the research on fatigue driving recognition in four aspects. First, the study is 

the first to determine the dynamic assignment of BPA by carrying out feature-level fusion based on 

Takagi-Sugeno fuzzy neural network (T-SFNN) [24]. This enables the improvement of robust fatigue 

driving recognition. Second, in addition to facial expression and vehicle behavior, the fatigue state at the 

previous time step is also regarded as an evidence source and incorporated into the model, which further 

enhances the robustness of recognition model through the consideration of the fatigue state correlation 

in temporal space. Third, a correction strategy for the original BPA is proposed in the decision-level 

fusion based on D-SET, which resolves the evidence conflict caused by multiple pieces of evidence with 
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different attributes. Fourth, the fatigue driving recognition model is validated against data from field 

experiments instead of laboratory simulation, which demonstrates the practical applicability of the 

proposed model. 

The remainder of this paper is organized as follows. Section 2 summarizes the fatigue feature 

measurements that are used to estimate driver fatigue state. Section 3 proposes a self-adaptive dynamic 

recognition model, including feature-level fusion based on T-SFNN and decision-level fusion based on 

D-SET. Section 4 demonstrates the effectiveness and robustness of the proposed model using the data 

collected from field experiments. The final section provides concluding comments. 

2. Preliminaries 

In this study, the fatigue driving state is estimated based on two categories of measurements: driver 

facial expression and vehicle operation condition. The two categories of measurements are explained in 

detail in this section. 

2.1. Facial Feature Based Measurements 

Blinking frequency (BF), eye-closed duration (ECD), mean of eye-opened level (MEOL) and 

yawning frequency (YF) are considered as facial fatigue features in this paper to indicate fatigue state 

of the driver. 
The BF is measured as: /b b bf n N= , where Nb is the number of the images captured in a one-minute 

interval, and nb is the number of the images where eyes are identified as closed state [25]. 
The ECD is measured as: /c c cf n N= , where Nc is the number of the images captured in a one-minute 

interval, and nc is the number of the images where eyes are identified as closed state in a continuous 

period of two seconds. 

The MEOL is defined as: ,
1

/
oN

o o i o
i

f h N
=

= , where ho,i is the height (in pixel) between the upper  

and lower eyelids in the thi frame image, and No denotes the total number of the images captured in  

a one-minute interval. 
The YF is measured as: /m m mf n N= , where nm is the number of images in which yawning is inferred, 

and Nm denotes the total number of images captured in a one-minute interval. Yawning is inferred by 
comparing mouth-opening level rm to threshold Tm. If m mr T≥ , then the driver is yawning. The  

mouth-opening level rm is defined as: /m m mr h w= , where hm denotes the height between the upper and 

lower lips, and wm is the width between the left and right corners of mouth. The values of hm and wm can 

be determined according to literature [26]. 

2.2. Vehicle Behavior Feature Based Measurements 

In this study, vehicle behavior features that are used to infer the driver’s fatigue state include 

percentage of non-steering (PNS), standard deviation of steering-angle (SDSA), frequency of abnormal 

lane deviation (FALD) and standard deviation of vehicle speed (SDVS). 
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The PNS is defined as: /a a ap n N= , where Na is the total number of sampled points collected in  

a ten-second interval, and na is the number of points where the angular velocities of steering wheel are 

within 0.1±  degree/s. 

The SDSA is defined as: 2
,1

( ) /aN

a a i a ai
s x m N

=
= − , where ,1

/aN

a a i ai
m x N

=
= , Na is the number of 

the samples collected in a ten-second interval, and xa,i is the angle value of steering wheel of the sample 

obtained in the ith time step. 
The FALD is defined as: /l l lf n N= , where Nl is the number of images captured in a one-minute 

interval, and nl is the number of images where the vehicle is identified as deviating from the lane 

abnormally. That the vehicle is deviating from lane is judged according to following decision  

rules [16,27]: ( ) Lkξ > λ , or ( ) Rkξ > λ , where, ( ) ( ( )) / ( ( ) )
2 2L Rk k k
π πξ = − θ θ − , θL(k) and θR(k) represent 

the slope angle of left and right lane lines in the kth frame of image, respectively. Parameters λL and λR 

are the thresholds of left deviation and right deviation, respectively. 

The SDVS is defined as: 2
,

1

1
= ( )

n

s v i v
i

v v m
n =

− , where νs represents the standard deviation of vehicle 

speeds, ,1
/vN

v v i vi
m v N

=
=  represents the average speed during a ten-second interval, Nν is the number 

of sample points in a ten-second interval and νν,i is the speed value gained by global positioning system 

(GPS) at time i. 

The measurements defined in this section will be used to determine fatigue features of the  

self-adaptive dynamic recognition model, which will be incorporated into the proposed recognition 

model for carrying out real-time fatigue driving recognition as input parameters. 

3. Self-Adaptive Dynamic Fatigue Recognition Model 

Because the multiple fatigue features determined in Section 2 come from two different fatigue feature 

sources, they can comprehensively reflect driver’s fatigue state. In the following recognition model, we 

will incorporate all the measured fatigue features to enhance the reliability and robustness of fatigue 

driving recognition. However, if multiple fatigue features from different information sources are 

incorporated into a single-level recognition model, it can result in a complex model structure and  

weak system stability. To enhance the model performance, we propose a self-adaptive dynamic 

recognition model with two levels of fusion, which includes the feature-level fusion based on T-SFNN 

and decision-level fusion based on D-SET. In the feature-level fusion, T-SFNN is used to fuse multiple 

fatigue features obtained from facial expression and vehicle operation behavior to provide a dynamic 

BPA for the decision-level fusion. In the decision-level fusion, D-SET is used to fuse three pieces  

of evidence derived from three different information sources to improve the robustness of fatigue  

driving recognition. 

