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Abstract: Driver drowsiness is a major cause of mortality in traffic accidents worldwide. 

Electroencephalographic (EEG) signal, which reflects the brain activities, is more directly 

related to drowsiness. Thus, many Brain-Machine-Interface (BMI) systems have been 

proposed to detect driver drowsiness. However, detecting driver drowsiness at its early 

stage poses a major practical hurdle when using existing BMI systems. This study proposes 

a context-aware BMI system aimed to detect driver drowsiness at its early stage by 

enriching the EEG data with the intensity of head-movements. The proposed system is 

carefully designed for low-power consumption with on-chip feature extraction and low 

energy Bluetooth connection. Also, the proposed system is implemented using JAVA 

programming language as a mobile application for on-line analysis. In total, 266 datasets 

obtained from six subjects who participated in a one-hour monotonous driving simulation 

experiment were used to evaluate this system. According to a video-based reference, the 

proposed system obtained an overall detection accuracy of 82.71% for classifying alert and 

slightly drowsy events by using EEG data alone and 96.24% by using the hybrid data of 

head-movement and EEG. These results indicate that the combination of EEG data and 

head-movement contextual information constitutes a robust solution for the early detection 

of driver drowsiness. 

Keywords: driver drowsiness detection; EEG; gyroscope; slightly drowsy events;  

mobile application 
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1. Introduction 

Driver drowsiness is a major cause of mortality in traffic accidents worldwide. The U.S. National 

Highway Traffic Safety Administration reports that drowsy driving is the cause of an estimated  

40,000 injuries and 1550 deaths in car crashes every year [1]. Also, the Korean Expressway 

Cooperation reports that, from 2010 to 2013, 1223 people died in Korean highway traffic accidents, 

31% of which could be attributed to driver drowsiness [2,3]. Many of these deaths could be avoided if 

driver drowsiness could be properly monitored and drivers are given early warnings. 

Driver drowsiness, that is, excessive sleepiness, is more likely to happen when a person is driving 

for extended periods in monotonous environments, such as on a highway. The standard clinical tests 

for measuring sleepiness are the Multiple Sleep Latency Test (MSLT) and the Maintenance of 

Wakefulness Test (MWT), combined with polysomnography datasets [4]. These measurements are 

very expensive and cumbersome to perform (at least eight channels are needed: four EEG, two 

electrooculogram (EOG), one electromyogram, and one electrocardiogram (ECG) [4]); it would be 

practically impossible to use these methods to detect driver drowsiness in an actual driving 

environment. For instance, the use of multiple sensors would be uncomfortable for the driver and could 

even impede his or her movement. Thus, there is a strong demand for an easy-to-use driver drowsiness 

detection (DDD) system. 

To enable the detection of driver drowsiness both simply and inexpensively, many methods have 

been proposed, including vehicle-based methods (such as the lane departure warning system [5] and 

the steering wheel movement system [6–8]), video-based methods (such as the detector of the  

degree (percentage) of eyelid closure over the pupils over time [9–12]), and physiological-signal-based 

methods (such as those based on the ratio of low frequency to high frequency of heart rate  

variability [13,14] and EEG (brain waves) [15]). Among these methods, physiological-signal-based 

methods are considered to be the most reliable means of detection as these signals provide an 

indication of the true internal state of the driver [16]; and compared to other physiological signals, the 

EEG, that is a non-invasive physiological means of measuring brain activity, is considered to have the 

closest relationship with drowsiness [4,17–19]. Over the years, Lin’s group is committed to detect 

driver drowsiness using EEG alone. For example, in 2010, his group developed a real-time DDD 

system, which consists of a wireless EEG headband and a self-developed portable device, which is 

embedded with a binary threshold-based decision-making model [20]. In November 2012, his group 

developed an EEG headset and Android smartphone-based driver drowsiness monitoring and 

management system [21]. In more recent work [22], his group further proposed a driver vigilance 

monitoring system, which is based on a wireless EEG headband and a support vector regression model 

enabled Android tablet device. 

These systems, which integrate portable smart devices and EEG together, might lead to low-cost 

and simple-to-use DDD solutions. However, for practical purpose, a possible drawback is that the 

inevitable head movements caused by yawning, rubbing face or eyes and moving restlessly on chair 

when drivers are slightly drowsy [23], would significantly influence the EEG signal quality and result 

in unreliable detection result. Therefore, using EEG alone is not robust to recognize a drowsy driver’s 

early features, when feedback might be the most effective. If taking EEG as the main signals for DDD, 

then the information of head movements can be regarded as contextual information that could be easily 
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captured by motion sensor. For example, Vural et al. [24] proposed to use accelerometer to measure 

the head movements. They mentioned that head motion increased as the driver became drowsy and the 

head would become still just before falling asleep. One limitation of this study is that the head motion 

was measured using only one dimension of the accelerometer. Regan et al. [25,26] proposed to use 

