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Abstract: Decision fusion in sensor networks enables sensors to improve classification 

accuracy while reducing the energy consumption and bandwidth demand for data 

transmission. In this paper, we focus on the decentralized multi-class classification fusion 

problem in wireless sensor networks (WSNs) and a new simple but effective decision 

fusion rule based on belief function theory is proposed. Unlike existing belief function 

based decision fusion schemes, the proposed approach is compatible with any type of 

classifier because the basic belief assignments (BBAs) of each sensor are constructed on 

the basis of the classifier’s training output confusion matrix and real-time observations. We 

also derive explicit global BBA in the fusion center under Dempster’s combinational rule, 

making the decision making operation in the fusion center greatly simplified. Also, sending 

the whole BBA structure to the fusion center is avoided. Experimental results demonstrate 

that the proposed fusion rule has better performance in fusion accuracy compared with the 

naïve Bayes rule and weighted majority voting rule. 

Keywords: decision fusion; distributed classification fusion; belief function; evidence 

theory; wireless sensor networks 
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1. Introduction 

In wireless sensor detection and classification applications, decision fusion has attracted great 

interests for its advantages in combining the individual decisions into a unified one without sending 

raw data to the fusion center [1]. It provides a flexible solution for improving the classification accuracy 

without considering the classifiers used in local sensors [2]. Besides, the data transmission amount is 

greatly decreased, thus energy consumption and bandwidth demand are significantly reduced [3,4]. Yet 

decision fusion has been proven valuable in both civilian [5] and military [6] applications for its advantages 

in survivability, communication bandwidth, and reliability considerations. 

Target classification is a common problem in applications of sensor networks. In decentralized 

target classification systems with decision fusion, each sensor independently conducts classification 

operation and uploads its local decision to the fusion center, which combines these decisions into a 

global one. Compared with target classification with a single sensor, multiple sensor decision fusion 

has better performance in classification accuracy, anti-noise, and reliability [7]. 

Fundamentally, multiclass decision fusion in WSNs is a problem of combining the ensemble 

decisions of several different classification systems. Existing methodologies can be concluded into two 

categories: hard decision (HD) fusion [8] and soft decision (SD) fusion [9]. In HD schemes, each 

sensor sends their hard decisions to fusion center, i.e., clearly declare which class the target belongs to. 

The fusion center makes a decision according to some fusion rules, like counting rules [10], weighted  

sum [11], Neyman–Pearson criterion [12], or the max-log fusion [13]. The typical fusion HD scheme 

is the majority voting rule [14], though it has great advantage in easy implementation, the low fusion 

accuracy decreases it practicability. In SD schemes, local decisions are usually represented by values 

between 0 and 1 and the fusion operation is always conducted based on some decision fusion theories, 

including Bayesian fusion [15], Fuzzy logic [16] and belief function theory [17]. Except the above 

mentioned fusion schemes, many other centralized fusion approaches have been proposed, such as 

Decision Template [18], Bagging [19], and Boosting [20]. Some centralized fusion approaches, like 

Bagging and Boosting, have been proven to always perform better than other decentralized classifier 

ensemble approaches. However, centralized fusion approaches require sensor nodes to send raw data to 

the fusion center, a way consumes two much energy in data transmission, thus it is not applicable in 

decentralized target classification scenario in WSNs.  

Another promising way to improve fusion performance is designing decision fusion schemes with 

Multiple-Input Multiple-Output (MIMO) technique, which enables sensors to transmit data to the  

fusion center via multiple access channels [21,22]. Benefit from the diversity gain in the fusion center,  

these MIMO based fusion schemes have been proven to have much better performance in sensing  

performance [23,24], anti-fading [25–27], bandwidth demand [28], and energy efficiency [29–31]. 

Even so, in MIMO based schemes, fundamental fusion rules underlying the decision fusion operation still 

play a central role in determining the overall sensing performance in the fusion center. Moreover, decision 

fusion in WSNs are usually designed based on wireless signal detection and transmission models [32–35], 

thus they may not be compatible with the multiclass classifier decision fusion problems.  