3.1. General Recognition Framework 

The model structure of the proposed self-adaptive dynamic recognition model is summarized in 

Figure 1. The key components and recognition procedures of the fatigue driving recognition model are 

as follows. 
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Figure 1. Framework of the fatigue recognition model based on multi-source information 

and two levels of fusion. 

(i) Feature-level fusion based on T-SFNN: First, the most effective fatigue features are measured 

in real-time, and provide two types of information: driver’s facial expression and vehicle 

behavior. Second, facial features and vehicle behavior features are inputs to two T-SFNN 

models: T-SFNN-1 and T-SFNN-2, respectively. The outputs of T-SFNN-1 and T-SFNN-2 at 

time t are considered as the inputs to the decision-level fusion based on D-SET, which can 

realize dynamic BPA assignments in the proposed model as shown in Figure 1. 

(ii) Decision-level fusion based on D-SET: First, the outputs of T-SFNN-1 and T-SFNN-2 are 

normalized. Second, as shown in Figure 1, the normalized results are regarded as two pieces 

of evidence for decision-level fusion. Third, the two pieces of evidence are fused by an 

improved evidence combination rule. The first fusion result is regarded as an intermediate 

result which is used as input to the second fusion. Fourth, the first fusion result is fused with 

the fusion result at the previous time step t − 1. The second fusion result is regarded as the final 

decision-level fusion result at time step t. Fifth, the decision-level fusion result at time step t is 

recorded to be used as a piece of evidence in the decision-level fusion at next time step t + 1, as 

illustrated in Figure 1. 

(iii) Output recognition result: The driver’s fatigue state at time step t is determined based on the 

decision-level fusion result and the fatigue decision rule. 

In the following sections, we will discuss the feature-level fusion and decision-level fusion in detail. 
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3.2. Feature-Level Fusion 

The T-SFNN combines the advantages of fuzzy logic (in processing vague and uncertain information) 

and neural networks (in providing good learning capabilities) [24]. Compared with the conventional 

approaches, e.g., fuzzy logic, it has been shown that TSFNN can achieve better performance in 

mathematical function approximation in modeling highly nonlinear systems [24]. Therefore, the  

feature-level fusion based on T-SFNN model can generate more accurate BPA for decision-level fusion. 

In this study, T-SFNN-1 and T-SFNN-2 models are used to generate real-time BPAs by fusing facial 

and vehicle behavior features, respectively. For simplifying the model structure, in each T-SFNN model, 

the subtractive clustering algorithm (SCA) is used to obtain the optimal T-SFNN structure. The improved 

particle swarm optimization (IPSO) algorithm is also employed to train the T-SFNN for acquiring 

accurate network parameters. Therefore, based on the simplified structure and optimized parameters, the 

two T-SFNN models can enable more accurate and reliable BPAs. 

3.2.1. Structure of T-SFNN 

Traditional T-SFNN consists of antecedent network and consequent network with complex network 

structure and numerous network parameters to be determined [24]. To simplify the network structure 

and improve computational efficiency, traditional T-SFNN is improved by reorganizing the network 

structure. As shown in Figure 2, the improved T-SFNN structure is composed of five layers and the 

function of each layer is as follows: 

 

Figure 2. Structure of T-SFNN. 

The first layer is the input layer, where each node represents an input variable. 

The second layer is the fuzzy layer, where each node represents one linguistic value of each input 
variable. Each node expresses a fuzzy subset j

iQ  described by Gaussian membership function: 
2 2( ) exp[ ( ) / ]j

i

j
i i i ij ijQ

x x cμ = μ = − − σ , 1, 2, ,i n= … , 1, 2, ,j m= … , where m indicates the number of 
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linguistic values of each input variable, n is the number of nodes in the input layer, and cij and σij are 

defined as the center and width of the Gaussian membership function, respectively. 

The third layer is the rule layer which is used to calculate the firing strength αj of every fuzzy rule. 
Each node in the layer represents one fuzzy rule, j

j i
i

α = μ∏ , 1, 2, ,j m= … . 

The fourth layer is the normalized layer which is used to calculate the normalized firing strength jα  

of the corresponding rule: 
1

/
m

j j i
i=

α = α α , 1, 2, ,j m= … . 

The fifth layer is the output layer which is used to provide the reference result of the whole system. 

Each node in this layer represents one output variable, 
1

m

k kj j
j

y w
=

= α , where wkj is defined as the weight 

of neural network, 1, 2, ,k r=  , where r is the number of output variables. 

3.2.2. Learning Algorithm 

For the T-SFNN shown in Figure 2, when the number of input variables and fuzzy sets for each input 

becomes more than four or five, it will result in the problem of combinatorial explosion of rules, namely 

the so-called curse of dimensionality. In order to optimize the inner structure of the T-SFNN and obtain 

optimum network parameters, we introduce a structure learning algorithm based on SCA and parameter 

learning algorithm based on IPSO. 

