
Sensors 2015, 15, 24143-24177; doi:10.3390/s150924143
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Evaluation of Content-Matched Range Monitoring Queries over

Moving Objects in Mobile Computing Environments

HaRim Jung 1, MoonBae Song 2, Hee Yong Youn 1 and Ung Mo Kim 1,*

1 College of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-ro,

Jangan-gu, Suwon 440-746, Korea; E-Mails: harim3826@gmail.com (H.J.);

youn7147@skku.edu (H.Y.Y.)
2 Mobile Communications Division, Samsung Electronics Co., Ltd., 416 Maetan-dong, Youngtong-gu,

Suwon 443-742, Korea; E-Mail: mbsong@gmail.com

* Author to whom correspondence should be addressed; E-Mail: ukim@skku.edu;

Tel.: +82-31-290-7118.

Academic Editor: Leonhard Reindl

Received: 23 July 2015 / Accepted: 16 September 2015 / Published: 18 September 2015

Abstract: A content-matched (CM) range monitoring query over moving objects continually

retrieves the moving objects (i) whose non-spatial attribute values are matched to given

non-spatial query values; and (ii) that are currently located within a given spatial query range.

In this paper, we propose a new query indexing structure, called the group-aware query

region tree (GQR-tree) for efficient evaluation of CM range monitoring queries. The primary

role of the GQR-tree is to help the server leverage the computational capabilities of moving

objects in order to improve the system performance in terms of the wireless communication

cost and server workload. Through a series of comprehensive simulations, we verify the

superiority of the GQR-tree method over the existing methods.

Keywords: range monitoring query; moving object; query indexing; location sensing;

location-update stream; location-based service; mobile/ubiquitous computing

1. Introduction

With the technological advances in wireless networks and the wide deployment of mobile devices

equipped with location sensing technology (e.g., smart phones and pads), location-based services (LBSs)

have attracted much attention as one of the most promising applications in recent years [1–20]. A range

Sensors 2015, 15 24144

monitoring query, which is defined as (i) retrieving the moving objects located within a client-specified

spatial query range and (ii) keeping the query result up to date during a certain time period, can be

used in many LBSs such as mobile advertising and traffic condition monitoring. For example, let us

consider the scenario of a mobile advertising service, where an advertiser (i.e., client) plans to send

advertising messages to the nearby potential customers (i.e., moving objects) who have opted into the

mobile advertising service. Then, the service provider (i.e., server) must be able to keep track of the

locations of the customers and report their proximity to the advertiser, whenever needed.

In many real-life LBSs, however, advertisers are moving away from bombarding customers with the

same advertising messages regardless of whether the messages are relevant to the customers. Instead,

they are moving toward sending different advertising messages to different customers by additionally

specifying non-spatial target criteria. For example, let us suppose that a restaurant owner (i.e., client)

wants to send advertising messages to only the nearby vegetarian customers whose ages are between

20 and 40 years. In this case, the service provider should report to the restaurant owner only the nearby

vegetarian customers aged between 20 and 40 years (i.e., content-matched moving objects).

In this paper, we propose a method for evaluation of a content-matched range monitoring query

(CM range monitoring query) over moving objects. Given a set of moving objects O, a CM range

monitoring query q, issued by a client over O, specifies (i) a spatial query range and (ii) a set of

non-spatial query values. For a query q, during a certain time period, the server should continually

retrieve all moving objects (in O) (i) whose non-spatial attribute values are matched to the set of

non-spatial query values; and (ii) that are currently located within the spatial query range.

There is a large body of work on evaluation of traditional spatial range monitoring queries over

moving objects, which can be classified into two categories according to the mobility of spatial query

ranges: one deals with stationary or quasi-stationary query ranges [1,2,6,12,17,19,20], whereas the other

deals with moving query ranges [3,5,7,14–16]. Our study belongs to the former category. The majority

of existing methods for evaluation of the traditional range monitoring queries assume that moving

objects periodically send location-updates to the server via wireless connections and the server keeps

the results of the issued queries up to date [12,15,19,20]. However, excessive location-updates from

moving objects can not only cause significant energy waste of the battery powered handheld devices

(carried by the moving objects), but also significantly degrade the overall system performance due to

overloading network resources and overwhelming server workload [21]. To support efficient evaluation

of range monitoring queries over moving objects, it is crucial to satisfy the following two requirements

both of which depend on the amount of location-update stream generated from moving objects: (i) the

wireless communication cost should be minimized and (ii) the server workload should be minimized.

It is also important to notice that in a monitoring query evaluation setting, query results are required to

be updated as soon as possible whenever being changed because a time-delay may yield obsolete results

for monitoring queries; thus, it is critical to keep the time delay of updating query results minimum by

reducing the server workload (e.g., CPU-time).

The safe region method (SR), which helps moving objects reduce the frequency of sending their

location-updates, was introduced in [6,17]. A safe region, assigned to each moving object o, is the

region that (i) contains o and (ii) guarantees that the current results of all the queries issued to the server

will remain valid if o moves only within this region. Therefore, o can move freely without sending

Sensors 2015, 15 24145

its location-update to the server as long as it does not exit its safe region. For example, the moving

object o1 in Figure 1 need not send its location-update if it locates within its safe region (i.e., blue-dotted

rectangle). Although SR improves the overall system performance to a certain degree, because the size

of a safe region assigned to each moving object o is typically small, o easily exits its current safe region

and contacts the server in order to receive a new safe region. Thus, the server must frequently search o’s

safe regions, which requires intensive computational overhead.

q1.R

q2.R

q3.R

q4.R

q5.R

o1

rectangular safe region

o2

resident domain

move

move

Figure 1. An example of the safe region and resident domain.

Monitoring query management (MQM) and the query region-tree method (QRT) whose primary goal

is to reduce the communication cost and the server workload by leveraging the available (memory and

computational) capabilities of moving objects, was introduced in [1,2], respectively. In MQM and QRT,

the server pushes some tasks of range monitoring query evaluation to the moving objects. Specifically,

the server assigns each moving object o (i) a rectangular subspace of the entire workspace, called the

resident domain that contains o; and (ii) several spatial query ranges that overlap with o’s resident

domain. The size of o’s resident domain is determined by o’s capability, o.Cap, which indicates the

maximum number of (nearby) spatial query ranges o can load and process at a time; thus if o.Cap = n,

the resident domain assigned to o must contain o and overlap with no more than n spatial query ranges.

For example, assuming the capability o2.Cap of the moving object o2 in Figure 1 is 3, o2 is assigned

(i) the red-dotted rectangle as its resident domain and (ii) three spatial query ranges q3.R, q4.R, and

q5.R, which overlap with o2’s resident domain. Only when o2 exits its resident domain or crosses any

of the boundary of its assigned spatial query ranges, does it contact the server to receive a new resident

domain (together with new spatial query ranges) or to let the server update the corresponding query

result, respectively. In the figure, o2 sends its location-update because o2 crosses the boundary of q4.R,

and in response to o2’s location-update, the server updates the result of the corresponding query q4.

As such, in MQM and QRT, moving objects and the server share the tasks of query evaluation,

which lightens the server workload. Because the moving objects are aware of when they should send

their location-updates, the wireless communication cost can be also reduced. For indexing queries and

searching the resident domain of each moving object, MQM and QRT use the binary partitioning tree

(BP-tree) and the query region tree (QR-tree) that overcomes the limitations of the BP-tree, respectively.

Unfortunately, none of the methods reviewed above can adequately deal with CM range monitoring

queries because they rely only on spatial information. For evaluation of CM range monitoring queries,

in the previous paper [1], we proposed an enhanced version of the QR-tree, called the bit-vector

Sensors 2015, 15 24146

query region tree (BQR-tree), which stores the additional bit-vector information required to describe

the non-spatial query values. However, the BQR-tree is a naïve form of the enhanced spatial query

indexing structure, where tree construction is based mostly on the spatial information. In this paper,

we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for

efficient evaluation of CM range monitoring queries. For the tight integration of the spatial and the

non-spatial specifications of the queries, the GQR-tree groups the queries according to their non-spatial

query values (i.e., non-spatial information) when being built on their spatial query ranges (i.e., spatial

information). Similarly to the BP-tree, the QR-tree, and the BQR-tree, the main role of the GQR-tree is

to index queries and to search the resident domains of moving objects in order for cooperative evaluation

of CM range monitoring queries between the server and moving objects.

The remainder of this paper is organized as follows. In Section 2, some related work is reviewed.

In Section 3, the system overview is provided. In Section 4, the problem is formally defined. In Section 5,

we present the details of the GQR-tree. In Section 6, we provide the performance evaluation and verify

superiority of the proposed GQR-tree method as compared with existing methods. Finally, in Section 7,

we present our conclusions.

2. Related Work

Most of the early researches on spatial databases assumed the stationary objects and focused on

developing efficient spatial access methods (e.g., the R-tree [22] and its variants [23,24]) and evaluation

of snapshot queries, which retrieves the results of queries only once at a specific time point. Later on, the

focus has been extended to indexing moving objects. Assuming that the trajectories of moving objects are

known a priori or predictable, Saltenis et al. [25] proposed the Time-Parameterized R-tree (TPR-tree) for

indexing moving objects, where the location of each moving object is transformed into a linear function

of time. Tao et al. [26] proposed the improved version of the TPR-tree, called the TPR∗-tree, which

uses the exactly same data structure as the TPR-tree but applies new insertion and deletion algorithms.

Some index structures were also presented such as the STRIPES [27] and the Bx-tree [28], a variant

of the B+-tree, to improve the performance of the TPR-tree family. However, the known-trajectory

assumption does not hold for most real-life application scenarios (e.g., the velocity and direction of

a typical customer on the road are frequently changed), which leads those index structures to become

prohibitively expensive to update. To deal with a large number of moving objects that move arbitrarily,

Lee et al. [29] proposed a generalized bottom-up update strategy for the R-tree, while Song et al. [30,31]

proposed two buffer-based index structures, called the R-tree with semibulk loading (Rsb-tree) and the

R-tree with Update Buffering (Rub-tree), both of which utilize an in-memory buffer structure.

Motivated by LBSs, another research direction has recently focused on continuous query monitoring

over moving objects. Many methods for continuous range query monitoring have been proposed, which

can be broadly classified into two categories depending on whether queries also move or not. The first

category focuses on stationary or quasi-stationary queries over moving objects [1,2,6,12,17,19,20], and

the second category deals with moving queries over moving objects [3,5,6,14–16]. Because our work

belongs to the first category, we elaborate on the review of the representative methods in the first category

and briefly review the methods in the second category.

Sensors 2015, 15 24147

Indexing queries, instead of indexing frequently moving objects with arbitrary velocities and

directions, has been considered to be an attractive strategy, which reduces the update cost of index

structures because continuous monitoring queries remain active for a long period of time and are

stationary (or quasi-stationary). Prabhakar et al. [17] suggested to use the R-tree to index queries,

while Kalashnikov et al. [12] used the in-memory grid index. Wu et al. [20] proposed a new

query indexing method, namely containment encoded square (CES) based grid indexing. All of these

methods assumed that moving objects blindly report their location-updates to the server whenever they

move. The server, meanwhile, continually (i) receives the location-update stream; (ii) determines the

queries that are affected by the movements of the objects; and (iii) updates their results if necessary.

However, constant location-updates generated by a huge number of moving objects may incur significant

communication bottleneck and greatly increase the overhead for determining the affected queries and

keeping their results up to date at the server. In addition, because the transmission of a location-update

message over a wireless connection takes a substantial amount of energy, the handheld device carried

by each moving object exhausts its battery life quickly. To help each moving object reduce the number

of sending location-updates, the safe region method (SR) was proposed in [6,17]. Cai et al. [2] and

Jung et al. [1] proposed the monitoring query management method (MQM) and the QR-tree method

(QRT), respectively, which aim to reduce the communication cost and the server workload by leveraging

heterogeneous computational capabilities of moving objects through the concept of resident domain.

Recently, the safe region techniques for moving range queries over stationary objects have also been

proposed in [3,32]. Similarly to the safe region assigned to a moving object, the safe region assigned to

a query q is the region that (i) contains q’s location (i.e., the center point of q’s spatial query range q.R)

and (ii) guarantees that while q’s location remains inside it, the result of q remain unchanged.

Focusing on the evaluation of continuous moving queries over moving objects, Mokbel et al. [15]

proposed the Scalable INcremental hash based Algorithm (SINA) to achieve the system scalability based

on the notions of shared execution and incremental evaluation. Gedik et al. [5] presented the MobiEyes,

where moving objects play an active role in the query evaluation task similar to those in MQM and

QRT. In SINA, moving objects report their location-updates periodically, while in Mobieyes, moving

objects rely on location estimation to reduce the number of sending location-updates as well as moving

query issuers (i.e., moving clients). Liu et al. [14] employed two kinds of communication methods for

moving query evaluation: on-demand access and periodic broadcasting to reduce communication costs

and energy wastes of handheld devices carried by moving objects and query issuers. Recently, assuming

moving objects periodically send their location-updates, Mouratidis et al. [16] have introduced the

broadcast grid index (BGI), which employs the periodic broadcasting for communications between the

server and query issuers to evaluate moving queries.