As such, in this paper, we aim to design a decentralized decision fusion rule to improve overall 

classification performance while uploading data as little as possible. We focus on using belief function 

theory to address the decentralized decision fusion problem in WSNs with ideal error-free reporting 
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channels. The belief function theory, also known as the Dempster-Shafer (DS) evidence theory, 

provides a flexible solution dealing with multisource information fusion problems, especially problems 

with uncertainty [36]. However, existing belief function based approaches have the two following 

disadvantages in practical applications:  

(1) Poor compatibility with other classifiers. Different classification algorithms have their own 

advantages. It is hard to say which one is the best choice for a specific task, thus different classifiers 

may be used in different sensors, especially in heterogeneous WSNs. However, the prerequisite of 

applying belief function to addressing the information fusion problem is constructing rational basic 

belief assignments (BBAs), which are always constructed by specifically designed mass constructing 

algorithms, but have no business with other classification algorithms.  

(2) Complex combination operation and energy inefficiency. The BBA combination operation is the 

key capacity enabling belief function theory dealing with fusion problems. However, the complex 

BBA combination operation requires each sensor node to upload the whole BBA structure to the fusion 

center, a way that consumes higher energy in data transmission than other fusion schemes, especially 

compared with HD fusion schemes. Moreover, the complex computation of combination operation 

adds the burden in system overhead to sensors and fusion center.  

In conclusion, the main contributions include the following three aspects: 

(1) A BBA construction algorithm based on the training output confusion matrix and decision 

reliability is proposed. The proposed mass construction algorithm has a strong compatibility without 

considering the classifiers used in the classification process. Compared with the probability-only based 

fusion schemes, the proposed approach is more reasonable because the constructed BBAs are adjusted 

by real-time observations. 

(2) A new decision fusion rule based on belief function theory is proposed. By using Dempster’s 

combinational rule, we derive the explicit expression of the unified BBA in fusion center, and then a 

new simple fusion rule is derived. As a result, the complex BBA combination operation is avoided. 

Also, energy consumption for data transmission is reduced because there is no need to upload the 

whole BBA structure to fusion center. 

(3) We test the proposed fusion rule with both a randomly generated dataset and a vehicle 

classification dataset. Experimental results show the proposed rule outperforms the weighted majority 

voting and naïve Bayes fusion rules. 

The remainder of this paper is organized as follows: Section 2 gives a brief introduction of 

preliminaries of belief function theory. The proposed belief function based decision fusion approach is 

presented in Section 3. Section 4 provides the experimental results along with the analysis. Finally 

Section 5 concludes this paper. 

2. Basics of Belief Function Theory 

Belief function, also known the Dempster-Shafer evidence theory, provides a flexible framework for 

dealing with data fusion problems [37]. In general, the belief function based decision fusion 

framework mainly includes two phases: mass construction and BBA combination.  
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2.1. Mass Construction 

In belief function, the frame of discernment is defined as a finite non-empty set and it is mutually 

exclusive and exhaustive. Let Ω = { ,⋯ , } be the frame of discernment and its corresponding power 

set is		2 . The mass function of 2  is a function m: 2 → [0,1] and it satisfies the following condition 

2

( ) 1   and   ( ) 0
A

m A m
Ω⊂

= ∅ =  (1)

where A is a subset of 2  and ( ) is called the basic belief assignment (BBA) representing the 

credible degree of subset A. There are two measures that characterize the credibility of hypothesis A, 

which are given by 

( ) ( )
i

i
A A

Bel A m A
⊂
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i
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= 
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Quantity ( ) can be interpreted as the support degree of hypothesis A of the evidence, while 

quantity ( ) can be interpreted as the degree not contradictory to A for the evidence. It is apparent 

that 		 ( ) ≤ ( ) . In general, there are no unified frameworks or paradigms for mass 

construction. Any functions or algorithms transferring the observations into rational BBAs satisfying 

Equations 1–3 can be used as the BBA construction methods. 