For the structure learning, the SCA is used to optimize the network structure according the cluster 

amount extracted from the given training samples [28]. By clustering, let the number of linguistic values 

of each input node and the number of fuzzy rules be equal to the number of the extracted clusters, which 

will significantly reduce the number of parameters of the TSFNN. The algorithm used in this study can 
be succinctly described as follows. Suppose that 1, 2, ,{ , , , }j j j n jC x x x=  , 1,2, , Rj c=   is the jth cluster 

center obtained by SCA, where cR is the number of clusters determined by the SCA. Assuming that C1 

is the first cluster center obtained, and Cs is the nearest cluster center to C1, i.e., the Euclidean distance 
between C1 and CS is the shortest, where, 1 1,1 2,1 ,1{ , , , }nC x x x=  , 1, 2, ,{ , , , }S S S n SC x x x=  , 2, , Rs c=  . 

Accordingly, by letting Rm c= , ijc′ = ,i jx  and ij′σ = 1, , / 2j S jx x− , the initial value ijc′  and ij′σ of 

parameters cij and σij are determined. 

For the parameter learning, the back propagation (BP) algorithm [29] and genetic algorithm (GA) [30] 

have been proven to have superior performance for specific problems. However, because of gradient 

descent, the BP method has been criticized for its shortcomings of becoming stuck in local minima and 

sensitivity to the initial values. The main drawbacks of GA are its huge computation time and slow 

convergence near the optimum. When compared to BP and GA, the IPSO is simpler in operation and 

easier to understand owing to a smaller number of free tunable parameters. Therefore, we introduce the 

IPSO algorithm to determine network parameters and network weights of T-SFNN. First, determine the 
initial value of network parameters. The network parameters are initialized as ijc′  and ijσ ′  according to 

the SCA, and network weight wkj is initialized as a random value kjw′  in the range of [0,1] . Second, the 

IPSO algorithm is used to obtain the optimal solutions of network parameters and network weight. In 
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the IPSO, according to the fitness function shown in Equation (1), the optimal solutions of îjc , ˆ ijσ  and 

ˆkjw  are obtained [28]. 

2
, ,

1 1

1
ˆ( ) ( )

N r

k j k j
k j

f x y y
N = =

= −  (1)

where N is the number of training samples, r is the number of the nodes in the output layer, and yk,j and 

,ˆk jy  are the actual and desired outputs, respectively. 

3.3. Decision-Level Fusion 

Multi-source information fusion based on Bayesian networks has been applied to the field of fault 

diagnosis and achieved good diagnosis outcomes [31]. Compared to other statistical inference methods, 

D-SET is closer to human perception and reasoning process, and can fuse information collected from 

different sources to infer results with some degree of certainty. Unlike the Bayesian reasoning model 

that depends on the prior probability, D-SET is more suitable for practical applications [32]. Therefore, 

based on the D-SET, we propose an improved decision-level fusion method to combine three pieces of 

evidence from three different information sources. The proposed decision-level fusion method includes 

three steps: (i) dynamic BPA calculation; (ii) combination of evidence; and (iii) fatigue state decision. 

3.3.1. Dynamic BPA Calculation 

The key role of D-SET is to model the knowledge of the problem by initializing the BPA based on 

the evidence provided by different sensors. Assume m(Ai) is the BPA of the thi  hypothesis Ai in the 

frame of discernment Θ of D-SET, where Θ is a finite non-empty set of mutually exclusive alternatives 
containing every possible hypothesis Ai [32]. Notation m  is a mass function, m(·): Θ2 [0,1]→ , which 

satisfies: 
Θ

( ) 0, ( ) 1
i

i
A

m m A
⊆

∅ = =  [33]. In this paper, Ai represents the evaluated fatigue state according 

to a certain fatigue assessment method. 

Generally, the BPA is determined by experts based on their experience. However, such a subjective 

and static BPA assignment will reduce robustness of the proposed model in practice. To overcome the 

difficulty, the BPA m(Ai) for each evidence source is dynamically assigned by the T-SFNN model 

according to its real-time output results in this study. The m(Ai) can be calculated by: 

1

( ) /
r

i i i
i

m A y y
=

=  , 1, 2, ,i r=   (2)

where yi is the output of the thi node component in output layer of the T-SFNN. 

3.3.2. The Improved Evidence Combination 

Denote Θ ={ 1A , 2A , , rA } as fatigue state set, e ={ 1e , 2e , , te } as evidence set, and m1(·), m2(·), 

 , mt(·) as the BPA mass functions over Θ. The Dempster combination rule for any two pieces of 

evidence in the evidence set e is [34,35]: 
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1 2

1 2

( ) ( ) ( )

1
( ) ( ),      Θ,

1       =

0,                                                Θ
i j k

k k k

i j k
A A A

k

m A m A m A

m A m A A
K

A

∩ =

= ⊕

 ∀ ∈ −
 ∉

  (3)

where 1 2( ) ( )
i j

i j
A A

K m A m A
∩ =∅

=  , which denotes the conflict degree between two pieces of evidence. 

In Equation (3), K = 1implies that the two pieces of evidence are completely conflicting. Under this 

situation, the aforementioned combination rule becomes invalid. If 1K → , then two pieces of evidence 

have high conflict and an illogical result may be produced by this rule [36]. Therefore, we should identify 

whether a conflict happens before conducting evidence combination based on the conflict degree K. The 
improved evidence combination rule for any two pieces of evidence is given: if 0 TK k< < , then the 

original BPA is available in the following evidence combination, where kT is a predetermined threshold. 
Otherwise, if 1Tk K≤ < , then the original BPA needs to be modified by introducing a belief factor. The 

modified BPA is updated as: 

1

( ) ( ) ,            Θ

(Θ) 1 ( ) ,   Θ

i j i j i j

N

i i j i j
j

m A m A A

m m A A
=

′ = η ∈

 ′ = − η ∉



 (4)

In Equation (4), the belief factor ηi can be obtained through the following steps: 

Step 1: Calculate the Euclidean distance di,j between any two pieces of evidence ei and ej: 
22

,

1
( 2 , )

2i j i j i jd m m m m= + − , where 
2

im = ,i im m , 
2

jm = ,j jm m , and ,i jm m  represents 

the dot product between two vectors mi and mj. 