gyroscope to measure head movements. Based on a commercial device with integrated gyroscope [27], 

they successfully recognized the head-movement-related artifacts in EEG signals. Nevertheless, the 

head movements mentioned were intentioned movements that were instructed by researchers instead  

of the natural movements occurred in a real-life application circumstances. Also, the usage of  

two-axis (X and Y axis) gyroscope limits the system to a low-directional-resolution output. Compass, 

accelerometer and gyroscope are commonly-used motion sensors. Among the three sensors, compass 

and accelerometer sense magnetic north and gravity as the external references respectively. However, 

gyroscope is very different. It senses its own rotation without any external reference needed. So, 

whenever and wherever the head stopped, its sensory value goes to zero, which is very suitable to 

detect the intensity of head movements. 

This study aims to enrich the EEG data with the intensity of head-movement by integrating  

three-axis gyroscope sensor into the EEG headset. We would like to determine if using a combination 

of EEG and head-movement parameters would increase the ability to earlier predict driver drowsiness 

compared to using EEG signals alone. To achieve this goal, this study includes the following aspects: 

(1) design and implement a low-power, wireless and context-aware EEG acquisition headset with 

integrated feature extraction processor; (2) design and implement a mobile Data-to-Knowledge 

platform using smartphone; (3) test the Data-to-Knowledge platform by driving simulation experiment. 

We reviewed studies about EEG-based DDD in the past decade from well-known literature pools 

including IEEE Xplore, ScienceDirect, and SpringerLink. To the author’s best knowledge, this is the 

first study attempting to detect driver drowsiness using EEG signals enriched with head-movement 

context information. Thus, the contributions of this work are twofold: (1) the full design for a wireless 

context-aware EEG system is described; (2) the concept of early detection of driver drowsiness using 

context-aware EEG is confirmed. 

The rest of the paper is organized as follows. Section 2 presents the system design. Section 3 

presents the system evaluation design for simulated driving. Section 4 presents the evaluation results. 

Further discussion about the evaluation results is presented in Section 5. Section 6 concludes the paper 

with future work. 

2. System Design 

Figure 1 shows the proposed DDD system, which consists of a wireless context-aware EEG headset 

and a smartphone (Android 4.4.2, Samsung, Suwon, South Korea,). The EEG headset is powered by a  

3.6 V 2600-mAh lithium-ion battery and incorporates a sensory input unit (SIU) as well as a sensory 

processing unit (SPU). The analog data from the SIU are converted to digital data by the SPU’s  

built-in 12-bit analog-to-digital converter (ADC) and stored in the 20 K static random access memory. 

Then, the digital data are transformed by Fast Fourier Transformation (FFT) algorithm directly inside 

of the 32-bit processor on the SPU. Then, the extracted FFT-based EEG and head movement features 

are wirelessly transmitted to the smartphone via a Bluetooth Low-Energy (BLE) module [28]. The 
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smartphone puts these features into a support vector machine (SVM)-based classification model to 

automatically estimate the driver drowsiness level. The following sections introduce in detail the major 

components of this system. 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 1. (a) Block diagram of the proposed system; (b) The top view of the  

designed headset; (c) The full view of the headset; (d) The fabricating procedure using  

3D printer; (e) The fabricated headset prototype. 

2.1. Wireless Context-Aware EEG Headset 

Traditional wired EEG acquisition systems were commonly seen in EEG-based DDD studies,  

such as [15,18,29–31]. These systems could be acceptable for research purposes, but essentially 

impossible for practical use due to being so cumbersome. This limitation can be overcome by wireless 

EEG acquisition systems, which eliminate the wire connection between the EEG sensing part and the 
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Data-to-Knowledge part, using wireless transmission technology such as Bluetooth, Zigbee, or some 

other proprietary radio frequency unit. In this case, wireless EEG acquisition systems can be 

manufactured easily and offer several desirable advantages, such as small size and light weight. These 

desirable aspects of wireless EEG acquisition systems make them very suitable for real-life DDD 

applications. In this study, the developed wireless context-aware EEG headset consists of two parts: 

SIU and Bluetooth-enabled SPU. As can be seen in Figure 1, for wearable purposes, the two units are 

put into a specifically designed case which is fabricated by 3D printer, which is then connected to an 

elastic headband via two snap buttons. 

2.1.1. SIU 

The SIU consists of three EEG dry electrodes, an EEG bio-potentials conditioning circuit  

and a three-axis gyroscope module. Among the three dry electrodes, one ear-clip electrode,  

from Laxtha Co., Ltd [32], serves as a ground electrode which is placed on the earlobe and given 1.65 V 

bias to satisfy the required condition of the SPU’s ADC which is powered by a single positive 

reference voltage (+3.3 V). Two dry electrodes, from Cognionics Co., Ltd [33], are used as EEG signal 

electrodes. They are specifically designed for hairy regions. Thus, in this study, they are placed at 

occipital regions O1 and O2, where is highly correlated with the driver’s vigilance level [34]. Before 

applying them to EEG bio-potentials conditioning circuit (as shown in Figure 2), the driver circuit for 

the dry electrodes which is adapted from [35] is implemented. The comparison between conventional 

wet Ag/AgCl electrodes and the dry electrodes can be found in Section 4. 