2.2. BBA Combination 

One of the advantages of belief function being widely used in data fusion applications relies on its 

combinational rule enables to combine several independent BBAs into a unified one. Let ⨁ denotes 

the combination operator, for M independent BBAs, the combined BBA is 		 = ⨁ . According 

to Dempster’s combinational rule, the unified BBA of hypothesis A is calculated by [38] 
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and it is called the conflict of the M BBAs. It also can be regarded as a normalization factor in  

Equation (4). If the conflict  is approximated to 1, it indicates that a high conflict degree exists among 

the combining BBAs, and the fusion results may be unreliable in practice. Therefore, the mass 

construction method must avoid the situations that high conflicts exist among the obtained BBAs. With 

the obtained unified BBA, the final decision can be made by choosing the class label with maximum 

pignistic probability, which is calculated by [39] 

( )
( )

| |
iA A i

m A
BetP A
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3. Belief Function Based Multi-Class Decision Fusion 

3.1. System Model 

The system model is depicted in Figure 1. Suppose there is a distributed sensor network with  = { ,⋯ , } sensors. All sensors are assumed to be mutually independent and they can use any 

classifiers for the classification task. For a target with Θ = { ,⋯ , } possible classes (labels), the n 

sensors conduct local classification operations according to their own observations = { ,⋯ , }, 
and we set the corresponding hard decisions are = { ,⋯ , }, in which ⊂ Θ	(1 ≤ ≤ ). Also, 

we define the reliability degrees of the decisions as = { ,⋯ , }, which can be computed according 

to the corresponding real-time observations = { ,⋯ , }. With the received hard decisions and 

reliability degrees, the fusion center then conducts the decision fusion operation with the proposed 

fusion rule. At last, the final decision is made by choosing the class (label) with the maximum BBA. 

Note that the decision fusion operation in the fusion center is conducted according to a simple fusion 

rule induced by the belief function theory, thus the complex BBA construction and BBA combination 

operations are avoided. In the following subsections, the detailed local classification, reliability 

evaluation, and decision fusion processes will be provided. 
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,n nu r

Classify and 
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Figure 1. System model of the proposed decision fusion approach. 

3.2. Classification and Reliability Evaluation 

In local sensors, the classification process can be made by any appropriate recognition algorithms. 

For a multi-class pattern recognition problem, we assume that all the local classifiers are well trained 

and the training output confusion matrices are previously known to the fusion center, i.e., the fusion 

center maintains a confusion matrix for each sensor. We don’t consider the details of its classification 

operation, such as signal segmentation, feature extraction, and classification algorithm. For sensor (1 ≤ ≤ ), when given a new observation, it conducts the classification operation and makes it 

local decision . For decision , we define  as its corresponding reliability degree. In this paper, we 

propose a distance based algorithm to calculate the reliability degree for each local decision. 

The best way to calculate the reliability of a classifier’s output is designing a specific algorithm 

measuring the similarity of the output before the final decision is made [40]. For example, if we want 

to know the reliability of a local decision when the classifier is an artificial neural network (ANN), the 

output before decision making in the output layer can be used as the basis for reliability evaluation.  
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For another example, when using k-NN classifier for classification, the distance between the object and 

k nearest neighbors in sample set of each class label can be exploited to measure the reliability.  

Herein in this paper we also provide a more general method to evaluate the reliability degree for 

each local decision. The method follows the basic assumption that, when the object to be classified has 

a smaller distance to the sample set of a class label, then the decision result is more reliable. On the 

contrary, when the distance is large, the reliability is low. This distance can be computed by any 

appropriate distance definitions, such as Euclidean distance, Mahalanobis distance, Hamming distance, 

and the like. Also, the chosen samples for distance calculation can be the whole sample set, or the k 

nearest neighbors to the object. Usually, the distance definition is Euclidean distance and the chosen 

samples are one to five nearest neighbors to the object. 