All the methods reviewed above cannot adequately deal with the CM range monitoring queries.

Although some existing researches have addressed the spatial queries that involve non-spatial

specifications, their methods are restricted to snapshot queries over stationary objects [10,11,20].

We note that the problem that is slightly related to the evaluation of CM range monitoring queries is the

evaluation of spatial keyword queries [33–37]. Hariharan et al. [33] studied the problem of evaluating

boolean range queries over stationary geo-textual objects, where keywords are used as boolean

predicates to filter out the objects, which do not contain the query keywords, among all the objects that

Sensors 2015, 15 24148

are inside the given spatial query ranges. On the other hand, Cong et al. [34] studied the problem

of evaluating top-k queries over stationary geo-textual objects, where spatial proximity and textual

relevance (i.e., textual similarity between the textual descriptions of the objects and query keywords) are

combined by a linear function to rank the objects. Several variants of spatial keyword queries have also

been studied such as m-closest keywords queries [35,36] and region based spatio-textual queries [37].

However, the methods for spatial keyword query evaluation are also restricted to snapshot queries over

stationary objects.

3. System Overview

The main goal of our study is to design a query evaluation system, which satisfies two requirements

mentioned in Section 1. To this end, we use the resident domain concept so that moving objects (i) share

the tasks of query evaluation with the server and (ii) send their location-updates to the server only when

needed (Please see Section 1 for the details of the resident domain).

Figure 2 shows a high-level overview of the system model. Similarly to the system model presented in

the previous work [2,6,7,17,19,20], the system model we consider consists of three major components:

moving objects, clients, and the central server.

q3.R

q2.R
q1.R

o1's resident domain

o1
move

q4.R

o2's resident domain

o2
move

UpdateResult

RequestDomain

new resident domain

GQR-tree

query table

queries

results

Moving objects Central server Clients

Figure 2. System overview.

• Moving objects: Each moving object o, which is registered at the server (with its non-spatial

attribute values) and is identified by its unique identifier, is capable of sensing its current

location (e.g., equipped with a GPS receiver) and has some available (memory and computational)

capability o.Cap. We assume that each moving object o has heterogeneous capability o.Cap,

which indicates the maximum number of (qualified) spatial query ranges it can load and process

at a time, and that o.Cap ≥ θ, where θ is a system parameter that indicates the minimum number

of spatial query ranges o should be able to process; thus, a moving object with more powerful

capability is assigned a larger resident domain together with a greater number of spatial query

ranges. There are two types of location-update messages sent from moving objects to the server:

RequestDomain and UpdateResult. The former is for the purpose of receiving a new resident

domain, whereas the latter is to let the server update the query result. For example, assuming the

moving object o2 in Figure 2 is assigned the blue-dotted rectangle as its resident domain together

with spatial query range q3.R, it sends the RequestDomain message to the server because it exits

its resident domain. On the other hand, assuming the moving object o1 in Figure 2 is assigned

Sensors 2015, 15 24149

the red-dotted rectangle as its resident domain together with spatial query ranges q1.R and q2.R, it

sends the UpdateResult message to the server because it crosses the boundary of q2.R.

• Clients: Each geographically distributed client is able to issue multiple CM range monitoring

queries over the moving objects registered at the server, and continually receives the up-to-date

results of these queries from the server via wireless or high-speed wired connections. Clients do

not directly communicate with moving objects; instead, they use the server as an intermediary.

Each query q issued by a client is identified by its unique identifier and its spatial query range is

assumed to be stationary or quasi-stationary.

• Central server: The server maintains mainly two data structures: a query table (hashed on query

identifiers) and the GQR-tree. The query table stores, for each query q, an identifier, a spatial

query range q.R, a set of non-spatial values q.V , and the result. The following three main tasks

are performed by the server.

– Query registration (or de-registration): When a new query q is issued (or q is terminated)

by a client, the task of query registration (or de-registration) is performed, which consists of

inserting q into (or deleting q from) the query table, updating the GQR-tree, and broadcasting

the message (InsertQuery message or DeleteQuery message) to all the moving objects to

notify them of these changes.

– Domain assignment: The task of domain assignment is performed in response to the

RequestDomain message sent by a moving object o that exits its resident domain.

The server searches o’s new resident domain by traversing the GQR-tree. Then, the server

assigns o’s new resident domain (together with several spatial query ranges) to o. It is

important to note that the main purpose of the GQR-tree is to assign the largest possible

resident domain (together with as many spatial query ranges as possible) to o.

– Query result update: The task of query result update is performed mainly in response to

the UpdateResult message sent by a moving object o that crosses any of the boundary of

its assigned spatial query ranges q.R. When receiving the UpdateResult message from o,

the server updates the result of the corresponding query q. For example, the server updates

the result of q2 in response to the UpdateResult message sent by the moving object o1 in

Figure 2. As we will describe later, this task may also be performed when the server receives

the RequestDomain message from o.

4. Problem Definition and Motivation

In this paper, we address the problem of evaluating CM range monitoring queries over moving objects.

Let O = {o1, o2, · · · , o|O|} be a set of moving objects, each of which is associated with location loc

and a set of non-spatial attributes A = {a1, a2, · · · , an}. Each non-spatial attribute ai(1≤i≤n) ∈ A is

assumed to be either categorical (e.g., dietary preference) or numeric (e.g., age). A moving object o

(∈ O) is represented as (o.loc, o.A), where o.loc denotes o’s current location and o.A = {o.a1, o.a2,

· · · , o.an} denotes o’s non-spatial attribute values. A CM range monitoring query q, issued by a

client over O, is represented as (q.R, q.V). Here, q.R denotes a specified spatial query range and

q.V = {q.v1, q.v2, · · · , q.vm(≤n)} denotes a set of non-spatial query values (or intervals) specified on

Sensors 2015, 15 24150

a subset of non-spatial attributes Á (⊆ A) = {á1, á2, · · · , ám}. We assume in this paper that q.vi is

an interval if ái is a numerical attribute by assuming that the system let the clients to select one of the

predefined intervals (e.g., age: [20, 40)) when issuing queries.

Definition 1. A content-matched (CM) range monitoring query q, issued over O, continually returns

a set Ó (⊆ O) of moving objects for which the condition

∀o ∈ Ó : (o.loc ∈ q.R) && (∀o.ái (1≤i≤m) ∈ o.Á : o.ái = q.v́i (1≤i≤m) or o.ái ∈ q.vi) (1)

holds, where && denotes conjunction. We say that o is matched to q.V or vice versa if ∀o.ái ∈ o.Á :

o.ái = q.vi (or o.ái ∈ q.vi).

The existing methods, especially, MQM [2] and QRT [1], which use the resident domain concept

cannot adequately deal with CM range monitoring queries due to the following drawbacks:

• First, because in MQM and QRT, the capability o.Cap of each moving object o is measured by the

number of spatial query ranges without any consideration of non-spatial query values (or intervals),

o’s resident domain tends to be small. This leads o to frequently send RequestDomain messages

to the server for receiving new resident domains. For example, let us assume that the moving object

o1 with o1.Cap = 2 in Figure 3 is associated with three non-spatial attributes A = {a1: Age, a2:

Dietary preference, a3: Gender} and o1.A = {o1.a1 = 36, o1.a2 = V egetarian, o1.a3 = Male}.

Suppose the queries q1 ∼ q5 involve non-spatial values (or intervals) q1.V ∼ q5.V specified on

a subset of A, as shown in Figure 3. In MQM and QRT, the server assigns o1 the red-dotted

rectangle as o1’s resident domain together with two spatial query ranges q1.R and q4.R. However,

because o1 is matched to only q1.V (i.e., o1.a1 ∈ q1.v1, o1.a2 = q1.v2, and o1.a3 = q1.v3) and q3.V

(i.e., o1.a1 ∈ q3.v1 and o1.a3 = q3.v3), o1’s movement only affects the results of the corresponding

queries q1 and q3. So, when determining the size of o1’s resident domain, the server can ignore

the spatial query ranges q2.R, q4.R, and q5.R; thus the server can assign o1 much larger resident

domain (i.e., entire space) together with the qualified spatial query ranges q1.R and q3.R.

• Second, due to the same reason of the first drawback, each moving object o has to send unnecessary

UpdateResult messages to the server. For example, when o1 in Figure 3 crosses the boundary of

q4.R as depicted in the figure, it sends the UpdateResult message to the server. However, because

o1 is not matched to q4.V (i.e., o1.a2 6= q4.v2 and o1.a3 6= q4.v3), o1’s movement does not affect the

result of the corresponding query q4; hence, o1 can ignore q4.R, and check its movement against

only q1.R (because o1 is matched to q1.V) and send the UpdateResult message if necessary.

In our previous paper [1], we proposed the BQR-tree, which is the extension of the QR-tree.

Each node N of the BQR-tree additionally stores the summary of non-spatial values (or intervals) each

query specifies in the form of bit-vector. With the bit-vector information stored in N , the server can

identify whether non-spatial values (or intervals) can be found in N or not. Therefore, when searching

the resident domain of each moving object o, if there is no non-spatial values (or intervals) to which o is

matched in a given node N , N can be the additional part of o’s resident domain. (Note: In the BQR-tree,

each subspace of the entire space corresponds to each node.) This relieves the first drawback because

the server can assign o a larger resident domain if possible. However, in the BQR-tree method (BQRT),

Sensors 2015, 15 24151

the capability o.Cap of o is still measured by the number of spatial query ranges without considering

non-spatial values (or intervals) because the BQR-tree is a naïve form of the enhanced QR-tree, where

tree construction (operations of insertion and deletion) is based mostly on the spatial information.

In addition, the searching the additional part of o’s resident domain tends to be computation-intensive.

On the other hand, BQRT overcomes the second drawback by filtering needless spatial query ranges.

q1.v1: [20, 40]

q1.v2: Vegetarian

q1.v3: Male

q2.v1: [40, 60]

q2.v2: Vegetarian

q1.v3: Female

q3.v1: [20, 40]

q3.v2: Any

q3.v3: Male

q5.v1: [20, 40]

 q5.v2: Meat eater

q5.v3: Female

q1.R

q2.R q3.R

q4.R

q5.R

move

o1

o1's resident domain

q4.v1: Any

q4.v2: Meat eater

q4.v3: Female

Figure 3. Example of content-matched (CM) range monitoring queries.

In the next section, in order to remedy the problems stated above, we propose the GQR-tree that

supports efficient evaluation of CM range monitoring queries. Table 1 summarizes the primary notation

we use throughout the paper.

Table 1. Frequently used notation.

Notation Explanation

o A moving object

o.loc The current location of o

o.A The non-spatial attribute values of o

o.bv The object bit-vector of o

q A CM range monitoring query

q.R The spatial query range q specifies

q.V A set of non-spatial query values (or intervals) q specifies

q.bv The query bit-vector of q

g A query group

g.bv The group bit-vector of g

N A GQR-tree node or its corresponding subspace of the entire workspace

g_N A set of g’s elements (queries) whose spatial query ranges are covered by or

partially intersect N

|g_N | The cardinality of g_N

Sensors 2015, 15 24152

5. The Group-Aware Query Region Tree (GQR-Tree)

5.1. Description

Similarly to the BQR-tree, we choose to extend the QR-tree to the GQR-tree because, to the best of

our knowledge, the QR-tree is superior to existing index structures (e.g., the BP-tree) for evaluation of

traditional spatial range monitoring queries. In addition, because the cost of implementing entirely new

index structure can be more expensive than the cost of extending an already existing index structure;

thus, for efficient evaluation of CM range monitoring queries, extending the QR-tree by adding new

features can be an excellent alternative.

For the tight integration of the spatial and the non-spatial specifications of the queries, we group the

queries based on their query bit-vectors, after which we construct the GQR-tree based on their spatial

query ranges. We represent non-spatial values (or intervals) specified by the queries as query bit-vectors.

The query bit-vector is generated based on a mapping function predefined for each non-spatial attribute

ai (1≤i≤n) ∈ A. If ai is a categorical attribute with |Ci| categories c1, c2, · · · , c|Ci|, given a non-spatial

value q.vi (1≤i≤n) ∈ q.V specified by a query q on ai, its mapping function fi (1≤i≤n) maps q.vi into

a bit-string (b1b2 · · · b|Ci|) such that bj (1≤j≤|Ci|) = ‘1’ if q.vi = cj (1≤j≤|Ci|), otherwise, bj = ‘0’.