 

Figure 2. Structure of EEG bio-potentials conditioning circuit and a pair of commercial 

dry electrodes used. The locations marked by red dotted circles are the locations EEG 

electrodes attached in this study. 

EEG signals are usually weak and easy to be interfered by undesired noises (EEG signals typically 

have amplitude in the range of 10 µ–100 µV). Therefore, both amplifying and filtering are required for 

further signal processing. In addition, human skin typically provides source impedance on the order  

of 1 M–5 MΩ. Thus, amplifiers must match the source impedance or have greater input impedance 

than the source skin impedance to acquire EEG signals. For these reasons, the output of the bipolar 

electrode is transferred to EEG bio-potentials conditioning circuit and firstly amplified by an 

instrument amplifier (IA: INA28, Texas Instruments) with 16.5 × gains. The INA128 is a low-power 

Rain-to-Rain IA which features a high differential input-impedance of 10GΩ || 2pF and a high 

common mode rejection ratio of 100 dB when the gains are 10×. Therefore, INA128 can balance the 
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electrode-skin impedance well and reject common mode signals as much as possible. Additionally, in 

order to acquire the most useful EEG bands for DDD application (θ (4–7 Hz), α (8–13 Hz) and  

β (13–30 Hz)) [12,13,19–22,36], the cutoff frequencies of the Low Pass Filter (LPF) and High Pass 

Filter (HPF) are set to 4 Hz and 30 Hz, respectively. The output signal of IA is transferred to 2nd-order 

Butterworth HPF and then filtered by the 4th-order Butterworth LPF. Finally, the signal is amplified 

by the main and 2nd non-inverting amplifier with 151 × and 12 × gains. The significance of using  

non-inverting amplifier is that it features high input impedance and low output impedance, which is 

similar to voltage follower. The amplifier used here is LMC6464 from Texas Instruments, which is a 

low-power operation amplifier with Rail-to-Rail input and output. A notch filter for power-line noise 

was not included in this circuit because there are no main power outlets in the car environment. For 

indoor tasks, such as the driving simulation experiment, a digital notch filter was directly implemented 

on chip to remove 60 Hz power-line noise in real-time. 

We use L3G4200D as the sensor platform for collecting the gyroscope data. The L3G4200D is from 

ST semiconductor, which is a low-power three-axis digital output gyroscope. It integrates LPF, HPF 

and 16-bit ADC together and also supports I2C and SPI digital output interface. In this study, the 

L3G4200D are attached on EEG headset using expansion board. The 16-bit sensor readings are 

transferred directly to the SPU via I2C connection. As shown in Figure 1e, the location of the 

gyroscope is around the center part of the squared case of the headset. The directions of the three axes 

are also shown in Figure 1e, where X, Y, Z axes direct to the right-left, up-down and front-rear 

directions, respectively. Therefore, the head-movements around the three axes can be captured.  

For example, X axis is used to capture yield and look up head-movements, like yawning. Y axis is used 

to capture left-right head shaking movements. Z axis is used to capture left-right head  

swaying movements. 

2.1.2. SPU 

The SPU consists of a self-developed micro-controller unit (MCU) system and a commercial BLE 

transmitter. The MCU is STM32F103CB from ST semiconductor. It operates at 3.3 V with a clock 

speed of 8 MHz. The MCU’s state-machine loop repeats at an interval equal to the sampling rate of 

128 Hz. STM32 MCU was chosen because it is 32-bit MCU with more RAM space, which is very 

suitable for running real-time feature extraction on chip. The BLE is used because the Android 4.4.2 

smartphone has embedded BLE microprocessors with capabilities for connecting wirelessly to external 

biomedical sensors by lower power consumption. Generally, wireless transmission is the most  

power-demanding component for wireless sensor nodes [37]. Therefore, the combination of on-chip 

feature extraction and BLE in this study aims to reduce the transmitted data and the whole system  

power consumption. 

2.1.3. Signal Analysis and Feature Extraction 

A digital band-pass filter (4–30 Hz) is implemented in SPU to further filter EEG signals, 

particularly the power line noise (60 Hz). For each 2-s EEG and gyroscope epoch, the following 

feature extraction approaches are operated respectively. 
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On-chip EEG Feature Extraction: Relative band power (RBP). First, FFT power is calculated as the 

sum of the squared FFT magnitude of the EEG signals; then, the RBP is calculated by dividing the 

FFT power of one EEG band by the sum of the FFT power of all three EEG bands, as shown in 

Equation (1), where, i
bandEEG  = { θ, α, β }. 
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On-chip Gyroscope Feature Extraction: Movement power (MP). The MP is developed for 

accelerometer by Da-Wei Chang et al. [38]. Very similar to their work, the MP is applied to gyroscope 

analysis in this study. First, the gyroscope magnitudes of the three axes are averaged. Then, the 

standard deviation of the averaged gyroscope signals in one epoch, defined as the MP, is calculated as 

shown in Equation (2). 