For a sensor , denote its training set as = ( ), ,⋯ , ( ), , where ( )(1 ≤ ≤ ) is a 

N-dimensional vector containing N data samples. Given a new observation , the distance to each 
sample set can be calculated and we denote ,  as the distance between  and sample set . Let the 

local decision = (1 ≤ ≤ )  and its corresponding distance is , , we define the relative 
distance ∇ ,  as 

,
,

,

,1 ,i j
i j

i k

d
d j c j k

d
∇ = ≤ ≤ ≠  (7)

If the relative distance ,  is large, it means that we have sufficient confidence to confirm that  is 

not the class label of the target. On the contrary, if ,  is small, the possibility that  is class label will 

be large. By using an exponential function, the distance can be transferred into BBAs [41]. Also, we 

use an exponential function to map distance into reliability. Similar to the transferring function  

in [41], we define the reliability measurement of decision  as 

( )( ){ }2
,

1 ,
min 1 expi i j
j c j k

r dλ β
≤ ≤ ≠

= − − ∇  (8)

where  and  are positive constants and they are associated to the relative distance. Together with the 

local decision , obtained reliability measurement  will be uploaded to the fusion center. In the 

fusion center, the received pattern ( , ) will be used as the basis for the global decision making. In 

next subsection, we will elaborate the detailed derivation of the proposed decision fusion rule, 

including BBA construction, BBA combination and decision making, as illustrated in Figure 2. 
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Figure 2. Derivation process of the proposed approach, in which  ⨁ denotes the Dempster 

BBA combination operation, (1 ≤ ≤ ) is the constructed BBA of sensor ,  is the 

global BBA of all sensors. 
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3.3. BBA Construction 

Reasonable BBAs are the prerequisite when applying belief function to address data fusion 

problems. With the received patterns = {( , ),⋯ , ( , )}  from sensors, a set of probability 

vectors can be obtained from the corresponding confusion matrix of sensor . For decision , we 

have the probability vector = { ( | ), ⋯ , ( | )}, in which ( | )	(1 ≤ , ≤ ) is 

the conditional probability of class label  when the local decision is . Although belief and 

probability are two different concepts, but one thing is certain that, a larger probability will be 

accompanied by a larger belief. In the contrary, a smaller belief value corresponds to smaller 

probability value. This distinct evidence can be postulated to transfer each probability ( | ) into a 
BBA , ( | ) over the frame of discernment Θ = { ,⋯ , }, as given by 

( ) ( ), | |i k i k i i i km u r p uω ω=  (9)

for the compound class Θ, we define its BBA as 

( ) ( ), | 1 |i k i i i i km u r p u ωΘ = −  (10)

thus for any other classes A ⊂ 2 \{ , Θ}, their BBAs equal to 0, that is 

( ), | 0, 2 \{ , }i k i km u A A ωΘ= ∀ ⊂ Θ  (11)

With the obtained BBAs { , , ⋯ , }, the BBA  with respect to  can be calculated by 

( ) ( )1 ,| |c
i i k k i k i km u m uω ω== ⊕  (12)

where ⨁ denotes the BBA combination operation. For convenience, we denote ( | ) as ,  for 

short. Note that the value of ∑ ,  always not equals to 1, i.e., for a decision, the sum of probability 

of detection and probability of false alarm does not equal 1. According to Dempster’s combinational 

rule, the explicit expression of  is given by 
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where  designates the conflict degree of BBAs { , , ⋯ , }, and it equals to 
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,

1 1,
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Combined with Equations (11) and (12), we have the following relationship between BBA ( ) 
and (Θ) 

( ) ( ),

,1
i i k

i k i
i i k

r p
m m

r p
ω = Θ

−
 (16)
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3.4. BBA Combination 

After the BBA construction process, we obtained BBAs = { ,⋯ , } . The next step is 

combining these BBAs into a unified one. We assume that all BBAs in  are mutually independent, 
given two BBAs (1 ≤ ≤ ) and (1 ≤ ≤ ), for class label ⊂ Θ, we have 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )

,,

, , ,

,,

, ,

, , ,

1

1 1 1

                     
1 1

1 1
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i j i i k j i k

r pr p
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r p r p
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m m
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ω
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κ


⊕ = Θ Θ− − −


+ Θ Θ + Θ Θ − − 

 
 = − Θ Θ
 − − − 

 (17)

For compound class Θ, we have 

( ) ( ) ( )
,

1

1i j i j
i j

m m m m
κ

⊕ Θ = Θ Θ
−

 (18)

Equations (17) and (18) indicate that, when given n BBAs, the combined result follows a certain 

rule. Thus we have reasons to assume that the unified combination result in the fusion center is 

( )1 1,

1 1
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n n
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i ii i k

m m
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κ = =

 
 = − Θ
 − − 
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Proof: The above proposition can be proved via mathematical proof of induction. Apparently, given 

n+1 sensors, we have 
1

1

1
( ) ( )

1

n

i
i
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κ

+

=

Θ = Θ
− ∏  (21)

Then we just have to prove Equation (19) is true for any sensor number. Assume that Equation (17) 

is true with n sensors, when sensor number is n + 1, we have 
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 (22)

Consequently, we have proved that equation is true with any sensor number. 