On the other hand, if ai is a numerical attribute, fi divides ai’s domain into |IVi| disjoint intervals

iv1, iv2, · · · , iv|IVi| of equal length. Then, given a non-spatial interval q.vi, fi maps q.vi into a bit-string

(b1b2 · · · b|IVi|) such that bj (1≤j≤|IVi|) = “1” if q.vi overlaps with ivj (1≤j≤|IVi|), otherwise, bj = “0”.

If q.vi overlaps with more than one interval, say ´|IVi| (≤ |IVi|) intervals, then we consider q as ´|IVi|

distinct queries.

Definition 2. Given a query q = (q.R, q.V), suppose that there is a predefined mapping function

fi (1≤i≤n) for each non-spatial attribute ai (1≤i≤n) ∈ A. Then, a query bit-vector q.bv generated for

q.V is f1(q.v1) + f2(q.v2) + · · · + fn(q.vn), where + denotes the bit-string concatenation operator.

When q.V does not contain the specified value (or interval) q.vi (1≤i≤n) on ai, the bit-string for fi(q.vi)

becomes ∗ ∗ · · · ∗ with its length being equal to fi(ai), where the symbol “∗” denotes a “don’t care”

condition. Although a bit can represent only two states “0” and “1”, we assume that one bit represents

“0”, “1”, and “∗” for convenience.

In the following, using the non-spatial values (or intervals) q1.V ∼ q5.V specified on a subset

of A = {a1: Age, a2: Dietary preference, a3: Gender} in Figure 3 as an example, we show how query

bit-vectors for q1.V ∼ q5.V are generated. Suppose that there are three predefined mapping functions:

f1(xs, xe) =



















1000 if [xs, xe) ∩ [0, 20) = ¬∅;

0100 if [xs, xe) ∩ [20, 40) = ¬∅;

0010 if [xs, xe) ∩ [40, 60) = ¬∅;

0001 otherwise, where ∩ denotes intersection.

f2(x) =

{

10 if x = Meat eater;

01 if x = Vegetarian.
f3(x) =

{

10 if x = Male;

01 if x = Female.

Sensors 2015, 15 24153

Then, the query bit-vectors q1.bv, q2.bv, q3.bv, q4.bv, and q5.bv generated for q1.V , q2.V , q3.V , q4.V ,

and q5.V are 01000110 (0100 + 01 + 10), 00100101 (0010 + 01 + 01), 0100 ∗ ∗10 (0100 + ∗∗ + 10),

∗ ∗ ∗ ∗ 1001 (∗ ∗ ∗∗ + 10 + 01), and 01001001 (0100 + 10 + 01), respectively.

Given a set of queries Q = {q1, q2, · · · , q|Q|}, we partition Q into a set of query groups

G = {g1, g2, · · · , g|G|(≤|Q|)} such that each query group g consists of the queries that have the same

query bit-vector. Then, each query group g can be identified by a unique query bit-vector, which we call

group bit-vector. Let |Ci| and |IVj| be the number of categories per each categorical attribute ai (1≤i≤k)

and the number of intervals per each numerical attribute aj (1≤j≤n−k), respectively, where k (≤ n) is the

number of categorical attributes. Then, the maximum possible number of generated query groups (or the

maximum possible number of generated group bit-vectors) is

k
∏

i=1

|Ci| ·
n−k
∏

j=1

|IVj| (2)

Figure 4 shows an example of partitioning the queries q1 ∼ q5 in Figure 3 into three query groups

based on their query bit-vectors q1.bv ∼ q5.bv. Notice that if a query bit-vector q.bv contains bit positions

filled with “∗”, the corresponding query q can become an element of multiple query groups because “∗”

is a wildcard, which matches any bit in those positions. For example, the query q3 in Figure 4 can

be an element of two query groups; the query group g1 whose group bit-vector g1.bv is 01000110 and

another query group (though not as yet generated) whose group bit-vector is 01001010.

query query bit-vector

q1

q2

q3

q4

q5

q1.bv (01000110)

q2.bv (00100101)

q3.bv (0100**10)

q4.bv (****1001)

q5.bv (01001001)

group bit-vector query

g1.bv (01000110) q1, q3

g2.bv (00100101) q2

g3.bv (01001001) q4, q5

 group g1 = {q1, q3}

 group g2 = {q2}

 group g3 = {q4, q5}query groupingquery grouping

Figure 4. An example of query grouping.

The GQR-tree is a space partitioning query indexing structure, which is built by recursively

splitting two-dimensional entire workspace into two subspaces. Given a set of query groups

G = {g1, g2, · · · , g|G|} on the entire workspace that corresponds to the root, if there exists a query group

g (∈ G) whose cardinality (i.e., the number of queries that are the elements of g) is greater than the

split threshold θ, the entire workspace is split into two subspaces, each of which corresponds to a child

node N of the root. Without ambiguity, we use the symbol “N” to denote both a tree node and its

corresponding subspace. This process recursively continues until, for each g (∈ G), the number of its

elements (queries) whose spatial query ranges are covered by or partially intersect every subspace N is

no more than θ. Hereafter, we denote a set of g’s elements whose spatial query ranges are covered by or

partially intersect N as g_N (⊆ g). We classify the overlap relationship between a spatial query range

q.R and a subspace (i.e., GQR-tree node) N into four categories according to whether the intersection

and difference of q.R and N are empty or non-empty.

Sensors 2015, 15 24154

Definition 3. Given a spatial query range q.R and a subspace (a GQR-tree node) N , there can be

four overlap relationships as follows.

• Cover relationship (See Figure 5a): We say that q.R covers N if (q.R ∩ N = ¬∅)

&& (q.R−N = ¬∅) && (N − q.R = ∅), where − denotes difference.

• Covered by relationship (See Figure 5b): We say that q.R is covered by N if (q.R ∩ N = ¬∅)

&& (q.R−N = ∅) && (N − q.R = ¬∅).

• Partially intersect relationship (See Figure 5c): We say that q.R partially intersects N if (q.R ∩

N = ¬∅) && (q.R−N = ¬∅) && (N − q.R = ¬∅).

• Equal relationship (See Figure 5d): We say that q.R equals N if (q.R ∩ N = ¬∅)

&& (q.R−N = ∅) && (N − q.R = ∅).

(a) (b) (c) (d)

q1.R N

q1.R

N
q1.R

NN
q2.R

q2.R

q2.R
q1.R q2.R

Figure 5. Classification of the overlap relationship. (a) q1.R and q2.R cover N ; (b) q1.R and

q2.R are covered by N ; (c) q1.R and q2.R partially intersect N ; (d) q1.R and q2.R equal N .

It should be noted that, in this paper, if a spatial query range q.R meets (or touches) a subspace

N , we consider that q.R and N are disjoint although (q.R ∩ N = ¬∅) && (q.R − N = ¬∅) &&

(N − q.R = ¬∅). Now, we describe the structure and properties of the GQR-tree. A leaf node of the

GQR-tree stores, for each query group g ∈ G, a tuple of the form 〈g.bv, partial_qid_list〉, where g.bv is

a group bit-vector of g and partial_qid_list is a list that contains at most θ query identifiers. A non-leaf

node of the GQR-tree stores two entries of the form 〈ptr, N〉, where ptr is a pointer to a child node

(i.e., non-leaf or leaf node) and N is a subspace that corresponds to the child node pointed to by ptr.

Definition 4. Given a query group g ∈ G and a leaf node N of the GQR-tree, the list partial_qid_list,

with its size |partial_qid_list| ≤ θ, contains only the query identifier of each element (query) q ∈ g

whose spatial query range q.R is covered by or partially intersects N (i.e., query identifier of each query

q ∈ g_N).

The GQR-tree satisfies the following properties:

1. A tuple 〈g.bv, partial_qid_list〉 for each query group g ∈ G can be stored in a leaf node N only

if there exists at least one element (query) q ∈ g whose spatial query range q.R is covered by or

partially intersects N (i.e., g_N 6= ∅).

2. A tuple 〈g.bv, partial_qid_list〉 for each query group g ∈ G can be redundantly stored in several

leaf nodes if there exists an element q ∈ g whose spatial query range q.R partially intersects all of

these leaf nodes.

Sensors 2015, 15 24155

3. For each entry 〈ptr, Ń〉 stored in a non-leaf node N , Ń represents one of the equal halves

of N’s space.

4. Each (non-leaf or leaf) node N stores, for each query group g ∈ G, the cardinality |g_N | of

g_N (i.e., the total number of g’s elements whose spatial query ranges are covered by or partially

intersect N). In case that N is a non-leaf node, N additionally stores, for each query group

g ∈ G, a single bit flag Conceptual_Leaf , which is set to True if 0 ≤ |g_N | ≤ θ and set to

False otherwise.

5. Each (non-leaf or leaf) node N is associated with a data structure N.full_qid_table, which is

a set of tuples of the form 〈g.bv, full_qid_list〉, where g.bv is a group bit-vector of a query

group g ∈ G and full_qid_list (See Definition 5 below) is a list that contains arbitrary number of

query identifiers.

6. A tuple 〈g.bv, full_qid_list〉 for a query group g ∈ G can be maintained in N.full_qid_table only

if there exists at least one element q ∈ g whose spatial query range q.R covers or equals N .

7. Each non-leaf node N is associated with another data structure N.partial_qid_table, which is

a set of tuples of the form 〈g.bv, partial_qid_list〉, where g.bv and partial_qid_list are defined

as in the case of a leaf node.

8. For each non-leaf node N , if a flag Conceptual_Leaf for a query group g ∈ G is set to True,

N is considered as the leaf node from the viewpoint of g, and only if |g_N | ≥ 1, a tuple

〈g.bv, partial_qid_list〉 for g can be maintained in N.partial_qid_table.

9. For each non-leaf node N , if N is considered as the leaf node from the viewpoint of g ∈ G, no

information about g is stored in N’s descendant nodes and their associated partial_qid_tables (if

exist) and full_qid_tables.

Definition 5. Given a query group g ∈ G and a (non-leaf or leaf) node N of the GQR-tree, the list

full_qid_list with arbitrary size contains only the query identifier of each element (query) q ∈ g

whose spatial query range q.R covers or equals N .

The GQR-tree method (GQRT) has three advantages over the existing methods (e.g., MQM, QRT,

and BQRT).

First, GQRT overcomes the first drawback of the existing methods (MQM, QRT, and BQRT)

mentioned in Section 4. In contrast to the existing methods, in GQRT, the capability o.Cap of each

moving object o is measured by the number of only the spatial query ranges that are non-spatially relevant

to o without any additional complex computation. Specifically, when assigning the resident domain to o,

the GQR-tree enables o.Cap to be measured by the number of only the queries that are the elements of the

query group g whose group bit-vector g.bv is matched to the object bit-vector o.bv of o. We say that g.bv

is matched to o.bv or vice versa if g.bv ∧ o.bv = o.bv, where ∧ denotes bit-wise AND-ing. This helps

the server assign o much larger resident domain, and thus the number of RequestDomain messages sent

by o can be reduced. We represent non-spatial attribute values o.A of o as object bit-vector. The object

bit-vector is generated based on the same mapping functions used for generating the query bit-vector.

Sensors 2015, 15 24156

Definition 6. Given a moving object o = (o.loc, o.A) and a set of predefined mapping functions {f1, f2,

· · · , fn} for a set of A = {a1, a2, · · · , an}, an object bit-vector o.bv generated for o.A is f1(o.a1) +

f2(o.a2) + · · · + fn(o.an).

For example, the object bit-vector o1.bv generated for non-spatial attribute values o1.A= {o1.a1 = 36,

o1.a2 = V egetarian, o1.a3 = Male} of the object o1 with its capability o1.Cap = 2 in Figure 3 is

01000110 (0100 + 01 + 10). Then, because the group bit-vector g1.bv of the query group g1 in Figure 4

is matched to o1.bv (i.e., g1.bv ∧ o1.bv = o1.bv), o1.Cap is measured by the number of only the queries

that are the elements of g1. Because the total number of g1’s elements (= 2) is not greater than o1.Cap,

o1 can be assigned the entire space in Figure 3 as its resident domain.

Second, GQRT overcomes the second drawback of MQM and QRT mentioned in Section 4. In GQRT,

each moving object o sends UpdateResult messages to the server only when necessary because the

server assigns o its resident domain together with only the qualified spatial query ranges such that the

corresponding queries are the elements of the query group g with its group bit-vector g.bv being matched

to the object bit-vector o.bv. Continuing the example above, o1 in Figure 3 can be assigned the entire

space as its resident domain together with q1.R and q3.R because the corresponding queries q1 and q3,

respectively, are the elements of the query group g1, and thus o1’s movement may affect only the results

of q1 and q3. In addition, by associating each GQR-tree node N with full_qid_table, GQRT further

reduces the number of UpdateResult messages sent by moving objects based on the following lemma.