3/)( zyxavg GyroGyroGyroGyro   

)( avgGyroSTDMP   
(2) 

Therefore, a set of four features (Per (θ), Per (α), Per (β) and MP) were extracted from each 2-s epoch. 

In order to synchronize the extracted features with the 1-min video-based ground truth (See Section 3) 

every 30 sets of feature were successively averaged before applying each SVM operation. 

2.2. Classifier 

To test the classification performance with the above-mentioned feature set, a SVM binary classifier 

is used. As shown in Figure 3, applying this method includes three stages—Stage I: Data collection, 

Stage II: Validation and Stage III: Optimization. Stage I involves the one-hour simulated driving 

experiment (See Section 3). Stage II and Stage III involve the leave-one-out (LOO) cross-validation 

and its optimization respectively. The following subsections briefly introduce the SVM theory and 

introduce in detail the Stage II and Stage III. All the classifier implementation procedures are done 

using the highly successful LibSVM [39]. 

 

Figure 3. The classification model building chain containing three different tasks: data 

collection, classification validation and classification optimization. 
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2.2.1. Theoretical Principle of SVM Classifier 

A binary SVM classifier outputs a class label (e.g., +1: slightly drowsy events or −1: alert events) 

for each input dataset comprising several features based on the sign function ( ) ( ( ) ).f x sign w x b    

The w  is a vector perpendicular to the decision surface and b is a scalar (decision surface bias). ( )x

is the mapping function which maps each input dataset x  from the input space 
n  to a higher 

dimensional feature space H by using kernel functions (e.g., radial basis function (RBF)). The kernel 

function can be denoted as ( , ) ( ) ( )K x x x x    , where x  and x  denote the inputs in original space 

(
n ) and nonlinear space (H), respectively; then the linear kernel and RBF kernel are defined by 

following equations: 

1) Linear kernel 

xxxxK

),(  (3) 

2) RBF kernel 

)
2
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2

2

g

xx
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  (4) 

Here, parameter g, supplied by the user, acts as the scaling factor or radius of RBF kernel. Small 

value of g produces smooth decision boundaries, preventing overfitting of the model to the data 

samples; while high value of g generates complex decision boundaries which has the possibility to be 

too specific to the data samples, resulting overfitting of the model. 

 

Figure 4. The procedure of LOO cross-validation and optimization, where Si means the i-th 

subject and Accuracy_i means the classification accuracy for i-th Round. 

2.2.2. LOO Cross-Validation and Optimization 

The procedure of LOO cross-validation and optimization is depicted in Figure 4. For evaluating 

classification performance, the classification accuracy which is based on LOO cross-validation for all 
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participants was calculated. The specific steps are as follows: (1) Omit a subject from all available 

feature sets; (2) Train the classifier; (3) Test the omitted feature sets; (4) Repeat the steps that are listed 

above until each subject has been omitted and tested once; (5) Calculate the average classification 

accuracy (e.g., based on the N Rounds). In order to get the optimized average accuracy, the regulation 

parameter C and value of g will be updated from 0.01 to 10 in steps of 0.01 and each updating step 

corresponds to each cycle of Round 1 to N. 

2.3. Smartphone 

Since the initial release of iPhone and Android phones in 2007 and 2008, respectively, there has 

been an unprecedented increase in the number of smartphone subscribers in the world. Not surprisingly, 

smartphones have been proposed as an inexpensive platform for data acquisition and processing. 

In this study, an Android smartphone serves an on-line Data-to-Knowledge platform. In  

Android OS, each Activity corresponds to each user interface. Each user interface has a short lifetime 

due to the power save mode of smartphone screen; while Service is independent of Activity and 

specifically designed to run the repeating task in background. So, in order to achieve low-power 

purpose, we employed Service to collect data continuously in background instead of keeping screen 

ON. It is also important to note that we employed another Service to classify the collected data  

continuously (as shown in Figure 5). The two Services mainly involved two Android API components: 

BroadcastUpdate and BroadcastReceiver. By using the two components, the smartphone just needs to 

burst out the collected data when data is ready and then powering back down again. This not only can 

reduce power consumption, but also can release the workload of core processor. 

 

Figure 5. The working flowchart of smartphone which consists of two Activities (User 

interfaces) and Services (The functions running in background). 