Step 2: Define confidence level , , ,i j i j i jc K d= ⋅ , where , ( ) ( )
i j

i j i i j j
A A

K m A m A
∩ =∅

=  . 

Step 3: The average confidence level ci can be defined as: ,
1

1 n

i i j
j

c c
n =

=  . 

Step 4: The belief factor ηi is determined by: 

(1 ) ic
i ic eη = −  (5)

3.3.3. Fatigue State Decision 

After conducting the evidence combination, we can determine the driver’s fatigue state based on the 

following decision rule: 

1

2

( ) ( )

( )
F S T

F T

m A m A

m A

− > ε
 > ε

 (6)

where m(AF) is the largest probability value, ( ) max{ ( ), Θ}F k km A m A A= ∈ , m(AS) is the second largest 

probability value, ( ) max{ ( ), Θ,  }S k k k Fm A m A A and A A= ∈ ≠ , εT1 and εT2 are the given thresholds in 

advance, 1, 2, ,k r=  . 
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If AF satisfies the decision rule Equation (6), then it is regarded as the driver’s fatigue state; otherwise, 

the fatigue state recognized in the previous time step is outputted as the current fatigue state. 

4. Experiment Results and Analysis 

This section presents examples based on field experiments to demonstrate the effectiveness and 

robustness of the proposed fatigue recognition model by applying the field experiment data to the 

proposed model and comparing its performance with those of other models. 

4.1. Experiment Design 

The experiments were carried out on the Nanjing-Shanghai expressway (China), which is highlighted 

in blue in Figure 3. Three men and two women with ages ranging from 25 to 32 and more than three 

years of driving experience participated in the experiments. Alcohol, tea, coffee, drugs or other drinks 

that can cause excitement to the nervous system were prohibited for 24 h prior to the experiments. The 

experiments were performed after informed consent on the procedures of the experiments was received 

from all participants. 

 

Figure 3. Experiment route. 

The experiments were carried out from 12:00 p.m. to 3:00 p.m. on 25 November 2014 for all 

participants, because previous studies show that drivers can become easily fatigued during this period of 

the day [37]. To avoid traffic accidents, the experiments were conducted on road sections with few 

vehicles. In addition, an experienced driver was asked to sit in the front passenger seat to warn the 

participant or execute necessary emergency maneuvering. 

4.2. Fatigue State Assessment 

The effective classification of a driver’s fatigue state during driving is a difficult problem. The 

existing studies focus on subjective assessments on fatigue driving by observing some phenomena, such 

as a driver’s facial expression, operational behavior and self-evaluation of fatigue, which may result in 

an inaccurate classification. In view of objectivity of the EEG detection, we propose a comprehensive 
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assessment method based on objective detection and subjective assessment to classify fatigue states, 

which will improve the accuracy of fatigue state classification. The main steps of the comprehensive 

assessment method are as follows: 

(i) Observer Assessment: Fatigue states of participants are evaluated by three observers according 

to the video of facial expression and driving behavior captured by three cameras. Of the three 

cameras, one is placed towards the driver’s face, another towards the steering-wheel, brake 

pedal, and gearshift, and the third one towards the front lane. Every video is evaluated by the 

three observers according to the fatigue state characteristics described in Table 1. If the fatigue 

state of the participant is evaluated as “Non-Fatigue (NF)”, then let si,j = 0, where si,j indicates 

the score of the jth video evaluated by the thi  observer; if the fatigue state is determined as 

“Moderate Fatigue (MF)” or “Severe Fatigue (SF)”, then let si,j = 1 or si,j = 2, respectively. To 

reduce subjectivity of assessment, the average of the scores given by three observers is regarded 

as the final score, i.e., 
3

1

INT ( ) / 3j i
i

s s
=

 ′ =   
 , where, INT ⋅    is a rounding operator. The fatigue 

state of the participant in the jth video is evaluated according to the average js′ . If =0js′ , then 

the fatigue state is “NF”; if =1js′ , then fatigue state is “MF”; if =2js′ , then fatigue state is “SF”. 

Table 1. Video observation based fatigue assessment. 

Fatigue 
State 

State Description Score

NF 
Eyes are active and concentrated; sits straight, operation of hands and feet is agile, keeps 
focusing on the front, and stable vehicle speeds. 

1 

MF 

Eyes, mouth and hands move slightly unconsciously, yawns, head swings, adjusts the 
sitting position discontinuously, consistent operation of hands and feet; eye movement 
declines, eyelids sometimes close, frequently yawns, operations of hands and feet are not 
agile, not too stable vehicle speeds. 

2 

SF 

Eyelids always closed, eyes are dull, nods, winks and shakes the head to resist fatigue, 
uncoordinated operation of hands and feet; eyes suddenly open after closing for a period, 
head droop and body incline begin to occur, hands and feet operate unconsciously, 
unstable speeds and zigzag routing occur. 