Lemma 1. Given a GQR-tree node N , N.full_qid_table, and a query q that is an element of some query

group g ∈ G, if the query identifier of q is contained in full_qid_list of the tuple 〈g.bv, full_qid_list〉,

every moving object o whose object bit-vector o.bv is matched to g.bv, and that is currently moving

within N cannot cross the boundary of q’s spatial query range q.R.

Proof. We prove this lemma by contradiction. Given a GQR-tree node N , let us assume that there exist

(i) a moving object o whose object bit-vector o.bv is matched to the group bit-vector g.bv of some query

group g ∈ G and (ii) a query q (∈ g) whose query identifier is contained in full_qid_list of the tuple

〈g.bv, full_qid_list〉. By Definition 5, we know that the spatial query range q.R of q covers or equals

N . Let us further assume that we can find o, which crosses the boundary of q.R but not that of N .

Then, the condition N − q.R = ¬∅ holds. This leads to a contradiction to the cover relationship or equal

relationship defined in Definition 3. Hence, o cannot cross the boundary of q.R as long as it is moving

within N .

Based on Lemma 1, when assigning N to a moving object o as its resident domain together with

qualified spatial query ranges, for each spatial query range q.R among them, if the query identifier of

the corresponding query q is contained in full_qid_list of the tuple 〈g.bv, full_qid_list〉, i.e., if q.R

covers or equals N , the server can exclude q.R; instead, when the server receives the RequestDomain

message from o, it has to check whether the result of q is affected by o’s movement and update the result

of q (if necessary). Therefore, given a GQR-tree node N and a moving object o with its object bit-vector

o.bv being matched to the group bit-vector g.bv of some query group g ∈ G, if (i) N contains the location

of o and (ii) |g_N | ≤ o.Cap, the server can assign N to o as its resident domain together with only the

Sensors 2015, 15 24157

spatial query ranges of the queries that are elements of g_N (⊆ g), i.e., spatial query ranges that are

covered by or partially intersect N , among the qualified spatial query ranges.

Assuming θ = 1, Figure 6 shows an example of some sub-GQR-tree rooted at the node N1. In the

figure, assuming the capability o2.Cap is 1 and the object bit-vector o2.bv is matched to the group

bit-vector g1.bv of the query group g1 (i.e., g1.bv ∧ o2.bv = o2.bv), the moving object o2 is assigned

N1 as its resident domain together with the spatial query range q4.R because N1 contains the location of

o2 and |g1_N1| (= 1) ≤ o2.Cap. It should be noted that the spatial query range q1.R is not assigned to

o2 because the query identifier of the corresponding query q1 is contained in full_qid_list of the tuple

〈g1.bv, full_qid_list〉maintained in N1.full_qid_table (i.e., because q1.R covers N1). When o2 exits its

resident domain N1 as depicted in Figure 6, it sends the RequestDomain message to the server. Then,

the server assigns o2 a new resident domain and additionally checks if o2’s movement affects the result

of q1. Because o2 does not cross the boundary of q1.R, the server need not update the current result of q1.

full_query_table

empty

q1.R

N1

o2's resident domain

N11 N12

q2.R

q3.R

q4.R

§ N1 is split into N11 and N12

N11 N12

N1

o2

 group g1 = {q1, q4}

group g2= {q2, q3}

▪ <g2.bv, (q2)> ▪ <g2.bv, (q3)>

partial_query_table

▪ <g1.bv, (q4)>

full_query_table

▪ <g1.bv, (q1)>

N11 N12

|g1_N1| : 1, Conceptual _Leaf : True

|g2_N1| : 2, Conceptual _Leaf : Flase

|g2_N11| : 1 |g2_N12| : 1

: non-leaf node : leaf node

move

full_query_table

empty

Figure 6. An example of the sub-GQR-tree.

Third, by grouping the issued queries according to their query bit-vectors, GQRT efficiently handles

the case, where a leaf node N overlaps with θ+1 spatial query ranges as a result of a newly issued query

q. In the existing methods (MQM, QRT, and BQRT), without any consideration of non-spatial query

values (or intervals), N is recursively split until all of its descendant nodes (i.e., subspaces of N) overlap

with no more than θ spatial query ranges. On the other hand, in GQRT, if q is an element of some query

group g ∈ G and |g_N | ≤ θ, no split process occurs although θ+1 spatial query ranges overlap with N .

In case that |g_N | > θ, N is recursively split until, for each descendant node Ń , |g_Ń | ≤ θ.

5.2. Resident Domain Search

When a new moving object o is registered at the server (or the server receives the RequestDomain

message from o), the search algorithm for o’s resident domain is invoked. Algorithm 1 is the

pseudocode of the search algorithm on the GQR-tree. Given a GQR-tree node N (initially set to the

root) and a moving object o = (o.loc, o.A) with its capability o.Cap, the search algorithm generates

an object bit-vector o.bv and identifies the query group g such that g.bv ∧ o.bv = o.bv. Then,

the search algorithm recursively accesses the GQR-tree nodes that contain o.loc until reaching the

node N such that |g_N | ≤ o.Cap. Now, N becomes o’s resident domain.

Sensors 2015, 15 24158

Algorithm 1 SEARCH(N , o)

Input N : a GQR-tree node initially set to the root, o: a moving object

Output R: o’s resident domain, qid_set: a set of (distinct) query identifiers

1: map o.A to o.bv;

2: initialize an empty set qid_set;

3: identify the query group g such that g.bv ∧ o.bv = o.bv;

4: for each entry (ptr, Ń) stored in N do

5: if Ń contains o.loc then

6: if |g_Ń | ≤ o.Cap then

7: set R to Ń ;

8: set is_Resident_Domain to True; // one-bit flag

9: qid_set← qid_set ∪ FINDQUERYID(N, o.bv, is_Resident_Domain);

10: return R and qid_set;

11: else

12: SEARCH(Ń , o);

Next, the search algorithm invokes FINDQUERYID (See Algorithm 2), which is a depth-first search

algorithm that takes N , o.bv, and is_Resident_Domain (one-bit flag) as an input and retrieves all the

query identifiers of the queries that are elements of g_N (⊆ g). Specifically, assuming N is a non-leaf

node, FINDQUERYID identifies the query group g such that g.bv ∧ o.bv = o.bv. Then, FINDQUERYID

checks if Conceptual_Leaf stored in N for g is set to True (i.e., 0 ≤ |g_N | ≤ θ). If so, it visits

N.partial_qid_table and retrieves all the query identifiers contained in partial_qid_list of the tuple

〈g.bv, partial_qid_list〉 (Lines 2–8).

On the other hand, if Conceptual_Leaf stored in N for g is set to False, FINDQUERYID recursively

accesses each N’s descendent (non-leaf or leaf) node Ń (Lines 9–12 or 26–28) and according to

two cases, it proceeds as follows:

• Case (1): If Ń is a non-leaf node and Conceptual_Leaf stored in Ń for g is set to True,

FINDQUERYID visits Ń.partial_qid_table and Ń.full_qid_table, after which it retrieves all the

distinct query identifiers contained in partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 and

full_qid_list of the tuple 〈g.bv, full_qid_list〉 (Lines 19–25).

• Case (2): If Ń is a leaf node, FINDQUERYID retrieves all the distinct query identifiers contained

in partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 (stored in Ń), after which it visits

Ń .full_qid_table and retrieves all the distinct query identifiers contained in full_qid_list of the

tuple 〈g.bv, full_qid_list〉 (Lines 29–34).

It should be noted that Ń .full_qid_table must be visited and each query identifier contained in

full_qid_list must be retrieved and checked if the corresponding query q ∈ g_N . This is because,

although the spatial query range of q covers or equals Ń , they may be covered by or partially intersect

N . In the worst case, N (o’s resident domain) may be a leaf node. In this case, FINDQUERYID retrieves

only the query identifiers contained in partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 stored in N

(Lines 13–16).

Sensors 2015, 15 24159

Algorithm 2 FINDQUERYID(N, o.bv, is_Resident_Domain)

Input N : a GQR-tree node, o.bv: an object bit-vector, is_Resident_Domain: a bit flag initially set to True

Output qid_set: a set of (distinct) query identifiers

1: initialize an empty set qid_set;

2: if is_Resident_Domain = True then

3: identify the query group g such that g.bv ∧ o.bv = o.bv;

4: if N is a non-leaf node then

5: if Conceptual_Leaf stored in N for g is True then

6: visit N.partial_qid_table and get the tuple 〈g.bv, partial_qid_list〉;

7: retrieve all the query identifiers contained in partial_qid_list and insert them into qid_set;

8: return qid_set;

9: else // Conceptual_Leaf stored in N for g is False

10: set is_Resident_Domain to False;

11: for each entry (ptr, Ń) stored in N do

12: FINDQUERYID(Ń , o.bv, is_Resident_Domain);

13: else // N is a leaf node

14: get the tuple 〈g.bv, partial_qid_list〉 stored in N ;

15: retrieve all the query identifiers contained in partial_qid_list and insert them into qid_set;

16: return qid_set;

17: else // is_Resident_Domain = False

18: identify the query group g such that g.bv ∧ o.bv = o.bv;

19: if N is a non-leaf node then

20: if Conceptual_Leaf stored in N for g is True then

21: visit N.partial_qid_table and get the tuple 〈g.bv, partial_qid_list〉;

22: retrieve all the query identifiers contained in partial_qid_list and insert them into qid_set;

23: visit N.full_qid_table and get the tuple 〈g.bv, full_qid_list〉;

24: retrieve all the query identifiers contained in full_qid_list and insert them into qid_set;

25: return qid_set;

26: else // Conceptual_Leaf stored in N for g is False

27: for each entry (ptr, Ń) stored in N do

28: FINDQUERYID(Ń , o.bv, is_Resident_Domain);

29: else // N is a leaf node

30: get the tuple 〈g.bv, partial_qid_list〉 stored in N ;

31: retrieve all the query identifiers contained in partial_qid_list and insert them into qid_set;

32: visit N.full_qid_table and get the tuple 〈g.bv, full_qid_list〉;

33: retrieve all the query identifiers contained in full_qid_list and insert them into qid_set;

34: return qid_set;

After Algorithm 1 terminates, the server searches all the queries (in the query table) referred to

by the retrieved query identifiers, updates query results if necessary, and assigns the moving object o

its resident domain N together with query identifier and spatial query range pairs. Figure 7 shows

an example of the GQR-tree for the queries q1 ∼ q5 shown in Figure 3, assuming θ = 1. Let us

assume that the non-spatial attribute values o3.A of the moving object o3 with o3.Cap = 1 in

Figure 7 is {o3.a1 = 28, o3.a2 = V egetarian, o3.a3 = Male}. Then, the object bit-vector o3.bv

of o3 is 01000110 and is matched to g1.bv. When o3 is registered at the server, starting from the

root, the search algorithm recursively traverses the GQR-tree until it reaches the node N2 because

N2 contains the location of o3 and |g1_N2| (= 1) ≤ o3.Cap. Then, the search algorithm invokes

Sensors 2015, 15 24160

FINDQUERYID(N2 , o3.bv, is_Resident_Domain), which retrieves the query identifier of q3. After the

search algorithm terminates, the server assigns N2 to o3 as it resident domain together with a pair of

query identifier and spatial query range (q3.id, q3.R).

N1 N2

Root

q1.R

q2.R q3.R

q4.R

q5.R

N11

N12

N21

N22

§ Root is split into N 1 and N2

§ N1 is split into N 11 and N12

§ N2 is split into N21 and N22

partial_query_table

▪ <g2.bv, (q2)>

full_query_table

N11 N12

N1

N21 N22

N2

partial_query_table

▪ <g3.bv, (q4)>

full_query_table

partial_query_table

▪ <g1.bv, (q3)>

full_query_table

Root

▪ <g1.bv, (q1)>

N11

full_query_table ▪ <g1.bv, (q3)>

full_query_table

N12

▪ <g3.bv, (q5)>

N21

full_query_table

▪ <g3.bv, (q4)>

▪ <g3.bv, (q5)>

N22

full_query_table

: non-leaf node : leaf node

group bit-vector query

g1.bv(01000110) q1, q3

g2.bv(00100101) q2

g3.bv(01001001) q4, q5

 group g1 = {q1, q3}

 group g2 = {q2}

 group g3 = {q4, q5}

o3 o3's resident domain

|g1_N2| :1, Conceptual _Leaf : True

|g3_N2| :2, Conceptual _Leaf : False

Figure 7. An example of the Group-Aware Query Region (GQR)-tree.

5.3. GQR-Tree Manipulations

The GQR-tree can be manipulated with a set of algorithms, which specify how a query is inserted into

and deleted from the GQR-tree, and how overflow and underflow of a GQR-tree node can be managed.