The SVM binary classification model is embedded in the smartphone. This model was well trained 

on a PC first using MATLAB version R2012a. After that, the parameters of the well-trained SVM 

model were hardcoded in text-file format and stored on the Secure Digital (SD) card memory of the 

smartphone. Meanwhile, the LibSVM library was embedded into the smartphone. Finally, the 

smartphone can call library functions such as svm.svm_load_model and svm.svm_predict to run SVM 

in real-time. 
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3. System Evaluation Design and Materials 

The feasibility of the proposed DDD system is tested in four aspects. First, we test the EEG signal 

quality from the dry electrodes used. Then, before applying to SVM classifier, the extracted EEG and 

gyroscope features from a simulated driving experiment will be analyzed and compared between alert 

and slightly drowsy group using ROCarea. ROCarea is the area under the receiver operating  

characteristic (ROC) curve and reference line (as shown in Figure 5c), which is an effective measure of 

the class-discrimination capability of a specific feature [13,40]. Its value can be any value from 0.5 to 1. 

A value of 0.5 implies that the features are completely overlapped and thus non-separable; while a 

value of 1 implies that the features are completely separable. The ROC analysis was implemented on 

IBM SPSS Statistics software (IBM, Armonk, NY, USA), where the features need to be analyzed 

(“Test variable” in SPSS) are Per(θ), Per(β) and Per(α). The “State variable” is ground-truth-based 

label (alert and slightly drowsy). Next, the detection accuracy of the proposed system will be evaluated. 

Finally, the system real-time performance including the system computational cost and power 

consumption will be investigated. The following part introduces in detail the simulated driving experiment. 

According to our previous experiences [12,13], one-hour monotonous driving after lunch (typically 

around 1:00–2:30 pm) results in drowsiness in a majority of subjects. Therefore, to evaluate the 

proposed system, six subjects, possessing valid driver’s licenses, participated in the one-hour 

monotonous driving simulation experiment. The driving simulation environment consisted of a 

commercial truck driving simulator (Euro Truck Simulator 2), a Logitech® steering wheel, acceleration 

and brake pedals. During experiment, the participants drove the virtual truck with a few road 

simulators on the highways and experienced various realistic cognitive loads, such as keeping or 

changing lanes to avoid collisions, turning on windshield wiper when driving in rainy conditions, and 

early deceleration before red lights. On the day of the experiment, subjects were prohibited from 

drinking tea or consuming anything containing caffeine. Moreover, consumption of soporific 

medicines, such as standard cold medications, was prohibited. Before the experiment, each subject was 

given ten minutes to familiarize himself/herself with the operation of the driving simulator. For 

labeling the true alert and slightly drowsy events, Wierwille scale was used. Wierwille scale is a 

widely-used video-based DDD ground truth [23], which can classify the driving status into slightly 

drowsy driving according to following indicators: (1) increase in duration of eye blinks; (2) possible 

increase in rate of eye blinks; (3) increase in duration and frequency of sideway glances;  

(4) appearance of “glazed-eye” look; (5) appearance of abrupt irregular movements—rubbing 

face/eyes, moving restlessly on the chair; (6) Abnormally large body movements following drowsiness 

episodes; (7) occasional yawning. We can see clearly that indicator (5)–(7) can directly cause  

head-movements and thus can be easily captured by gyroscope sensor. 

4. System Evaluation Results 

4.1. EEG Signal Quality Test 

The test of EEG signal quality can be divided into two separate phases: (1) Getting EEG signals 

from dry electrodes; (2) Getting EEG signals from wet electrodes. Both phases were based on the same 

SIU and SPU and the same positions (O1 & O2). One subject was instructed to close his eyes for five 
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seconds. What we expected to be common between these two sessions was the appearance of obvious 

α rhythmicity in time domain and the largest power percentage for α band in frequency domain. What 

exactly we observed is shown in Figure 6, which is just consistent with our expectation. 

 

Figure 6. Comparison of EEG signals (line chart) and band power (pie chart) between wet 

electrodes (the top) and dry electrodes (the bottom). For the line chart, X-axis indicates the 

time (second). Y-axis indicates the amplitude of the digitalized EEG samples which are 

already filtered by the digital band-pass filter (4–30 Hz) in SPU. For the pie chart, the  

X-axis indicates the frequency ranged from 0–64 Hz (half of the sampling rate 128 Hz).  

Y-axis indicates the magnitude of FFT power. 

4.2. Feature Analysis 

In total, 266 labeled feature sets containing 68 alert feature sets and 198 slightly drowsy feature sets 

were collected through this one-hour driving experiment from six subjects. The labeled drowsy events 

also included moderately drowsy events, significantly events and extremely drowsy events (a total of 

94 events). However, the focus of this study is to build a binary classification model (alert events vs. 

slightly drowsy events) with an aim to enable the early-detection of driver drowsiness, so the analysis 

of mid- or late-stage drowsiness analysis are excluded in this study. 