3 

(ii) EEG Assessment: The objective assessment based on EEG is conducted to evaluate the fatigue 

state of the participants. The value of rα,θ,β is considered as an index to reflect the fatigue state, 

which is defined as [38]: 

, ,

P P
r

P
α θ

α θ β
β

+=  (7)

where, Pα, Pθ and Pβ are the power spectra of the three wave bands of α, θ and β, respectively, and the 

frequency ranges of α, θ and β bands are (4–8 Hz), (8–13 Hz), and (13–22 Hz), respectively.  

The fatigue state is categorized into three levels according to the value of rα,θ,β defined in Table 2. 

(iii) Self-Assessment: Let the participant make a self-assessment of fatigue state according to 

his/her current physical, physiological and psychological situations. Based on the scores gained 
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and the 7-point Stanford Sleepiness Scale (SSS) table [39], fatigue is then rated into one of 

three states: “NF” (1–2 points), “MF” (3–5 points), and “SF” (6–7 points). 

Table 2. EEG detection based fatigue assessment. 

Fatigue State α,θ,βr  

NF , , 3rα θ β <  

MF , ,3 4rα θ β≤ <

SF , , 4rα θ β ≥  

(iv) Comprehensive Assessment: The participant’s fatigue state is determined according to the 

results from steps (i)–(iii). If the fatigue state results from all three methods are consistent, then 

the assessment result obtained is considered valid and correct, which will be regarded as the 

actual fatigue state of the participant. Otherwise, it is removed from the ground truth set. 

To ensure the reliability of the assessment, the assessments based on observer and EEG detection 

must be implemented simultaneously, and the self-assessments based on SSS table need to be carried 

out within one minute after the other two assessments are accomplished. 

The proposed assessment method will be used to select the most effective fatigue features and provide 

ground truth data for following model calibration and verification. 

4.3. Data Collection 

According to the detection methods described in Section 2, eight fatigue features were measured.  

In total 1200 data points were collected, each of which includes the eight fatigue features. These data 

were separated into two sets: (i) the training set that included 800 data points for model calibration; and 

(ii) the remaining 400 data points for model verification. Further, based on the comprehensive 

assessment method proposed in Section 4.2, the measurement results of every fatigue feature were 

divided into three groups according to their corresponding fatigue states, “NF”, “MF” and “SF”. We 

select 150 data points randomly from the 1200 data points illustrated in Figure 4. For each fatigue feature, 

50 data points each belong to the “NF”, “MF” and “SF” groups. 

 
(a) (b) 

Figure 4. Cont. 
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(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 4. Fatigue feature measurement. (a) F measurement; (b) ECD measurement; (c) 

MEOL measurement; (d) YF measurement; (e) PNS measurement; (f) SDSA measurement; 

(g) FADL measurement; (h) SDVS measurement. 

As seen from the Figure 4, the fatigue states cannot be identified easily according to the measurement 

values of fatigue features. For example, theoretically, the data in the “NF” state should have larger  

values than the data in the “MF” state, and the data in the “MF” state should have larger values than the 

data in the “SF” state in MEOL measurement shown in Figure 4c. However, some data points in the 

“NF” state have smaller values than the data in the “MF” state. Therefore, in order to recognize the 

driver’s fatigue state more effectively, the effectiveness of these measured fatigue features needs to be 

analyzed further. 

4.4. Fatigue Feature Identification 

As previously mentioned, not all fatigue features measured in the previous section can be used to 

reliably reflect fatigue state of driver. In addition, too many fatigue features are likely to cause data 
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redundancy and result in heavy computational burden, which may preclude real-time recognition. 

Therefore, the fatigue features presented in the previous section need to be analyzed further to eliminate 

irrelevant fatigue features. 

To select the most effective fatigue features, the correlation between fatigue features and fatigue 

driving need to be identified. Pearson test is regarded as an effective method to carry out the correlation 

analysis. The associated procedure is as follows: 

(i) The Kolmogorov-Smirnov test [40]: It is used to estimate whether every fatigue feature follows 

a normal distribution. For the features not normally distributed, they will be normalized through 

logarithmic transformation. 

(ii) Pearson test [40]: It is used to verify the correlation between a fatigue feature and fatigue. 

(iii) Feature selection: The most effective fatigue features are selected according to the correlation 

calculated by Pearson test. If the statistic value of a fatigue feature is smaller than the quantile 

value, it is considered uncorrelated to fatigue driving and removed from the candidate set of 

fatigue features. 

Table 3 shows the verification results based on the Kolmogorov-Smirnov test. It shows that the 

statistics of BF, ECD, MEOL, YF, PNS, SDSA, FALD and SDVS are smaller than the quantile value, 

implying that they are all normally distributed. 

Table 3. Normal distribution testing of fatigue features. 

Fatigue Feature  
Parameters 

Kolmogorov-Smirnov Testing 

Mean 
Standard 
Deviation

Statistic 
Value 

Significance 
Level 

Statistic Quantile  
Value 

BF 0.1237 0.0214 0.0576 0.05 0.1297 
ECD 0.3178 0.0414 0.0742 0.05 0.1297 

MEOL 10.194 2.347 0.069 0.05 0.1297 
YF 0.2074 0.0213 0.0703 0.05 0.1297 

PNS 0.2857 0.0278 0.0583 0.05 0.1297 
SDSA 12.69 2.4157 0.0623 0.05 0.1297 
FALD 0.6138 0.0872 0.0718 0.05 0.1297 
SDVS 7.315 1.0773 0.0715 0.05 0.1297 

The correlation coefficient between each fatigue feature and fatigue state is computed by using the 

Pearson test and the associated statistics are summarized in Table 4. Table 4 illustrates that the 

correlation coefficients of MEOL and SDSA are negative and the other six fatigue features are positively 

correlated to fatigue. Further, the absolute value of the correlation coefficient of MEOL is very small 

and its statistic value is less than the corresponding statistic quantile value. It indicates that MEOL is not 

significantly correlated with fatigue. Therefore, the seven fatigue features that have significant 

correlation with fatigue are selected as the most effective fatigue features, and the fatigue feature MEOL 

is excluded. 
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Table 4. Correlation analysis between fatigue features and fatigue. 