Algorithm 3 is the pseudocode of the insert algorithm. When a new query q = (q.R, q.V) is issued

by a client and is inserted into the query table, the insert algorithm generates a query bit-vector q.bv,

identifies the query group g whose group bit-vector g.bv is same as q.bv (Lines 1–2). Then, starting from

the root, the insert algorithm recursively follows the paths of the GQR-tree, each of which consists of

non-leaf and leaf nodes with which the spatial query range q.R of q overlaps. At a non-leaf node N in

each path, the insert algorithm checks if q.R covers or equals N (Line 4). If so, it inserts the query

identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table

(Line 5). Otherwise (i.e., q.R is covered by or partially intersects N), the insert algorithm increases

|g_N | by 1 and checks if Conceptual_Leaf stored in N for g is set to True (Lines 6–8). If so, it

inserts the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 maintained in

N.partial_qid_table and stops following the corresponding path of the GQR-tree (Line 9). In case that

|g_N | becomes greater than θ due to the insertion of q, SPLITNONLEAF, a split algorithm for a non-leaf

node, is invoked (Line 10).

When reaching a leaf node N in the path, the insert algorithm checks if q.R covers or equals N

(Line 16). If so, it inserts the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉

maintained in N.full_qid_table (Line 17). Otherwise, the insert algorithm increases |g_N | by 1 and

Sensors 2015, 15 24161

inserts the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 stored in N

(Lines 18–20). When N overflows (i.e., |g_N | > θ), SPLITLEAF, a split algorithm for a leaf node, is

invoked (Line 21).

Algorithm 3 INSERT(N , q)

Input N : a GQR-tree node initially set to the root, q: a newly issued query

1: map q.V to q.bv;

2: identify the query group g whose group bit-vector g.bv is same as q.bv;

3: if N is a non-leaf node then

4: if q.R covers or equals N then

5: insert the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table;

6: else // q.R is covered by or partially intersects N

7: increase |g_N | by 1;

8: if Conceptual_Leaf stored in N for g is True then

9: insert the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 maintained in N.partial_qid_table;

10: SPLITNONLEAF(N,g.bv) in case that |g_N | > θ;

11: else // Conceptual_Leaf for g is False

12: for each entry (ptr, Ń) stored in N do

13: if q.R overlaps with Ń then

14: INSERT(Ń, q);

15: else // N is a leaf node

16: if q.R covers or equals N then

17: insert the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table;

18: else // q.R is covered by or partially intersects N

19: increase |g_N | by 1;

20: insert the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 stored in N ;

21: SPLITLEAF(N,g.bv) in case that |g_N | > θ;

Algorithm 4 is the pseudocode of SPLITNONLEAF. Given a non-leaf node N and a group bit-vector

g.bv, SPLITNONLEAF identifies the query group g, which causes N to be overflowed, using g.bv

(Line 1). Then, SPLITNONLEAF sets Conceptual_Leaf stored in N for g to False (Line 2) and

according to two cases, it proceeds as follows:

• Case (1): If N’s children are non-leaf, SPLITNONLEAF copies the tuple 〈g.bv, full_qid_list〉

maintained in N.full_qid_table and pastes it into full_qid_tables of N’s children. (Line 4).

Next, given the tuple 〈g.bv, partial_qid_list〉 maintained in N.partial_qid_table, for each query

q referred to by each query identifier contained in partial_qid_list, SPLITNONLEAF checks for

each child node Ń if q.R covers or equals Ń . If so, it inserts the query identifier of q into

full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in Ń.full_qid_table (Lines 5–9).

On the other hand, if q.R is covered by or partially intersects Ń , SPLITNONLEAF increases

|g_Ń | by 1, creates a new tuple 〈g.bv, partial_qid_list〉new for g in Ń.partial_qid_table (if it

does not exist), and inserts the query identifier of q into partial_qid_list (Lines 10-13). Then,

SPLITNONLEAF deletes the tuple 〈g.bv, partial_qid_list〉 from N.partial_qid_table (Line 14).

Finally, for each N’s child node Ń , SPLITNONLEAF checks if |g_Ń | ≤ θ. If so, it sets

Conceptual_Leaf stored in Ń for g to True (Lines 15–17). Otherwise, SPLITNONLEAF invokes

itself with Ń and g.bv as an input (Lines 18–19).

• Case (2): If N’s children are leaf, similarly to the case (1), SPLITNONLEAF copies the tuple

〈g.bv, full_qid_list〉 maintained in N.full_qid_table and and pastes it into full_qid_tables of

N’s children (Line 21). Next, given 〈g.bv, partial_qid_list〉 maintained in N.partial_qid_table,

for each q referred to by each query identifier contained in partial_qid_list, SPLITNONLEAF

Sensors 2015, 15 24162

checks for each child node Ń if q.R covers or equals Ń . If so, it inserts the query identifier of q into

full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in Ń .full_qid_table (Lines 22–26).

On the other hand, if q.R is covered by or partially intersects Ń , SPLITNONLEAF increases |g_Ń |

by 1, inserts a new tuple 〈g.bv, partial_qid_list〉new for g into Ń (if it does not exist), and inserts

the query identifier of q into partial_qid_list (Lines 27–30). Then, SPLITNONLEAF deletes the

tuple 〈g.bv, partial_qid_list〉 from N.partial_qid_table (Line 31). In case that each N’s child

node Ń overflows (i.e., |g_Ń | > θ), SPLITNONLEAF invokes SPLITLEAF with Ń and g.bv as

an input (Lines 32–34).

Algorithm 4 SPLITNONLEAF(N, g.bv)

Input N : an overflowed non-leaf node, g.bv: a group bit-vector

1: identify the query group g, which causes N to be overflowed, using g.bv;

2: set Conceptual_Leaf stored in N for g to False;

3: if N ’s children are non-leaf nodes then

4: copy the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table and paste it into full_qid_tables of N ’s children;

5: visit N.partial_qid_table and get the tuple 〈g.bv, partial_qid_list〉;

6: for each query q referred to by each query identifier contained in partial_qid_list do

7: for each N ’s child node Ń do

8: if q.R covers or equals Ń then

9: insert the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in Ń .full_qid_table;

10: else if q.R is covered by or partially intersects Ń then

11: increase |g_Ń | by 1;

12: create a new tuple 〈g.bv, partial_qid_list〉new for g in Ń.partial_qid_table (if it does not exist);

13: insert the query identifier of q into partial_qid_list;

14: delete the tuple 〈g.bv, partial_qid_list〉 from N.partial_qid_table;

15: for each N ’s child node Ń do

16: if |g_Ń | ≤ θ then

17: set Conceptual_Leaf stored in Ń for g to True;

18: else

19: SPLITNONLEAF(Ń, g.bv);

20: else // N ’s children are leaf nodes

21: copy the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table and paste it into full_qid_tables of N ’s children;

22: visit N.partial_qid_table and get the tuple 〈g.bv, partial_qid_list〉;

23: for each query q referred to by each query identifier contained in partial_qid_list do

24: for each N ’s child node Ń do

25: if q.R covers or equals Ń then

26: insert the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in Ń .full_qid_table;

27: else if q.R is covered by or partially intersects Ń then

28: increase |g_Ń | by 1;

29: insert a new tuple 〈g.bv, partial_qid_list〉new for g into Ń (if it does not exist);

30: insert the query identifier of q into partial_qid_list;

31: delete the tuple 〈g.bv, partial_qid_list〉 from N.partial_qid_table;

32: for each N ’s child node Ń do

33: if |g_Ń | > θ then

34: SPLITLEAF(Ń, g.bv);

Algorithm 5 is the pseudocode of SPLITLEAF. Given a leaf node N and a group bit-vector

g.bv, SPLITLEAF identifies the query group g, which causes N to be overflowed (using g.bv), after

which it creates two new empty leaf nodes Nleft and Nright, and a new non-leaf node Nnew that

stores entries (ptr, Nleft) and (ptr, Nright), where Nleft or Nright represents one of the equal halves

of N (Lines 1–4). Now, Nleft and Nright become Nnew’s children. Then, SPLITLEAF copies the

tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table and pastes it into Nleft.full_qid_table,

Nright.full_qid_table, and Nnew.full_qid_table (Line 5). In addition, for each query group ǵ ∈ G−{g}

Sensors 2015, 15 24163

such that |ǵ_N | > 0, SPLITLEAF (i) copies the tuple 〈ǵ.bv, parial_qid_list〉 stored in N and pastes it

into Nnew.partial_qid_table, and (ii) sets |ǵ_Nnew| and Conceptual_Leaf created in Nnew for ǵ to

|ǵ_N | and True, respectively (Lines 6–8). Then, SPLITLEAF sets |g_Nnew| and Conceptual_Leaf

created in Nnew for g to |g_N | and False, respectively, after which it finds the entry (ptr, N) stored in

N’s parent to redirect ptr to point to Nnew (Lines 9–10). Now, N’s parent becomes Nnew’s parent.

Algorithm 5 SPLITLEAF(N, g.bv)

Input N : an overflowed leaf node, g.bv: a group bit-vector

1: identify the query group g, which causes N to be overflowed, using g.bv;

2: create two new empty leaf nodes Nleft and Nright;

3: create a new empty non-leaf node Nnew ;

4: insert entries (ptr, Nleft) and (ptr, Nright) into Nnew;

5: copy the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table and paste it into Nleft.full_qid_table, Nright.full_qid_table,

and Nnew.full_qid_table;

6: for each group ǵ ∈ G − {g} such that |ǵ_N | > 0 do

7: copy the tuple 〈ǵ.bv, parial_qid_list〉 stored in N and paste it into Nnew .partial_qid_table;

8: set |ǵ_Nnew| and Conceptual_Leaf created in Nnew for ǵ to |ǵ_N | and True;

9: set |g_Nnew | and Conceptual_Leaf created in Nnew for g to |g_N | and False;

10: find the entry (ptr, N) stored in N ’s parent and redirect ptr to point to Nnew;

11: get the tuple 〈g.bv, partial_qid_list〉 from N ;

12: for each query q referred to by each query identifier contained in partial_qid_list do

13: for each Nnew’s child node Ńnew do // we use Ńnew to denote Nleft or Nright

14: if q.R covers or equals Ńnew then

15: insert the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in Ńnew .full_qid_table;

16: else if q.R is covered by or partially intersects Ńnew then

17: increase |g_Ńnew | by 1;

18: insert a new tuple 〈g.bv, partial_qid_list〉new for g into Ńnew (if it does not exist);

19: insert the query identifier of q into partial_qid_list;

20: discard N ;

21: for each Nnew’s child node Ńnew do

22: if |g_Ńnew| > θ then

23: SPLITLEAF(Ńnew, g.bv);

Next, given the tuple 〈g.bv, partial_qid_list〉 stored in N , SPLITLEAF checks for each query q

referred to by each query identifier contained in partial_qid_list if q.R covers or equals Nleft (or

Nright). If so, it inserts the query identifier of q into full_qid_list of the tuple 〈g.bv, full_qid_list〉

maintained in Nleft.full_qid_table (or Nright.full_qid_table) (Lines 11–15). On the other hand, if q.R

is covered by or partially intersects Nleft (or Nright), SPLITLEAF increases |g_Nleft| (or |g_Nright|) by

1 and inserts a new tuple 〈g.bv, partial_qid_list〉new for g into Nleft (or Nright) (if it does not exist),

and inserts the query identifier of q into partial_qid_list (Lines 16–19). Finally, SPLITLEAF discards

N (Line 20). This split process propagates downward if necessary (Lines 21–23).

When an existing query q = (q.R, q.V) is terminated by a client and is deleted from the query table,

the delete algorithm is invoked. Algorithm 6 is the pseudocode of the delete algorithm. Similarly to the

insert algorithm, after identifying the query group g whose group bit-vector g.bv is same as the query

bit-vector q.bv of q (Lines 1–2), the delete algorithm recursively follows the paths of the GQR-tree, each

of which consists of the non-leaf and leaf nodes that overlap with the spatial query range q.R of q.

At a non-leaf node N in each path, the delete algorithm checks if q.R covers or equals N . If so,

it deletes the query identifier of q from full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained

in N.full_qid_table (Lines 4–5). Otherwise (i.e., q.R is covered by or partially intersects N),

the delete algorithm decreases |g_N | by 1 and checks if Conceptual_Leaf stored in N for g has

Sensors 2015, 15 24164

already set to True. If so, it deletes the query identifier of q from partial_qid_list of the tuple

〈g.bv, partial_qid_list〉 maintained in N.partial_qid_table and stops following the corresponding path

of the GQR-tree (Lines 6–9). Then, the delete algorithm invokes a merge algorithm for a non-leaf node,

namely, MERGENONLEAF (Line 10).