Each feature set consists of four extracted features: RBP (θ), RBP (α), RBP (β) and MP. The  

Box-Whiskers plots (Figure 7a,b) show that the median values for EEG features RBP (θ), RBP (α), 

RBP (β) and Gyroscope feature MP are 18.2%, 37.9%, 38.6% and 74.1 for alert group and 14.5%, 

42.6%, 37.9% and 168.7 for slightly drowsy group. The trend of EEG features is consistent with 

previous EEG conclusion [12,17,19], that is, when a driver passes from the alert to the drowsy stage,  

β power decreases and α power increases and becomes abundant. However, ROC analysis (Figure 7c) 

shows that the EEG features are not clearly separable with ROCarea = 0.760 for RBP (θ), ROCarea = 0.628 

for RBP (α) and ROCarea = 0.550 for RBP (β); while gyroscope feature MP shows an outstanding  

class-discrimination capability with ROCarea = 0.967. To explain this further, the EEG features and MP 

features of one representative subject that were extracted from yawing movement (the most frequent 

slightly drowsy symptom during driving experiment if compared to rubbing eyes movements and 

moving restlessly movements) are shown in Figure 8, where we can see clearly that the MP has a 

significant increase when this subject was yawning, while his α power decreased and β power 

increased during this period, which is just contrary to previous conclusions. This phenomenon is 
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expected since the intermittent head-movements that are caused by slightly drowsy symptoms lead to 

poor contact between the dry electrodes and scalp. This results in artifacts and friction noise for EEG 

signals [41], but it is useful contextual information for DDD that can be easily captured by the 

gyroscope sensor. 

  

(a) (b) 

 

(c) 

Figure 7. Box-Whiskers plots of (a) EEG and (b) gyroscope features. The boxes have 

three lines to present the values for first quartile (the bottom), median, and third quartile 

(the top) for column data. The length between the first quartile (Q1) and the third quartile 

(Q3) is called interquartile range (IQR). Two addition lines at both ends of the whisker 

indicate the Q1 − 1.5 × IQR and Q3 + 1.5 × IQR value of a column data. Any data not 

included between the whiskers is plotted as outliers represented by “o” for mild outliers 

and “*” for extreme outliers. The number next to the outlier is the number of the data in 

that column, called case number; (c) ROC curve showing sensitivity (possibility of true 

drowsy event) and 1-specificity (possibility of false drowsy event) for extracted EEG and 

gyroscope features. 
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Figure 8. The typical slightly drowsy symptom, yawning, captured by video as well as 

EEG and gyroscope from a representative subject. The blue line charts represent EEG raw 

signals, X-axis, Y-axis and Z-axis signal of the gyroscope, respectively. The two bars on the 

right side of the line charts represent the EEG RBP features (the top) and the gyroscope 

MP features (the bottom). 

4.3. Detection Accuracy 

Letting negative label “−1” and positive label “+1” represent alert class and slightly drowsy class 

respectively, the LOO binary classification using EEG features alone, MP alone and the hybrid 

features was done. The results are summarized in Table 1, where Accuracy (Acc), sensitivity (Sens), 

and specificity (Spec) are calculated as shown in Equation 5, where TP is true positive, TN is true 

negative, FP is false positive, and FN is false negative. Therefore the Sens means how well this 

classifier can recognize the driver who is in the slightly drowsy status, while the Spec means how well 

this classifier can recognize the driver who is in alert status. 

FPTN

TN
ySpecificit

FNTP

TP
ySensitivit

FNFPTNTP

TNTP
Accuracy












 (5) 

Each Acc value in Table 1 has been optimized by using a search procedure with C and g = {0.01 ~ 10} 

in steps of 0.01. It is important to note that the performance of Linear-SVM using hybrid feature was 

better than RBF-SVM; while the performance of RBF-SVM using EEG feature alone and MP feature 

alone was better than Linear-SVM. The best Acc for EEG features alone was 82.71% using RBF 

kernel of C = 2 and g = 0.1. The best Acc for MP feature alone was 92.86% using RBF kernel of C = 1 

and g = 0.01. It is also important to observe that using EEG feature alone obtained a very low Spec  

(0% in Linear kernel and 45.59% in RBF kernel) indicating many alert events were misclassified to 
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slightly drowsy events. However, the result of using hybrid features enables in better differentiation 

between alert events and slightly events (Acc = 96.24%, Sens = 96.46%, Spec = 95.59%) by providing 

better contextual information. This indicates the advantage of the proposed approach. 

Table 1. Results of the leave-one-out (LOO) cross-validation experiments using EEG 

feature sets alone, gyroscope feature alone and the hybrid feature. 