Fatigue 
Features

Fatigue 

Correlation 
Coefficient 

Significance 
Level 

Statistic 
Value 

Statistic Quantile  
Value 

BF 0.787 0.05 6.362 1.982 
ECD 0.389 0.05 3.137 1.982 

MEOL −0.034 0.05 1.107 1.982 
YF 0.613 0.05 4.814 1.982 

PNS 0.713 0.05 6.324 1.982 
SDSA −0.622 0.05 4.896 1.982 
FALD 0.562 0.05 4.528 1.982 
SDVS 0.675 0.05 5.968 1.982 

4.5. Feature-Level Fusion Results 

There are four main steps in the feature-level fusion. First, according to the number of the effective 

fatigue features and the fatigue state of sample data, a 3-input and 3-output neural network of  

T-SFNN-1 is determined, where input variables xi,1 (i = 1, 2, 3) are used to represent the BF, ECD and 

YF measurements, respectively. A 4-input and 3-output neural network of T-SFNN-2 is determined, 

where input variables xi,2  (i = 1, 2, 3, 4) are used to represent the PNS, SDSA, FALD and SDVS 
measurements, respectively. Output variables yj ( j  = 1, 2, 3) represent the probabilities of the three 

fatigue states, i.e., the “NF”, “MF”, and “SF”, respectively. The probabilities are assigned according to 

the fatigue state of the sample data in training the T-SFNN. If the data point in the training set is evaluated 

as a certain fatigue state by the proposed comprehensive assessment method, then the output variable 

related to the evaluated fatigue state is assigned a larger probability value. The remaining probability 

value is assigned equally to the two output variables related to the other two fatigue states. For example, 

if the fatigue state of the thi  sample data is evaluated as “NF”, then we can let y1(i) = 0.8, y2(i) = 0.1, 

y3(i) = 0.1; if the fatigue state is “MF”, then let y1(i) = 0.1, y2(i) = 0.8, y3(i) = 0.1; if the fatigue state is 

“SF”, then let y1(i) = 0.1, y2(i) = 0.1, y3(i) = 0.8. 

Second, based on the SCA and sample data, determine the structures of T-SFNN-1 and T-SFNN-2. 

480 sample data points are selected from the training set and are used to carry out the SCA. Based on 

the SCA, these data points for T-SFNN-1 and T-SFNN-2 are divided into 3 clusters. Therefore, the 

number of fuzzy rules is determined as 3 and the number of the linguistic values for every input variable 

is also 3 in both T-SFNN-1 and T-SFNN-2. The network structures of the T-SFNN-1 and the T-SFNN-2 

without and with the SCA are shown in Table 5. 

Table 5 illustrates that the structures of T-SFNN-1 and T-SFNN-2 have been improved when the SCA 

is adopted. The total number of parameters to be determined in the training stage decreases significantly. 
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Table 5. Comparison of network structure of T-SFNN without and with SCA. 

Parameters of T-SFNN 
T-SFNN-1 T-SFNN-2 

Without SCA With SCA Without SCA With SCA

Input-output space 
3 inputs,  
3 output 

3 inputs, 
3 output 

4 inputs,  
3 output 

4 inputs, 
3 output 

Shape of membership function Gaussian Gaussian Gaussian Gaussian 
Number of linguistic values 3 3 3 3 

Number of fuzzy rules 27 3 81 3 
Number of parameters for training 99 27 267 33 

Third, T-SFNN-1 and T-SFNN-2 are trained to obtain the optimal network parameters using the IPSO 

algorithm based on 360 training sample data points, including 120 “NF”, 120 “MF” and 120 “SF” 

samples, respectively. The convergence curves measured by the mean square error (MSE) are shown in 

Figure 5. As illustrated by Figure 5, the MSE values of T-SFFN-1 and T-SFNN-2 decline to 10−4 after 

1642 iterations based on the IPSO algorithm. Therefore, the network parameters can be efficiently 

determined using the IPSO algorithm. 

 

Figure 5. MSE curves based on IPSO for T-SFNN-1 and T-SFNN-2. 

Fourth, output the result of feature-level fusion. To verify the proposed model, another 200 sample 

data points selected from the model verification set are used to compute the output results of T-SFNN-1 

and T-SFNN-2. For illustration purposes, 6 of the 200 output results are shown in Table 6, where 

1,1 1,2 1,3{ , , }t t ty y y  and 2,1 2,2 2,3{ , , }t t ty y y  represent the output results of T-SFNN-1 and T-SFNN-2 at time  

t, respectively. 

Table 6. Feature-level fusion results. 