3.5. Decision Making 

In the above subsection, we have derived the explicit expression of the unified BBA in the fusion 

center, as given in Equations (19) and (20). The final decision can be made by choosing the label with 

maximum belief assignment, as given by 
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Actually, there is no need to consider the conflict degree  because it is the same for all class labels, 

thus the above decision rule can be simply expressed as 

( ) ( ), ,1 1
1 1

arg min 1 arg min |
n n

d i i k i k ik c k c
i i

r p m uω
≤ ≤ ≤ ≤

= =

   = − = Θ   
   
∏ ∏  (24)

Also, the above decision making rule is equivalent to  

( ),1
1

arg min log 1
n

d i i kk c
i

r pω
≤ ≤ =

 = − 
 
  (25)

With the above decision making rule, the complex BBA combination operation is avoided, thus the 

system overhead is reduced. The pseudocode of the proposed approach is shown in the Algorithm 1. 

Note that the classification performance, i.e., the training confusion matrix of each local sensor is 

default known to the fusion center. This may be realized by sending the confusion matrix to fusion 

after the training process. Another way is that the classifiers and sample data can be previously trained 

in the fusion center before they are embedded into the sensors, thus the classification performances of 

the sensors are also known to the fusion center. 

Algorithms 1 Belief function based decentralized classification fusion for WSN 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

event target is detected by n sensors do 

for each observation (1 ≤ ≤ ) is received by sensor  do 

classify the object and obtain local decision  

          calculate local reliability measurement  by (8)  

          send pattern ( , ) to fusion center 

    end for each 

end event 

 

event fusion center receives uploading from sensors do 

  for each received pattern ( , ) do 
find the probability vector = { , ,⋯ , , } 

  end for each 
  make final decision ← arg min {∏ (1 − , )} 
end event 

4. Experimental Results  

In experimental section, two experiments will be conducted. The first one is used to evaluate the 

fusion performance by using a randomly generated dataset, whose sensor number and the sensors’ 

classification accuracies can be artificially changed. Therefore, the performance comparison results 

can be provided with changing sensor number or sensor accuracy. The next one is testing the 

performance of the proposed fusion approach by using the sensit vehicle classification dataset [42]. In 

the two experiments, all sensor nodes are all assumed to be equipped with sufficient computational 
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capacity to underlay the local classification and reliability evaluation operation. We assume that the 

reporting channel is ideally an error-free channel. Also, we don’t consider how to quantify the 

reliability degree when it is transmitted to the fusion center. Thus the information of each sensor will 

be sent to the fusion center without distortion. 

Considering the computation complexity, the following two easy implementing algorithms are used 

as the local classifiers: k-nearest neighbors (k-NN) algorithm and extreme learning machine (ELM) 

neural network. The detailed introduction of k-NN and ELM algorithms can be found in [43,44], 

respectively. For performance comparison, the following two conventional decision fusion approaches 

will be used. 

Naïve Bayes: the naïve Bayes fusion method assumes that all decisions are mutually independent. In 

binary fusion systems, this fusion method is regarded as the optimal fusion rule. In a fusion system 
with M sensors, denote ,  as the probability of label k corresponding to decision , the fusion 

decision is made by choosing the label with maximum fusion statistic, as given by 

,
1

1

arg max
n

d i k
k c

i

l p
≤ ≤ =

 =  
 
∏  (26)

Weighted majority voting: denote , (1 ≤ ≤ , 1 ≤ ≤ ) as the decision on label  of sensor . 
When the target belongs to , we have , = 1  and 	  , = 0		(1 ≤ ≤ , ≠ ) . In weighted 

majority voting, decision ,  is weighted by an adjusting coefficient , and the decision is made by  

,
1

1

arg max
n

d i i k
k c

i

l b u
≤ ≤ =

 =  
 
  (27)

weight  can be calculated by 

log
1

i
i

i

p
b

p

 
∝  − 

 (28)

where  is the classification accuracy of sensor . Apparently, a sensor with higher accuracy will be 

assigned a larger weight. Always, this rule performs better than the simple majority voting rule. 