Kernel 

EEG Features  

(RBP (θ), RBP (α), RBP (β)) 

Gyroscope Feature  

MP 

Hybrid Features  

(RBP (θ), RBP (α), RBP (β), MP) 

Sens Spec Acc Sens Spec Acc Sens Spec Acc 

Linear 
100 0 74.43 96.46 63.24 87.96 96.46 95.59 96.24 

C = 0.01 C = 0.01 C = 2 

RBF 

95.45 45.59 82.71 93.43 91.18 92.86 96.46 91.18 95.11 

C = 2 C = 1 C = 5 

g = 0.1 g = 0.01 g = 0.01 

4.4. Real-Time Performance 

Our proposed system includes a 32-bit MCU and a commercial smartphone for on-line feature 

extraction and classification, respectively. Therefore, for real-life application, the computational cost 

of the proposed feature extraction approach and drowsiness level prediction model is also investigated. 

First, we programed the MCU to print out the system time before and after running FFT via serial port 

terminal. We found that the time difference can be ignorable at millisecond level. Similarly, for the 

smartphone, we used the debugging tool Logcat in the Android developing SDK (Android Studio beta 

ver 0.8.6) and let Logcat print out the system time before and after running SVM and 4-ms time delay 

is found. Also, as can be seen in Table 2, the power consumption and estimated battery life of the 

developed headset for remote feature extraction (where both EEG and gyroscope feature extraction are 

performed remotely (in smartphone)) is compared to that with local processing (where both EEG  

and gyroscope feature extraction is performed directly on the MCU chip of headset). In addition,  

the power consumption using BLE module is compared to that using conventional  

Bluetooth v2.0 EDR+ module [42]. We can see clearly that five-hour and three-hour battery life was 

extended for BLE and Bluetooth v2.0 EDR+ based system, respectively, by using local processing 

method. To demonstrate the mobile platform for on-line analysis, the screenshot of the smartphone 

application which is using remote feature extraction is shown in Figure 9. 

Table 2. Results of the headset battery life comparison of remote and local feature extraction. 

Condition 
Feature Extraction 

Approach 

Power Consumption 

(mA) 

Battery Life 

(h) 

Power supply 3.6 V 

Battery capacity: 2600 mA·h 

Sampling rate: 128 Hz 

ADC resolution: 12 bits 

Bluetooth (slave) : Active 

Baud-rate: 115,200 bps 

BLE 
Remote 63 41 

On chip 56 46 

Bluetooth 

v2.0 

EDR+ 

Remote 82 32 

On chip 75 35 
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Figure 9. Screenshot of the Android smartphone application that shows the EEG and 

gyroscope features, the estimation of the driving status, and the raw data of EEG and  

3-axis gyroscope. 

5. Discussion 

5.1. Principle Results 

A new approach for classification of driver drowsiness is proposed in this study. We use gyroscope 

to measure the intensity of the head movement and detect driver drowsiness with EEG signal together. 

Gyroscope features are used and compared with FFT-based EEG features. According to previous 

studies, it is clear that FFT-based features are effective in detecting driver drowsiness from EEG. 

However, in this study, when it comes to the stage of classification of early drowsiness, the 

information provided by EEG alone is proved to be insufficient. The information presented in the head 

movements (early drowsy symptoms) is lost. When taking gyroscope into consideration, it provides 

richer contextual information which is very useful in detecting early-stage drowsiness. This rich 

information representation is the reason for better detection accuracy of 96.24% using gyroscope and 

EEG features together against the accuracy of 82.71% using EEG alone and 92.86% using the 

gyroscope feature alone in this study. 

5.2. Comparison with Prior Work 

5.2.1. EEG versus Other Physiological Signals 

Heart rate variability (HRV) is the widely-used drowsiness indicator for ECG or Photoplethysmogram 

signals [13]. However, the minimum and regular time window for FFT-based HRV analysis is three 

minutes and five minutes, respectively [43], which is longer than the 1-min length of time window 

used in our study. Clearly, from the point view of timeliness, EEG signal is more suitable for DDD 

application as its detection result could be delivered to drivers as early as possible. The physiological 
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reasoning behind the shorter time window for EEG analysis should be its direct relationship to 

drowsiness. Even if more advanced pattern recognition techniques were used, the performance using 

EEG alone is still better than using other physiological signal alone (e.g., ECG, EOG) as long as under 

the same conditions (e.g., the same subjects, ground truth and experimental environment) [18]. 