Index 1,1 1,2 1,3{ , , }t t ty y y  2,1 2,2 2,3{ , , }t t ty y y  

1 {0.812, 0.087, 0.103} {0.782, 0.311, 0.074}
2 {0.203, 0.763, 0.052} {0.402, 0.432, 0.207}
3 {0.237, 0.624, 0.178} {0.383, 0.552, 0.134}
4 {0.412, 0.488, 0.106} {0.721, 0.234, 0.071}
5 {0.127, 0.073, 0.811} {0.442, 0.551, 0.107}
6 {0.292, 0.457, 0.393} {0.112, 0.476, 0.389}
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4.6. Decision-Level Fusion Results 

The normalized results of 1,1 1,2 1,3{ , , }t t ty y y  and 2,1 2,2 2,3{ , , }t t ty y y  at time t are used as two pieces of 

evidence {mt(A1), mt(A2), mt(A3)} ( 1 1 1 2 1 3{ ( ), ( ), ( )}t t tm A m A m A , 2 1 2 2 2 3{ ( ), ( ), ( )}t t tm A m A m A ) in the first evidence 

fusion, i.e., let 1 1( )tm A = 1,1
ty , 1 2( )tm A = 1,2

ty , 1 3( )tm A = 1,3
ty . The first evidence fusion result {ṁt(A1), ṁt(A2), 

ṁt(A3)} is obtained by carrying out the Dempster combination rule shown in Equation (3). Similarly, for 

the {ṁt(A1), ṁt(A2), ṁt(A3)} and the recognition result {mt-1(A1), mt-1(A2), mt-1(A3)} at time step t − 1, the 

same computations are conducted. The decision-level fusion result {mt(A1), mt(A2), mt(A3)}  at time t is 

obtained by implementing the Dempster combination rule in Equation (3) based on the normalized fusion 

results of  and 1 1 1
1 2 3{ ( ), ( ), ( )}t t tm A m A m A− − − . Finally, we can infer the fatigue state SF 

of the driver from the decision-level fusion result at the current time step according to Equation (6). 

The performance of the proposed model is verified by comparing the fatigue state inferred by  

the decision-level fusion with that evaluated by the comprehensive assessment method. For the selected 

200 data points, 192 are correctly recognized by the proposed model, which demonstrates its effectiveness. 

Further, the selected 200 data points were used to verify the robustness of the proposed model under 

disturbance. Table 7 summarizes the recognition results of the first evidence fusion based on the results 

shown in Table 6, where Fs′  represents the driver’s fatigue state deduced from {ṁt(A1), ṁt(A2), ṁt(A3)} 

according to the proposed decision rule in Equation (6), SEEG represents the fatigue state evaluated by the 

proposed comprehensive assessment method, and K′ represents the conflict degree between two pieces 

of evidence in the first evidence fusion. Table 8 shows the recognition results of decision-level fusion of 

the 6 examples, where K represents the conflict degree calculated in the decision-level fusion. 

Table 7. Recognition results of the first evidence fusion. 

Index 1,1 1,2 1,3{ , , }t t ty y y  2,1 2,2 2,3{ , , }t t ty y y  K′  {ṁt(A1), ṁt(A2), ṁt(A3)} ′Fs  sEEG 

1 {0.810, 0.087, 0.103} {0.670, 0.266, 0.064} 0.441 {0.971, 0.476, 0.012} NF NF 

2 {0.199, 0.750, 0.051} {0.386, 0.415, 0.199} 0.603 {0.193, 0.784, 0.026} MF MF 

3 {0.228, 0.601, 0.171} {0.359, 0.516, 0.125} 0.587 {0.198, 0.751, 0.052} MF MF 

4 {0.410, 0.485, 0.105} {0.703, 0.228, 0.069} 0.593 {0.708, 0.272, 0.018} NF NF 

5 {0.126, 0.072, 0.802} {0.402, 0.501, 0.097} 0.835 {0.307, 0.219, 0.471} SF SF 

6 {0.256, 0.400, 0.344} {0.115, 0.487, 0.398} 0.640 {0.082, 0.541, 0.380} MF SF 

As shown by Table 7, the first evidence fusion results differentiate the fatigue states more clearly than 

the results provided by the feature-level fusion shown in Table 6. For example, for the 2nd sample data 

point in Table 6, the output value 1,2
ty (0.763) of T-SFNN-1 is larger than the 1,1

ty (0.203) and 1,3
ty (0.052); 

that the fatigue state belongs to “MF” can be recognized easily. By contrast, the difference between 2,1
ty

(0.402) and 2,2
ty (0.432) is small. Hence, it is difficult to conclude the driver’s fatigue state based on  

T-SFNN-2. Nevertheless, after the first evidence fusion is conducted as shown in Table 7, the probability 

ṁt(A2) (0.784) of “MF” is much larger than the other two probabilities ṁt(A1) (0.193) and ṁt(A3) (0.026). 

Hence, the driver’s fatigue state can be determined based on the proposed decision rule in Equation (6). 
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For the 4th sample data point, 1,2
ty  has the maximum 0.488 in the output of T-SFNN-1, and the 

driver’s fatigue state should be recognized as “MF”. However, as 2,1
ty  in T-SFNN-2 has the maximum 

0.721, the driver’s fatigue state will be recognized as “NF”, which conflicts with the result of T-SFNN-1. 

By contrast, the first evidence fusion result in Table 7 indicates that the driver’s fatigue state is “NF” 

because ṁt(A1) (0.708) is larger than ṁt(A2) and ṁt(A3). The proposed comprehensive assessment shows 

that driver’s actual fatigue state is “NF”, which is consistent with the first evidence fusion result. Using 

video data analysis, we find that the reason why T-SFNN-1 was unable to correctly infer the fatigue state 

is that the fatigue feature ECD was incorrectly measured due to the driver’s sudden nodding. 

For the 5th sample data point, the recognition results of T-SFNN-1 and T-SFNN-2 are also different. 