Algorithm 6 DELETE(N , q)

Input N : a GQR-tree node initially set to the root, q: a terminated query

1: map q.V to q.bv;

2: identify the query group g whose group bit-vector g.bv is same as q.bv;

3: if N is a non-leaf node then

4: if q.R covers or equals N then

5: delete the query identifier of q from full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table;

6: else // q.R is covered by or partially intersects N

7: decrease |g_N | by 1;

8: if Conceptual_Leaf stored in N for g is True then

9: delete the query identifier of q from partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 maintained in N.partial_qid_table;

10: MERGENONLEAF(N ’s parent, g.bv);

11: else // Conceptual_Leaf for g is False

12: for each entry (ptr, Ń) stored in N do

13: if q.R overlaps with Ń then

14: DELETE(Ń , q);

15: else // N is a leaf node

16: if q.R covers or equals N then

17: delete the query identifier of q from full_qid_list of the tuple 〈g.bv, full_qid_list〉 maintained in N.full_qid_table;

18: else // q.R is covered by or partially intersects N

19: decrease |g_N | by 1;

20: delete the query identifier of q from partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 stored in N ;

21: MERGELEAF(N ’s parent, g.bv);

When reaching a leaf node N in the path, the delete algorithm checks if q.R covers or equals

N . If so, it deletes the query identifier of q from full_qid_list of the tuple 〈g.bv, full_qid_list〉

maintained in N.full_qid_table (Lines 16–17). Otherwise, the delete algorithm decreases |g_N | by

1 and deletes the query identifier of q from partial_qid_list of the tuple 〈g.bv, partial_qid_list〉 stored

in N (Lines 18–20). Then, the delete algorithm invokes a merge algorithm for a leaf node, namely,

MERGELEAF to condense the GQR-tree if possible (Line 21).

Algorithm 7 is the pseudocode of MERGENONLEAF. Given a non-leaf node N , which is a parent

of non-leaf nodes, and a group bit-vector g.bv, MERGENONLEAF identifies the query group g using

g.bv (Line 1). Then, MERGENONLEAF checks if |g_N | ≤ θ. If so, it sets Conceptual_Leaf stored

in N for g to True and creates a new tuple 〈g.bv, partial_qid_list〉new for g in N.partial_qid_table

(Lines 2–4). Next, for each N’s child node Ń , MERGENONLEAF checks if Conceptual_Leaf stored in

Ń for g is set to True. If so, given the tuple 〈g.bv, partial_qid_list〉maintained in Ń .partial_qid_table,

MERGENONLEAF inserts all the query identifiers contained in partial_qid_list into partial_qid_list

of the tuple 〈g.bv, partial_qid_list〉new (Lines 5–8). Next, given the tuple 〈g.bv, full_qid_list〉

maintained in each Ń.full_qid_table, for each query q referred to by each query identifier contained

in full_qid_list, MERGENONLEAF checks if q.R is covered by or partially intersects N . If so, it inserts

the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new (Lines 9–12).

Finally, MERGENONLEAF deletes the information about g stored in all N’s descendant nodes and their

associated partial_qid_tables (if exist) and full_qid_tables (Line 13). This merge process propagates

upward until reaching the node that does not satisfy the merge condition (Line 14).

Sensors 2015, 15 24165

Algorithm 7 MERGENONLEAF(N, g.bv)

Input N : a non-leaf node, which is a parent of non-leaf nodes, g.bv: a group bit-vector

1: identify the query group g using g.bv;

2: if |g_N | ≤ θ then

3: set Conceptual_Leaf stored in N for g to True;

4: create a new tuple 〈g.bv, partial_qid_list〉new for g in N.partial_qid_table;

5: for each N ’s child node Ń do

6: if Conceptual_Leaf stored in Ń for g is True then

7: visit Ń.partial_qid_table and get the tuple 〈g.bv, partial_qid_list〉;

8: insert all the query identifiers contained in partial_qid_list into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new ;

9: visit Ń.full_qid_table and get the tuple 〈g.bv, full_qid_list〉;

10: for each query q referred to by each query identifier contained in full_qid_list do

11: if q.R is covered by or partially intersects N then

12: insert the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new ;

13: delete the information about g stored in all N ’s descendant nodes and their associated partial_qid_tables (if exist) and full_qid_tables;

14: MERGENONLEAF(N ’s parent, g.bv);

Algorithm 8 is the pseudocode of MERGELEAF. Given a non-leaf node N , which is a parent of leaf

nodes, and a group bit-vector g.bv, MERGELEAF identifies the query group g using g.bv (Line 1). Then,

MERGELEAF checks if |g_N | ≤ θ; if this is the case, it further checks if every Conceptual_Leaf

stored in N for every query group ǵ ∈ G − {g} is set to True (Lines 2–3). If so, MERGELEAF

creates a new empty leaf node Nnew (Line 4). Then, MERGELEAF (i) copies all the tuples maintained

in N.full_qid_table and N.partial_qid_table, and pastes them into Nnew.full_qid_table and Nnew,

respectively, and (ii) sets |ǵ_Nnew| to |ǵ_N | (Lines 5–6). In addition, MERGELEAF (i) inserts a new

tuple 〈g.bv, partial_qid_list〉new for g into Nnew and (ii) sets |g_Nnew| to |g_N |, after which it finds

the entry (ptr, N) stored in N’s parent to redirect ptr to point to Nnew (Lines 7–9). Now, N’s parent

becomes Nnew’s parent. Next, given the tuple 〈g.bv, partial_qid_list〉 stored in each N’s child node Ń ,

MERGELEAF inserts all the distinct query identifiers contained in partial_qid_list into partial_qid_list

of the tuple 〈g.bv, partial_qid_list〉new (Lines 10–12). Then, given the tuple 〈g.bv, full_qid_list〉

maintained in each Ń.full_qid_table, for each query q referred to by each query identifier contained

in full_qid_list, MERGELEAF checks if q.R is covered by or partially intersects Nnew. If so, it inserts

the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new (stored in Nnew)

(Lines 13–16). Finally, after discarding N and N’s children, MERGELEAF invokes itself with Nnew’s

parent and g.bv as an input to condense the tree if possible (Lines 17–18).

On the other hand, if |g_N | ≤ θ and there exists some query group ǵ ∈ G − {g} such that

Conceptual_Leaf stored in N for ǵ is False, MERGELEAF sets Conceptual_Leaf stored in N for g to

True and creates a new tuple 〈g.bv, partial_qid_list〉new for g in N.partial_qid_table (Lines 19–21).

Next, given the tuple 〈g.bv, partial_qid_list〉 stored in each N’s child node Ń , MERGELEAF inserts

all the distinct query identifiers contained in partial_qid_list into partial_qid_list of the tuple

〈g.bv, partial_qid_list〉new (Lines 22–24). Then, given the tuple 〈g.bv, full_qid_list〉 maintained in

each Ń.full_qid_table, for each query q referred to by each query identifier contained in full_qid_list,

MERGELEAF checks if q.R is covered by or partially intersects N . If so, it inserts the query identifier

of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new (maintained in N.partial_qid_table)

(Lines 25–28). Finally, after deleting the tuples 〈g.bv, full_qid_list〉 and 〈g.bv, partial_qid_list〉 from

Ń and Ń.full_qid_table, respectively, MERGELEAF invokes MERGENONLEAF with N’s parent and

g.bv as an input (Lines 29–30).

Sensors 2015, 15 24166

Algorithm 8 MERGELEAF(N, g.bv)

Input N : a non-leaf node, which is a parent of leaf nodes, g.bv: a group bit-vector

1: identify the query group g using g.bv;

2: if |g_N | ≤ θ then

3: if every Conceptual_Leaf stored in N for every query group ǵ ∈ G − {g} is True then

4: create a new empty leaf node Nnew ;

5: copy all the tuples maintained in N.full_qid_table and N.partial_qid_table, and paste them into Nnew .full_qid_table and Nnew ;

6: set |ǵ_Nnew | to |ǵ_N |;

7: insert a new tuple 〈g.bv, partial_qid_list〉new for g into Nnew ;

8: set |g_Nnew | to |g_N |;

9: find the entry (ptr, N) stored in N ’s parent and redirect ptr to point to Nnew;

10: for each N ’s child node Ń do;

11: get the tuple 〈g.bv, partial_qid_list〉 from Ń ;

12: insert all the query identifiers contained in partial_qid_list into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new ;

13: visit Ń.full_qid_table and get the tuple 〈g.bv, full_qid_list〉;

14: for each query q referred to by each query identifier contained in full_qid_list do

15: if q.R is covered by or partially intersects Nnew then

16: insert the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new ;

17: discard N and N ’s children;

18: MERGELEAF(Nnew’s parent, g.bv);

19: else // if there exists some query group ǵ ∈ G − {g} such that Conceptual_Leaf stored in N for ǵ is False

20: set Conceptual_Leaf stored in N for g to True;

21: create a new tuple 〈g.bv, partial_qid_list〉new for g in N.partial_qid_table;

22: for each N ’s child node Ń do

23: get the tuple 〈g.bv, partial_qid_list〉 from Ń ;

24: insert all the query identifiers contained in partial_qid_list into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new ;

25: visit Ń.full_qid_table and get the tuple 〈g.bv, full_qid_list〉;

26: for each query q referred to by each query identifier contained in full_qid_list do

27: if q.R is covered by or partially intersects N then

28: insert the query identifier of q into partial_qid_list of the tuple 〈g.bv, partial_qid_list〉new ;

29: delete the tuples 〈g.bv, full_qid_list〉 and 〈g.bv, partial_qid_list〉 from Ń and Ń.full_qid_table;

30: MERGENONLEAF(N ’s parent, g.bv);

After the insert algorithm (or the delete algorithm) terminates, the server broadcasts the InsertQuery

message (or DeleteQuery message) to all the moving objects (registered at the server) to notify them of

such a change.

5.4. Cooperative Evaluation of CM Range Monitoring Queries

In this subsection, we describe how each moving object cooperates with the server to evaluate

CM range monitoring queries. The cooperative query evaluation consists of server-side tasks and

object-side tasks.

5.4.1. Server-Side Tasks

The server performs three main tasks: (i) query registration (or de-registration); (ii) domain

assignment; and (iii) query result update.

Query Registration (or De-Registration). When a new query q = (q.R, q.V) is issued by a client,

the server assigns an identifier to q, inserts q into the query table, and invokes Algorithm 3 (i.e., insert

algorithm), after which it broadcasts the InsertQuery(q.id, q) message to all the moving objects that

are registered at the server, where q.id denotes the identifier of q. On the other hand, when an existing

query q is terminated by a client, the server deletes q from the query table and invokes Algorithm 6

(i.e., delete algorithm). Then, the server broadcasts the DeleteQuery(q.id) message.

Sensors 2015, 15 24167

Domain assignment. In addition to the main data structures, namely the query table and the

GQR-tree, the server maintains an object table (hashed on object identifiers), which stores for each

moving object o, an identifier, a location o.loc (from the lastRequestDomain message or UpdateResult

message), a set of non-spatial attribute values o.A, and a capability o.Cap. When a new moving object

o = (o.loc, o.A) is registered at the server with its capability o.Cap, the server assigns an identifier to o,

inserts o into the object table, and invokes Algorithm 1 (i.e., search algorithm). Then, the server assigns

a resident domain N to o together with query identifier and spatial query range pairs. When the server

receives the RequestDomain(o.id, o.locnew, o.Cap,Nold) message from o, where o.id, o.locnew, and

Nold denote the identifier, current location, and previous resident domain of o, respectively, it visits the

object table and sets o.loc of o (referred to by o.id) to o.locnew. Next, the server invokes Algorithm 1 and

assigns a new resident domain Nnew to o together with new pairs of query identifiers and spatial query

ranges. Finally, the server visits Nold.full_qid_table and gets the tuple 〈g.bv, full_qid_list〉 such that

g.bv ∧ o.bv = o.bv, after which it checks if the movement of o affects the result of each query q referred

to by each query identifier contained in full_qid_list. (Note: the object bit-vector o.bv of o has already

generated in Algorithm 1.) If so, the server update the result of q.

Query Result Update. When the server receives the UpdateResult(o.id, o.locnew, q.id) from

a moving object o, it visits the query table and checks if the result of the query q (referred to by q.id)

contains o.locnew. If so, the server inserts o into the result of q. Otherwise, the server removes o from the

result of q.

5.4.2. Object-Side Tasks

Each moving object o maintains its current resident domain N and a local query table (hashed on

query identifiers), which stores, for each query q ∈ g_N , an identifier q.id and a spatial query range

q.R. Whenever o changes its location, it monitors its spatial relationships with N and spatial query

ranges stored in the local query table. In particular, when o moves, it checks if it exits N or crosses

any of the boundary of spatial query ranges stored in the local query table. If o exits N , it sends the

RequestDomain(o.id, o.locnew, o.Cap,Nold) message to the server. On the other hand, if o crosses some

spatial query range q.R stored in the local query table, it sends the UpdateResult(o.id, o.locnew, q.id).