5.2.2. Signal Processing Comparison 

To compare different techniques of EEG processing for drowsiness detection, three more recent 

research papers are used here. Unlike the FFT-based RBP features and SVM classifier used in our 

study, Garcés et al. [44] obtained accuracy of 83.6% for drowsiness detection and 87.4% for alertness 

detection by using artificial neural network and a wide range of EEG features including  

time-domain features (e.g., minimum, maximum and standard deviation (STD) of EEG amplitude), 

frequency-domain features (e.g., FFT-based central frequency, peak frequency and maximum 

frequency) and time-frequency-domain features (e.g., Wavelet-based zero-crossing rate and integrated 

EEG from each of the bands (θ to β)). A major drawback of this study is that they directly categorized 

driver drowsiness as the sleep Stage I when feedback might be already late. To detect drowsiness 

earlier, Melia et al. [45] conducted a study based on the MSLT and WMT standard as introduced in 

Section 1. They proposed two novel non-linear EEG features: auto-mutual information function and 

cross-mutual information function based features. Experimental results show that these non-linear 

features (ROCarea > 0.75) outperform traditional linear features (ROCarea < 0.75). However, one 

limitation for this study is that the subjects used were excessive daytime sleepiness patients instead of 

normal healthy persons indicating this method is not yet readily applicable to the general population of 

drivers. Similarly, Chen et al. [46] also used nonlinear features to detect drowsiness; however, they 

used long-term mental calculation to induce drowsiness rather than using a real-life environment (e.g., 

monotonous driving environment used in our study). 

5.2.3. Detection Accuracy Comparison 

To compare the detection accuracy with prior work, three EEG-based DDD studies that use the 

same ground truth Wierwille scale and also combine contextual information are carefully found from 

the numeric DDD studies. One of them recorded contextual information using motion sensor; while the 

remaining two studies recorded contextual information using physiological signals. Specifically, 

Pritchett et al. [47] also proposed an EEG-based context-aware solution for DDD. The main difference 

between the current system and that presented in [47] is that they recorded contextual information from 

the driver’s seat where a piezoelectric film sensor is attached rather than from the headset directly.  

In addition, unlike the SVM model used in our study, they used linear regression model to estimate the 

drowsiness level (dependent variable), in which a wide range of α burst parameters and body 

movement parameters were used as features (independent variables). Experimental results show that 

hybrid features (R2 = 0.308) outperform EEG features (R2 = 0.272), where R2 is the squared correlation 

coefficient, a commonly used method of estimating the performance of the proposed regression  

model [48]. If R2 is high (maximum value is 1), it can be claimed that the driver drowsiness level and 

the extracted features have a strong linear relationship and that the performance of the regression 

model is superior if compared to a low R2. Clearly, the performance of the regression model above is 
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poor. This is expected because regression models are good for estimating a continuous variable not the 

discrete labels here (5-level driver drowsiness). Khushaba et al. [18] extracted features using 

normalized logarithmic energy of the wavelet-packet coefficients from 5-channel physiological signals: 

3-ch EEG, 1-ch ECG and 1-ch EOG. Then, a fuzzy mutual information based method is used to select 

features. Finally, the kernel spectral regression based linear discrimination analysis model obtains an 

outstanding detection accuracy of 97% for 5-level classification including mid- or late-stage 

drowsiness classification. However, they did not mention the detection accuracy between alert events 

and slightly drowsy events which indicates the capability to early detect driver drowsiness. Also, 

Khushaba et al. [49] extracted time domain autoregressive features from the aforementioned 5-ch 

signals and then uncorrelated fuzzy neighborhood preserving analysis is used to select features. 

Finally, they can detect alert events and slightly drowsy events with 94% accuracy using RBF-SVM 

classifier. These pattern recognition techniques used above are more complicated than that used in the 

proposed method. However, they do not outperform our proposed method (94% vs. 96.24%). This 

result shows that the selection of signal source is still the most important part of designing the best 

detection models. In addition, compared with the two studies, this study has several advantages. First, 

we used dry electrodes instead of conventional wet electrodes, which show more realistic detection 

accuracy. Second, we used 4-ch signals (1-ch EEG + 3-ch gyroscope) instead of 5-ch physiological 

signals (3-ch EEG + 1-ch ECG + 1-ch EOG), which is less intrusive. Third, our proposed approach is 

evaluated on miniaturized and source-limited devices instead of laboratory-oriented devices, which 

show strong practical utility. 

5.3. Limitation 

This paper has been primarily focused on the design and implementation of an EEG headset with 

integrated gyroscope sensor with an aim to enable the early-detection of driver drowsiness. There are 

no arousing feedback methods (thus drivers’ attention cannot be boosted) in this study. However, this 

can be easily overcome by setting a warning signal, such as an auditory tone-burst [21,50,51]. 

6. Conclusions and Future Work 

The design and evaluation of a context-aware EEG headset system is described in this paper.  

The system uses a Bluetooth-enabled, EEG and gyroscope sensor-equipped headset and a machine 

learning model-enabled smartphone aimed to detect driver drowsiness at its early stage. This not only 

shifts DDD from being a reactive to a preventive driver safety technology, but also achieves a simple 

and inexpensive on-line analysis platform. Further studies considering an effective brainwave 

entrainment technology need to be performed in order to develop a real-time driver alertness boosting 

method. In addition, we are considering enhancing the wearability of the developed headset using 

more flexible 3D printer material. Also, an extensive field test needs to be established before applying 

the proposed system to a practical environment. 
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