4.1. Experiment on Randomly Generated Dataset 

In this test, our goal is to evaluate the performance variation of the three fusion approaches with 

different sensor numbers or local classification accuracies. Since the local classification accuracies of 

datasets in reality are fixed, the randomly generated the dataset must be used if we want to evaluate the 

performance with changing sensor classification accuracies. In this test, we randomly generated the 

dataset by using Gaussian random number generation function. The target class label number is fixed 

as five, each sample data is assumed to have two randomly generated attributes following different 

Gaussian distributions.  

As shown in Table 1, α  is a coefficient changing the standard deviations of the sensor data 

attributes. For example, the two attributes of class label  follow the two Gaussian probability density 

functions (pdf): (30,4α)  and (10,4α) , respectively. Apparently, coefficient α  determines the 

sensor classification accuracies, i.e., a larger α brings lower classification accuracy. Figure 3 gives an 

example depiction of the randomly generated sample data.  
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Table 1. Data generation parameters. 

Label  
 10 10 5α 
 20 10 3α 
 30 10 4α
 25 20 3α 
 10 20 5α 

 

Figure 3. Example of a randomly generated dataset, each class label has 100 samples and 

the coefficient α equals to 1. 

Since the dataset is randomly generated each time, we repeat it i20 times to obtain the average 

classification accuracy. In each repetition, to know the posterior probabilities of the training process, 

1500 samples and 500 samples are respectively generated as the training data set and validation data 

set, in which each class label has the same sample number, i.e. each of them has 300 train samples and 

100 valid samples. After training process, the classifier used in each sensor is also obtained. 

Subsequently, 1000 samples are randomly generated as new observations. In these new observations, 

the class label of each observation is randomly selected, thus the number of each class label is 

approximated to 200. Next we classify the new observations by using the classifiers obtained in the 

training process. At the same time, the reliability degree of each decision is calculated by using 

Expression (8). Next, the local decisions and their corresponding reliability degrees are uploaded to 

fusion center and the final decision is finally made according to Equation (23). 

As aforementioned, the following two classifiers are used for classification in sensors: k-NN and 

ELM neural network. If there are no specific instructions, the k nearest neighbors used in k-NN is 3. In 

the reliability evaluation process, the nearest neighbor number used for calculating distances is also 

fixed as 3. The number of hidden neurons in ELM is 50 and the activation function is “radbas” 

function. For the weighted majority voting rule, the weight of each decision is calculated by = log	( ). In Expression (8), parameter  is fixed as 1.5, and parameter  corresponding ith 

decision  is calculated by 
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i j
j

p
λ
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=  (29)

The following three approaches are used for performance comparison: the proposed belief function 

fusion approach, naïve Bayes fusion, and majority voting fusion. Define classification accuracy as the 

total number of correct classifications over the number of trials. The classification accuracy results 

with changing α values are shown in Figure 4. The used classifiers in Figure 4a and Figure 4b are  

k-NN and ELM neural network, respectively. The sensor number is fixed as 5. In Figure 4a, when the 

value of coefficient α increases from 0.6 to 2.5, the average classification accuracies of the local 

sensors decrease from 0.97 to 0.4, along with the decreasing of the classification accuracies of fusion 

results. In Figure 4b, the average sensor classification accuracies and final fusion accuracies also 

decrease with the increasing of α value. We can find that the classification of the ELM neural network 

is usually lower than the k-NN classifier, especially when α is smaller than 1.4, thus obviously the 

classification accuracies of the three approaches when using ELM classifier are lower than the fusion 

accuracies of k-NN classifier. Apparently, we can observe that the proposed belief function based 

fusion approach always outperforms the naïve Bayes fusion and weighted majority voting fusion 

approaches, especially for the classifiers with lower classification performances. 