In addition, o expects the following broadcast messages from the server and processes them as follows:

• InsertQuery(q.id, q): When o = (o.loc, o.A) receives the InsertQuery(q.id, q) message from

the server, given the query q = (q.R, q.V), it checks if (i) q.R contains o.loc and (ii) it is

matched to q.V = {q.v1, q.v2, · · · , q.vm(≤n)}, i.e., ∀o.ái (1≤i≤m) ∈ o.Á : o.ái = q.v́i (1≤i≤m)

or o.ái ∈ q.vi (assuming a set of non-spatial attributes A = {a1, a2, · · · , an}). If this is the

case, o sends the UpdateResult(o.id, o.locnew, q.id) message to the server in order to let the

server insert o into the result of q. Next, o checks if q.R is covered by or partially intersects

its current resident domain N . If so, it inserts q.id and q.R into the local query table. It should

be noted that if the number of query identifier and spatial query range pairs stored in the local

query table becomes greater than the capability o.Cap of o due to the insertion, o sends the

RequestDomain(o.id, o.locnew, o.Cap,Nold) message to the server in order to receive a new

resident domain (together with new query identifier and spatial query range pairs).

Sensors 2015, 15 24168

• DeleteQuery(q.id): When o receives the DeleteQuery(q.id) message from the server, it just

deletes the pair of q.id and q.R from the local query table if the pair is stored in the local

query table.

6. Performance Evaluation

In this section, we evaluate and compare the performance of GQRT with that of SR [6], MQM [2],

QRT [1], and BQRT [1] in terms of the server workload and communication cost. The server workload

was measured in terms of the CPU-time that the server takes for evaluation of CM range monitoring

queries. On the other hand, the communication cost was measured by the total number of messages

transmitted between the server and moving objects. The simulations were conducted on Intel Xeon

E5-2620 6-core Processor with 8GB RAM running on the Linux system.

6.1. Simulation Setup

Our simulations were based on two sets of queries, Uniform and Skewed, with the workspace fixed

at 50 km × 50 km square. In Uniform, spatial query ranges are uniformly placed on the workspace.

On the other hand, in Skewed, the distribution of spatial query ranges on the workspace follows the

Zipf distribution with skew coefficient α = 0.8. Each spatial query range in both Uniform and Skewed

is a square. The movements of the moving objects that we generated follow the random waypoint

model [38], which is one of the most widely used mobility models: each moving object chooses a random

point of destination on the workspace and moves to the destination at a constant speed distributed

uniformly from 0 to maximum speed, which we set to 50 km/h. Upon reaching the destination, it

remains stationary for a certain period of time. When this period expires, the moving object chooses

a new destination and repeats the same process during the simulation time steps. The computational

capability of each moving object was randomly selected from the range between 25 and 100 spatial

query ranges, and thus the threshold value θ of the BP-tree (used in MQM), QR-tree (used in QRT),

BQR-tree (used in BQRT), and GQR-tree was set to 25. For SR, we used the 64 × 64 grid indexes for

indexing queries and safe regions.

Each non-spatial attribute a ∈ A is assumed to be categorical because numerical attribute á can be

replaced with the categorical attribute by discretizing the domain of á. The domain of a is 32 and the

distribution of each non-spatial attribute value o.a of each moving object o follows the Zipf distribution

with skew coefficient α = 0.8. Each non-spatial value specified on a subset of A by each query q in both

Uniform and Skewed follows the same distribution. We list the set of used parameters and their default

values (stated in boldface) in the simulations in Table 2. In each simulation, we evaluated the effect

of one parameter while the others were fixed at their default values. We ran each simulation for 1000

simulation time steps and measured the average of the CPU-time (in ms) and total number of messages.

At each time step, 10% of queries in Uniform and Skewed were set to be updated (i.e., reinserted after

they are deleted). Note that this update rate is sufficient to study the performances of SR, MQM, QRT,

BQRT, and GQRT because these methods focus on dealing with stationary or quasi-stationary queries.

Sensors 2015, 15 24169

Table 2. Simulation parameters and their values.

Simulation Parameter Value Used (Default)

Cardinality of Uniform/Skewed 1000 ∼ 10,000 (5000)

Side length of spatial query ranges 500 m ∼ 5000 m (2500 m)

Number of moving objects 10,000 ∼ 100,000 (50,000)

Number of non-spatial attributes 1 ∼ 10 (5)

6.2. Simulation Results

6.2.1. Effect of the Number of Queries

In the first simulation, we varied the cardinalities of Uniform and Skewed from 1000 to 10,000 and

studied the effect of the number of queries on the server workload and communication cost. The purpose

of this simulation was to show the scalability of GQRT with regard to the number of queries. Figure 8

shows the effect of the number of queries (i.e., cardinalities of Uniform and Skewed) on the CPU-time

the server takes for query evaluation. In MQM, QRT, BQRT, and GQRT, the CPU-time performance

is mainly affected by the search process for assigning resident domains to moving objects, whereas, in

SR, the CPU-time performance is mainly affected by safe region computation. As shown in the figure,

SR performs worst for Uniform because as the number of queries becomes larger, the size of a safe

region assigned to each moving object o becomes smaller. Therefore, o easily exits its current small safe

region and contacts the server in order to receive a new safe region. This leads the server to frequently

determine o’s new safe region with intensive computation. It is also observed from the figure that BQRT

and GQRT perform much better than QRT and MQM for Uniform and Skewed. This is due to the fact

that the BQR-tree and GQR-tree store the bit-vector information in order to assign each moving object o

a larger resident domain. As a result, the server can reduce the frequency of search process for assigning

a new resident domain to o that exits its current resident domain.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

40

80

120

160

200

240

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Number of queries

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

150

300

450

600

750

900

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Number of queries

(a) (b)

Figure 8. CPU-time vs. cardinalities of Uniform and Skewed. (a) Uniform; (b) Skewed.

Sensors 2015, 15 24170

However, GQRT performs much better than BQRT. This is because the BQR-tree is a naïve form

of the enhanced QR-tree, where tree construction is based mostly on the spatial information, and thus,

similarly to MQM and QRT, in the BQRT, when assigning a resident domain to o, the capability o.Cap

of o is measured by the number of spatial query ranges without any consideration of the non-spatial

information. On the other hand, in GQRT, when assigning the resident domain to o, the GQR-tree, which

groups the queries according to their non-spatial information when being built on their spatial query

ranges, enables o.Cap to be measured by the number of only the queries that are the elements of the query

group g whose group bit-vector g.bv is matched to the object bit-vector o.bv of o. This helps the server

assign a larger resident domain to o. GQRT takes 76.2% of the server workload, as compared to BQRT

for Uniform. Meanwhile, GQRT takes 67.7% of the server workload, as compared to BQRT for Skewed.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

20000

40000

60000

80000

100000

120000

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of queries

 SR
 MQM
 QRT
 BQRT
 GQRT

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

40000

80000

120000

160000

200000

240000

 SR
 MQM
 QRT
 BQRT
 GQRT

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of queries

(a) (b)

Figure 9. Total number of messages vs. cardinalities of Uniform and Skewed. (a) Uniform;

(b) Skewed.

Figure 9 shows the effect of the number of queries on the total number of messages communicated

between the server and moving objects. As the number of queries increases, the performances of all

the methods degrade. However, BQRT and GQRT outperform SR, MQM, and QRT for Uniform and

Skewed. This is because, in BQRT and GQRT, the server can assign moving objects large resident

domains together with only qualified spatial query ranges with the help of bit-vector information.

This not only makes the moving objects to reduce the number of sending RequestDomain messages and

UpdateResult messages to the server for receiving new resident domains and letting the server update

some query results, respectively, but also makes the server to reduce the communication overhead for

assigning new resident domains to the moving objects. We note that, however, GQRT performs better

than BQRT because the server in GQRT assigns much larger resident domains to the moving objects

than that in BQRT for the reason mentioned in the description of Figure 8. Under the default parameter

settings, the average sizes of resident domains assigned to the moving objects in GQRT and BQRT for

Uniform are 58.7 km2 and 37.5 km2, respectively. On the other hand, those in GQRT and BQRT for

Skewed are 52.4 km2 and 34.1 km2, respectively. It is also observed from the figure that SR performs the

worst for Uniform, whereas MQM performs the worst for Skewed due to the limitations of the BP-tree

used in MQM. The details of the limitations of the BP-tree are described in our previous paper [1]. In all

Sensors 2015, 15 24171

the cases, GQRT performs the best in all the cases. As compared to SR, MQM, QRT, and BQRT, GQRT

incurs 7.2%, 9.7%, 17.6%, and 71.4% respectively, of the communication cost for Uniform. On the other

hand, GQRT incurs 12.7%, 10.9%, 16.9%, and 67.6% of the communication cost as compared to SR,

MQM, QRT, and BQRT, respectively, for Skewed.

6.2.2. Effect of the Size of Spatial Query Ranges

In this simulation, we varied the side length of spatial query ranges from 500 m to 5000 m to examine

how the size of spatial query ranges affects the performances of SR, MQM, QRT, BQRT, and GQRT.

As shown in Figure 10, GQRT performs much better and are less sensitive to this parameter than

SR, MQM, QRT, and BQRT for Uniform and Skewed. As the side length of each spatial query range

becomes longer (i.e., the size of each spatial query range becomes larger), the excessive overlap among

spatial query ranges occurs. Excessive overlap among spatial query ranges reduces the size of the safe

region assigned to each moving object o, and thus the server in SR should frequently determine o’s new

safe region. The excessive overlap among spatial query ranges also increases the number of node split

of the BP-tree, QR-tree, and BQR-tree, which incurs huge amount of computation time. In addition, the

increment of node splits accelerates height growth of the BP-tree, QR-tree, and BQR-tree, which leads

the server to assign smaller resident domains to the moving objects, and thus the server in MQM, QRT,

and BQRT frequently searches new resident domains for the moving objects that exit their small resident

domains. On the other hand, GQRT is nearly not affected by the side length of spatial query ranges due

to the third advantage of the GQRT over MQM, QRT, and BQRT mentioned in Section 5. As compared

to SR, MQM, QRT, and BQRT, GQRT takes 23.5%, 34.1%, 58.9%, and 67.8%, respectively, of the server

workload for Uniform. On the other hand, GQRT takes 39.9%, 40.6%, 62.3%, and 77.1% of the server

workload, as compared to SR, MQM, QRT, and BQRT, respectively, for Skewed.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

50

100

150

200

250

300

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Side length of spatial query range (m)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

150

300

450

600

750

900

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Side length of spatial query range (m)

(a) (b)

Figure 10. CPU-time vs. size of spatial query ranges. (a) Uniform; (b) Skewed.

Figure 11 shows the effect of the side length of spatial query ranges (i.e., the size of spatial query

ranges) on the total number of messages. As shown in the figure, BQRT and GQRT perform better than

SR, MQM, and QRT for Uniform and Skewed due to the same reason mentioned in the first simulation.

On the other hand, SR performs the worst for Uniform, whereas MQM performs the worst for Skewed.

Sensors 2015, 15 24172

This is because longer side length of spatial query ranges more negatively affects the performances of SR

and MQM than the performance of QRT. In all cases, GQRT achieves the best performance for Uniform

and Skewed. As compared to SR, MQM, QRT, and BQRT, GQRT incurs 7.3%, 10.6%, 17.9%, and

68.8%, respectively, of the communication cost for Uniform. On the other hand, GQRT incurs 12.1%,

11.1%, 16.8%, and 66.2% of the communication cost as compared to SR, MQM, QRT, and BQRT,

respectively, for Skewed.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

20000

40000

60000

80000

100000

120000

 SR
 MQM
 QRT
 BQRT
 GQRT

N
u

m
b

er
 o

f
m

es
sa

g
es

Side length of spatial query range (m)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

30000

60000

90000

120000

150000

180000

 SR
 MQM
 QRT
 BQRT
 GQRT

N
u

m
b

er
 o

f
m

es
sa

g
es

Side length of spatial query range (m)

(a) (b)

Figure 11. Total number of messages vs. size of spatial query ranges. (a) Uniform;

(b) Skewed.

6.2.3. Effect of the Number of Moving Objects

In this simulation, we increased the number of moving objects from 10,000 to 100,000 to study how

the number of moving objects affects the performances of SR, MQM, QRT, BQRT, and GQRT.

As shown in Figures 12 and 13, as the number of moving objects increases, the overhead of all the

methods increases in terms of the CPU-time and the total number of messages. However, in all cases,

GQRT outperforms SR, MQM, QRT, and BQRT due to the fact that only GQRT has the ability to fully

utilize the capabilities of moving objects. Note that BQRT cannot fully utilize the capabilities of moving

objects as mentioned in Section 4.

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

0

30

60

90

120

150

180
 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Number of moving objects

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

0

70

140

210

280

350

420

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Number of moving objects

(a) (b)

Figure 12. CPU-time vs. number of moving objects. (a) Uniform; (b) Skewed.