One is “SF” while the other is “MF”. By checking the video records, we found that the fatigue feature 

FADL was incorrectly measured due to the blurred lane and dim lighting, which resulted in the failure 

of T-SFNN-2 recognition. By contrast, the first evidence fusion result can correctly recognize the 

driver’s fatigue state. 

Table 8 summarizes the final results of the proposed model after the decision-level fusion. The 

performance of the two levels of fusion model is enhanced because the distinction between mt(A1), mt(A2) 

and mt(A3) is enhanced. For example, for the 1st sample data point, the difference of the maximum ṁt(A1) 

and the second maximum ṁt(A2) is increased to 0.883 from 0.495 based on the first evidence fusion 

result. This enhancement makes the recognition of fatigue state more credible. For the 6th sample data 

point, the driver’s fatigue state is recognized as “MF” according to the first evidence fusion result shown 

in Table 7. However, the fatigue state of the 6th sample data point is determined as “SF” according to 

the decision-level fusion result shown in Table 8. The comprehensive assessment proposed verifies that 

the actual fatigue state is “SF”, which is consistent with the decision-level fusion result. By analyzing 

the video data, we found that the GPS device did not receive any signal of vehicle position and velocity 

because the vehicle entered a tunnel, which resulted in a recognition failure of T-SFNN-2. By contrast, 

the decision-level fusion was able to obtain correct fatigue recognition by considering the fusion result 

at the previous time step. 

Table 8. Recognition results of decision-level fusion. 

Index -1 -1 -1
1 2 3{ ( ), ( ), ( )}t t tm A m A m A  1 2 3{ ( ), ( ), ( )}  t t tm A m A m A  K {mt(A1), mt(A2), mt(A3)} sF 

1 {0.793, 0.102, 0.105} {0.665, 0.326, 0.009} 0.44 {0.942, 0.059, 0.002} NF 

2 {0.192, 0.713, 0.095} {0.192, 0.782, 0.026} 0.304 {0.053, 0.801, 0.004} MF 

3 {0.179, 0.599, 0.222} {0.198, 0.75, 0.052} 0.503 {0.071, 0.904, 0.023} MF 

4 {0.647, 0.285, 0.068} {0.709, 0.273, 0.018} 0.463 {0.854, 0.145, 0.002} NF 

5 {0.186, 0.127, 0.687} {0.308, 0.220, 0.472} 0.591 {0.140, 0.068, 0.793} SF 

6 {0.135, 0.079, 0.786} {0.082, 0.539, 0.379} 0.608 {0.028, 0.109, 0.760} SF 

Finally, to demonstrate the accuracy and robustness of the proposed model, it is compared with the 

models based on the single feature, and the single-source fusion from three perspectives: accuracy rate 

(AR), miss rate (MR), and false alarm rate (FAR). Here, AR = (N0,0 + N1,1 + N2,2)/N, FAR = (N0,1 + 

N0,2)/N, MR = (N1,0 + N2,0)/N, where N is the total number of the samples, and Ni,j is the number of 

sample data points recognized as having fatigue state j when the actual fatigue state is i. The performance 

of the proposed model is also determined based on two sets of feature measurements: (i) using all of the 
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fatigue features; and (ii) using only the most effective fatigue features (excluding MEOL). The results 

are summarized in Table 9, and illustrate that the proposed model is better than the other models in terms 

of AR, MR and FAR. Further, while the number of the fatigue features is reduced through fatigue feature 

identification, the performance of the model is improved. It indicates that the proposed model can 

provide more accurate and robust results in real-world applications. 

Table 9. Performance comparisons of five models. 

Models AR MR FAR 

Single feature based (BF) 88.7% 4.2% 3.9%
Single-source fusion based (Vehicle behavior features and T-SFNN) 90.8% 3.6% 4.1%
Single-source fusion based (Facial features and T-SFNN) 91.6% 3.4% 3.7%
The proposed model (Using all fatigue features) 92.1% 3.1% 3.5%
The proposed model (Based on the most effective features) 93.8% 2.3% 2.8%

Through these analyses, we conclude that the proposed self-adaptive dynamic recognition model with 

two levels of fusion is effective and robust, even when certain fatigue features become ineffective or 

some sensors fail because of complex travel environment. In addition, the use of the most effective 

features can further improve the performance of the proposed model. 

5. Conclusions 

To enhance the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic 

recognition model based on multi-source information and two levels of fusion is proposed in this paper. 

The accuracy and robustness of fatigue driving recognition are improved through the feature-level fusion 

as well as the decision-level fusion. The feature-level fusion based on T-SFNN can provide an accurate 

dynamic probability assignment for the decision-level fusion, while the decision-level fusion based on 

D-SET is able to adaptively solve the decision conflict caused by external disturbances via combining 

three pieces of evidence from three different information sources. In addition, the proposed fatigue 

recognition model is calibrated and verified using a comprehensive assessment method of the fatigue 

state and the data collected from field experiments. 

The experiment results demonstrate that the proposed model performs well in terms of 

accommodating the disturbances caused by complex environment changes. When the most effective 

fatigue features are selected and applied to the proposed model by conducting a correlation analysis, the 

performance of the model is further improved in terms of accuracy and reliability. In addition, compared 

to models based on the single fatigue feature and/or single-source fusion, the proposed fatigue 

recognition model provides more accurate and robust results in terms of the accuracy rate, missing rate, 

and false alarm rate. Therefore, the proposed fatigue recognition model can perform better in real-world 

applications to improve travel safety. 
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