(a) (b) 

Figure 4. Average classification accuracy (plus and minus one standard deviation) as a 

function of α values, obtained by 20 repetitions. The sensor number is fixed as M = 5 and 

the used classifiers in subplots (a,b) are k-NN and ELM neural network, respectively. 

The performance comparison results with changing sensor numbers are plotted in Figure 5. In this 

test, the value of coefficient α is fixed as 1.5. The results also show that the proposed approach always 

outperforms than the other two approaches with changing sensor numbers. The accuracy improvement 

is more significant when sensor number is less than 7.  

The proposed fusion approach has a very similar form to the naïve Bayes fusion rule, but they have 

distinct difference in fusion accuracies. As shown in Figures 4 and 5, when the decision reliability in 

each sensor is fixed as 1, the classification accuracies of the fusion results are always lower than the 
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other two approaches. This result indicates that the reliability evaluation method is the key factor 

influencing the fusion results’ classification accuracies of the proposed rule.  

(a) (b) 

Figure 5. Average classification accuracy (plus and minus one standard deviation) as a 

function of sensor number, obtained by 20 repetitions.  The value of coefficient α is fixed as 

1.5 and the used classifiers in subplots (a,b) are k-NN and ELM neural network, respectively. 

(a) (b) 

Figure 6. Image plot of extract features. Subplots (a,b) are features extracted from acoustic 

signals and seismic signals, respectively. The vehicle type is AAV and each of the subplots 

has 297 features. 

4.2. Experiment on Vehicle Classification 

In this test, we use the sensit vehicle classification dataset collected in real application, in which the 

wireless distributed sensor networks are used for vehicle surveillance. There are 23 sensors deployed 

in total along the road side listening for passing vehicle. When vehicles are detected, the captured 

signal of the target vehicle is recorded for acoustic, seismic, and infrared modalities. The signal 
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segmentation and feature extraction process can be found in [42]. In our test, 11 sensor nodes are 

selected for vehicle classification. The target vehicle may belong to the following two types: Assault 

Amphibian Vehicle (AAV) and DragonWagon (DW). Features extracted from the recorded acoustic 

and seismic signals are used for vehicle classification. Examples of the extracted features are shown in 

Figure 6. 

(a) (b) 

Figure 7. Classification accuracy as a function of sensor numbers. Classifiers used in 

subplots (a,b) are k-NN and ELM neural network, respectively. 

The experiment procedure is the same with the previous experiment, thus we don’t repeat it again. 

The difference is that, when the training samples are given, the classification accuracy of sensor nodes 

is fixed as a constant value. In this test, the “k” used in k-NN classifier and reliability calculation are all 

equal to 1. The two parameters  and  in Expression (8) are fixed as 1 and −0.5, respectively. The 

hidden neuron number of ELM neural network is 50 and the activation function is also the “radbas” 

function. The accuracy comparison of fusion results are provided in Figure 7. We can observe that the 

performance improving of the proposed approach for k-NN classifier is better than the ELM classifier. 

But the final fusion accuracy of ELM is higher than k-NN classifier when the sensor number is the 

same. Again, we easily conclude that the proposed approach has better performance in improving the 

fusion accuracy for distributed target classification applications.  

5. Conclusions 

In this paper we focus on the decentralized classification fusion problem in WSNs and a new simple 

but effective decision fusion rule based on belief function theory is proposed. We propose a distance 

based approach to evaluate the decision reliability of each sensor. Then the detailed derivation process 

of the proposed approach is illustrated, including BBA construction, BBA combination, and decision 

making. The experimental results demonstrate that the proposed fusion rule has better performance in 

fusion accuracy compared with the naïve Bayes fusion and weighted majority voting rules. Future 

study may include the following aspects: (1) finding better ways to calculate the decision reliability to 

improve the fusion accuracy; (2) designing specific solutions for classifier combination application, 
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such as neural networks; (3) applying the proposed rule in other multi-class fusion applications, like 

remote sensing, image fusion, and multi-symbol signal modulation. 
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