Sensors 2015, 15 24173

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

0

25000

50000

75000

100000

125000

150000

 SR
 MQM
 QRT
 BQRT
 GQRT

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of moving objects

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

0

35000

70000

105000

140000

175000

210000

 SR
 MQM
 QRT
 BQRT
 GQRT

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of moving objects

(a) (b)

Figure 13. Total number of messages vs. number of moving objects. (a) Uniform;

(b) Skewed.

6.2.4. Effect of the Number of Non-Spatial Attributes

Finally, we investigated how the number of non-spatial attributes affects the performance of SR,

MQM, QRT, BQRT, and GQRT by increasing the number of non-spatial attributes (from 1 to 10).

Figure 14 shows the effect of the number of non-spatial attributes on the CPU-time. It is observed

from the figure that the performances of BQRT and GQRT improve as the number of non-spatial

attributes increases. This is due to the fact that as the number of non-spatial attributes increases, the

server in BQRT and GQRT can utilize more non-spatial information when assigning resident domains to

the moving objects. However, GQRT, which fully utilizes the non-spatial information, performs much

better than BQRT. GQRT takes 64.3% of the server workload, as compared to BQRT for Uniform. On the

other hand, GQRT takes 52.9% of the server workload, as compared to BQRT for Skewed. Note that SR,

MQM, and QRT are practically unaffected by the number of non-spatial attributes.

1 2 3 4 5 6 7 8 9 10
0

30

60

90

120

150

180

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Number of non-spatial attributes

1 2 3 4 5 6 7 8 9 10

0

40

80

120

160

200

240

 SR
 MQM
 QRT
 BQRT
 GQRT

C
P

U
 t

im
e

(m
s)

Number of non-spatial attributes

(a) (b)

Figure 14. CPU-time vs. number of non-spatial attributes. (a) Uniform; (b) Skewed.

Sensors 2015, 15 24174

Figure 15 shows the effect of the number of non-spatial attributes on the total number of messages.

As expected, the performances of BQRT and GQRT improve as the value of the number of non-spatial

attributes increases. However, it is observed from the figure that GQRT outperforms BQRT in all

cases for Uniform and Skewed. As compared to BQRT, GQRT incurs only 66.8% and 61.1% of the

communication cost for Uniform and Skewed, respectively.

1 2 3 4 5 6 7 8 9 10

0

10000

20000

40000

60000

80000

100000

 SR
 MQM
 QRT
 BQRT
 GQRTN

u
m

b
er

 o
f

m
es

sa
g
es

Number of non-spatial attributes

1 2 3 4 5 6 7 8 9 10

0

20000

40000

60000

80000

100000

120000

 SR
 MQM
 QRT
 BQRT
 GQRT

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of non-spatial attributes

(a) (b)

Figure 15. Total number of messages vs. number of non-spatial attributes. (a) Uniform;

(b) Skewed.

7. Conclusions

In this paper, we addressed the problem of the efficient and scalable evaluation of content-matched

range monitoring queries (CM range monitoring queries). Given a set of geographically distributed

moving objects, the primary goal of our study is to keep the results of queries up to date, while

incurring the minimum communication cost and server workload by letting the moving objects evaluate

several queries that are relevant to them. To achieve this, we used the resident domain concept and

proposed a novel query indexing structure, namely the group-aware query region tree (GQR-tree).

For the tight integration of the spatial and the non-spatial specifications of the CM range monitoring

queries, The GQR-tree groups the queries according to their non-spatial query values (i.e., non-spatial

information) when being built on their spatial query ranges (i.e., spatial information). We carried out

a series of comprehensive simulations and demonstrated that the GQR-tree method outperform the

existing methods, validating the effectiveness of the GQR-tree.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2013R1A1A2061269) and the

ICT R&D program of MSIP/IITP (1391105003).

Sensors 2015, 15 24175

Author Contributions

All authors significantly contributed to the manuscript. HaRim Jung and MoonBae Song initiated

the idea, developed the research concept, and wrote the manuscript. Hee Yong Youn and Ung-Mo Kim

oversaw all of the work and revised the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Jung, H.; Kim, Y.S.; Chung, Y.D. QR-tree: An efficient and scalable method for evaluation of

continuous range queries. Inf. Sci. 2014, 274, 156–176.

2. Cai, Y.; Hua, K.A.; Cao, G.; Xu, T. Real-time processing of range-monitoring queries in

heterogeneous mobile databases. IEEE Trans. Mobile Comput. 2006, 5, 931–942.

3. Cheema, M.A.; Brankovic, L.; Lin, X.; Zhang, W.; Wang, W. Continuous monitoring of

distance-based range queries. IEEE Trans. Knowl. Data Eng. 2011, 23, 1182–1199.

4. Chen, X.A.; Pang, J.; Xue, R. Constructing and comparing user mobility profiles for location-based

services. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra,

Portugal, 18–22 March 2013.

5. Gedik, B.; Liu, L. Mobieyes: A distributed location monitoring service using moving location

queries. IEEE Trans. Mobile Comput. 2006, 5, 1384–1402.

6. Hu, H.; Xu, J.; Lee, D.L. A generic framework for monitoring continuous spatial queries

over moving objects. In Proceedings of the 2005 ACM SIGMOD International Conference on

Management of Data, Chicago, IL, USA, 13–16 June 2005.

7. Huang, J.L.; Huang, C.C. A proxy-based approach to continuous location-based spatial queries in

mobile environments. IEEE Trans. Knowl. Data Eng. 2013, 25, 260–273.

8. Ilarri, S.; Mena, E.; Illarramendi, A. Location-dependent query processing: Where we are and

where we are heading. ACM Comput. Surv. 2010, 42, 1–73.

9. Jung, H.; Kim, Y.S.; Chung, Y.D. SPQI: An Efficient Index for Continuous Range Queries in

Mobile Environments. J. Inf. Sci. Eng. 2013, 29, 557–578.

10. Jung, H.; Cho, B.K.; Chung, Y.D.; Liu, L. On processing location based Top-k queries in

the wireless broadcasting system. In Proceedings of the 2010 ACM Symposium on Applied

Computing, Sierre, Switzerland, 22–26 March 2010.

11. Jung, H.; Chung, Y.D.; Liu, L. Processing generalized k-nearest neighbor queries on a wireless

broadcast stream. Inf. Sci. 2012, 188, 64–79.

12. Kalashnkov, D.V.; Prabhakar, S.; Hambrusch, S.E. Main memory evaluation of monitoring queries

over moving objects. Disrtib. Parallel Database 2004, 15, 117–135.

13. Lee, K.C.K.; Zheng, B.; Chen, C.; Chow, C.Y. Efficient index-based approaches for skyline queries

in location-based applications. IEEE Trans. Knowl. Data Eng. 2013, 25, 2507–2520.

14. Liu, F.; Hua, K.A.; Xie, F. A hybrid communication solution to distributed moving query

monitoring systems. Electron. Commer. Res. Appl. 2011, 10, 214–228.

Sensors 2015, 15 24176

15. Mokbel, M.F.; Xiong, X.; Aref, W.G. SINA: Scalable incremental processing of continuous queries

in spatio-temporal databases. In Proceedings of the 2004 ACM SIGMOD International Conference

on Management of Data, Paris, France, 13–18 June 2004.

16. Mouratidis, K.; Bakiras, S.; Papadias, D. Continuous monitoring of spatial queries in wireless

broadcast environments. IEEE Trans. Mob. Comput. 2009, 8, 1297–1311.

17. Prabhakar, S.; Xia, Y.; Aref, W.G.; Hambrusch, S. Query indexing and velocity constrained

indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans. Comput.

2002, 51, 1124–1140.

18. Guo, L.; Zhang, D.; Li, G.; Tan, K.; Bao, Z. Location-Aware Pub/Sub System: When Continuous

Moving Queries Meet Dynamic Event Streams. In Proceedings of the ACM SIGMOD 2015,

Melbourne, VIC, Australia, 31 May–4 June, 2015.

19. Wu, K.L.; Chen, S.-K.; Yu, P.S. Efficient processing of continual range queries for location-aware

mobile services. Inf. Syst. Front. 2005, 7, 435–448.

20. Wu, K.L.; Chen, S.-K.; Yu, P.S. On incremental processing of continual range queries for

location-aware services and applications. In Proceedings of the Second Annual International

Conference on Mobile and Ubiquitous Systems: Networking and Services, San Jose, CA, USA,

17–21 July 2005.

21. Ding, X.; Lian, X.; Chen, L.; Jin, H. Continuous monitoring of skylines over uncertain data

streams. Inf. Sci. 2012, 184, 196–214.

22. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the

1984 ACM SIGMOD International Conference on Management of Data, Boston, MA, USA,

18–21 June 1984.

23. Beckmann, N.; Kriegel, H.-P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust

access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD International

Conference on Management of Data, Atlantic City, NJ, USA, 23–25 May 1990.

24. Roussopoulos, N.; Faloutsos, C. The R+-tree: A dynamic index for multi-dimensional objects.

In Proceedings of the 13th International Conference on Very Large Data Bases, Brighton, UK,

1–4 September 1987.

25. Saltenis, S.; Jensen, C.; Leutenegger, S.; Lopez, M.A. Indexing the positions of continuously

moving objects. In Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, Dallas, TX, USA, 16–18 May 2000.

26. Tao, Y.; Papadias, D.; Sun, J. The TPR*-tree: An optimized spatio-temporal access method for

predictive queries. In Proceedings of the 29th International Conference on Very Large Data, Berlin,

Germany, 9–12 September 2003.

27. Patel, J.M.; Chen, Y.; Chakka, V.P. STRIPES: An efficient index for predicted trajectories.

In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data,

Paris, France, 13–18 June 2004.

28. Jensen, C.S.; Lin, D.; Ooi, B.C. Query and update efficient B+-tree based indexing of moving

objects. In Proceedings of Thirtieth International Conference on Very Large Data Bases, Toronto,

ON, Canada, 29 August–3 September 2004.

Sensors 2015, 15 24177

29. Lee, M.L.; Hsu, W.; Jensen, C.S.; Cui, B.; Teo, K.L. Supporting frequent updates in R-trees:

A bottom-up approach. In Proceedings of the 29th International Conference on Very Large Data

Bases, Berlin, Germany, 9–12 September 2003.

30. Song, M.; Kitagawa, H. Managing frequent updates in R-trees for update-intensive applications.

IEEE Trans. Knowl. Data Eng. 2009, 21, 1573–1589.

31. Song, M.; Choo, H.; Kim, W. Spatial indexing for massively update intensive applications. Inf. Sci.

2012, 203, 1–23.

32. Al-Khalidi, H.; Taniar, D.; Betts, J.; Alamri, S. Monitoring moving queries inside a safe region.

Sci. World J. 2014, 2014, doi:10.1155/2014/630396.

33. Hariharan, R.; Hore, B.; Li, C.; Mehrotra, S. Processing spatial-keyword (SK) queries in

geographic information retrieval (GIR) systems. In Proceedings of the 19th International

Conference on Scientific and Statistical Database Management, Banff, AB, Canada,

9–11 July 2007.

34. Cong, G.; Jensen, C.S.; Wu, D. Efficient retrieval of the top-k most relevant spatial web objects.

PVLDB 2009, 2, 337–348.

35. Zhang, D.; Chee, Y.; Mondal, A.; Tung, A.; Kitsuregawa, M. Keyword search in spatial databases:

Towards searching by document. In Proceedings of the IEEE 25th International Conference on

Data Engineering, Shanghai, China, 29 March–2 April 2009.

36. Guo, T.; Cao, X.; Cong, G. Efficient algorithms for answering the m-Closest keywords query.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

Melbourne, Australia, 31 May–4 June 2015.

37. Cao, X.; Cong, G.; Jensen, C.S.; Yiu, M.L. Retrieving regions of interest for user exploration.

PVLDB 2014, 7, 733–744.

38. Broch, J.; Maltz, D.A.; Johnson, D.; Hu, Y.-C.; Jetcheva, J. A performance comparison

of multi-hop wireless ad hoc network routing protocols. In Proceedings of the 4th Annual

ACM/IEEE International Conference on Mobile Computing and Networking, Dallas, TX, USA,

25–30 October 1998.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Related Work
	System Overview
	Problem Definition and Motivation
	The Group-Aware Query Region Tree (GQR-Tree)
	Description
	Resident Domain Search
	GQR-Tree Manipulations
	Cooperative Evaluation of CM Range Monitoring Queries
	Server-Side Tasks
	Object-Side Tasks

	Performance Evaluation
	Simulation Setup
	Simulation Results
	Effect of the Number of Queries
	Effect of the Size of Spatial Query Ranges
	Effect of the Number of Moving Objects
	Effect of the Number of Non-Spatial Attributes

	Conclusions

