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Abstract: This article is focused on reviewing the current state-of-the-art of optical fibre
pressure sensors for medical applications. Optical fibres have inherent advantages due to
their small size, immunity to electromagnetic interferences and their suitability for remote
monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors,
together with being lightweight and flexible, mean that they are minimally invasive for many
medical applications and, thus, particularly suited to in vivo measurement. This means that
the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular
assessment. This paper presents an overview of the recent developments in optical
fibre-based pressure measurements with particular reference to these application areas.
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1. Introduction

The pressure in a living human body is influenced by internal (e.g., muscles, fluids) and external
(e.g., gravity, atmospheric) forces. The measurement of pressure and forces in vivo is a key asset in a
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range of biomedical applications, including cardiovascular and urologic diagnostic procedures, surgical
procedures and monitoring of invasive treatments [1].

The most popular devices currently used for medical pressure measurement are based on catheters
and guidewires. Air-charged catheters are low-cost and popular, particularly for urology applications [2].
Fluid-filled catheters represent a valuable alternative with a more stable response and are very popular
in urology [3,4] and cardiovascular [5,6] applications. The work of Cooper et al. [3] compared the
pressure response of air-charged and fluid-filled catheters. They demonstrated that air-charged catheters
act as an overdamped system, whereas water-filled catheters act as an underdamped system. Pressure
guidewires represent a modern alternative to catheters, having a smaller footprint and higher cost [7,8].
Guidewires and catheter pressure transducers are based on the principle of electro-mechanical pressure
transducers [9–11]. Often, the pressure-sensing device is integrated in a complex catheterization,
with multiple functionalities [12]. Commercial products are well established in urology and
cardiovascular applications.

An alternative to these electro-mechanical pressure sensors, the optical fibre pressure sensor (OFPS)
has become increasingly common in the medical field. This overview is intended for: (1) medical doctors
to introduce them to the topic of OFPS; and (2) for engineers with a view toward understanding the
demand for pressure sensor technology within the medical environment and the medical applications of
current available technologies. The aim of this review therefore is to describe the use of the optical fibre
pressure sensors applied in medicine with particular focus on the current state-of-the-art in technology
and developments in the context of several applications, including those that are currently established
and emerging in the medical field.

The paper is arranged as followed: Section 2 describes pressure measurement requirements within the
relevant medical areas of interest (e.g., cardiology, urology, etc.) and the working principles of existing
pressure sensors. Section 3 gives an introduction to optical fibre pressure sensors and provides details
of the technology involved. Section 4 provides an overview of OFPS in biomedical applications and
commercial products. Section 5 comprises a conclusion on the technologies reported.

2. Pressure Sensors in Medicine

In the medical field, a sensor represents a device that responds to a physical stimulus and transmits
a resulting impulse. Therefore, the fundamental purpose of a sensor system is to accurately measure
a signal that enables the well being of a patient to be determined. The human and animal organism
is a complex combination of a variety of organs, bones, joints and muscles (Figure 1 [13,14]). Each
body part has its own set of characteristics (e.g., volume, structure, inner pressure, etc.). Additionally,
each component may undergo a unique dynamic change in pressure, either due to normal physiological
changes or as a result of an underlying pathophysiological process during the course of an illness.
Clausen and Glott [15] recommended dividing the body pressures into three domains: (1) low pressure
regions (e.g., capillaries and brain); (2) medium pressure regions (e.g., heart and lung); and (3) high
pressure regions/states (e.g., joints and pressure changes during ablation techniques).
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Figure 1. Body parts with pressure measurements and the relevant underlying
physiological/pathophysiological condition associated with each organ/tissue (created in
bodyparts3d [13,14]).

The requirements for a particular pressure sensor technology depend strongly on the area of interest
(urology, cardiovascular, etc.), the place of measurement (e.g., organ, bone or muscle) or the method for
which the sensor is employed (single point measurement, cancer treatment or long-term observation).
Furthermore, any sensor or sensor system adopted for physiological measurement in the human body
must meet certain fundamental standards of the suitability of use. Such standards are generally
defined by an authorization institute, such as the Food and Drug Administration (FDA) and by the
International Organization for Standardization (ISO), with particular reference to ISO 10993 [16]
(Biological Evaluation of Medical Devices Part 1: Evaluation and Testing) and ISO 13485 [17] (Medical
devices—Quality management systems—Requirements for regulatory purposes).

2.1. Technical Pressure Sensor Requirements

There are technical standards that must be met for each specific task, e.g., in the case of cardiology
pressure analysis, standards defined by Association for the Advancement of Medical Instrumentation
(AAMI) (in ISO 81060-2) [18], must be met when using sensors and devices in this setting. These
standards are also FDA approved [19].

Range is the difference between the minimal to maximal pressure values measured in the body cavity.
The pressure range can vary in normal physiological states from a large range 0–20 kPa (0–150 mmHg)
in the case of left ventricular pressure to narrow ranges 0–1 kPa (0–7.5 mmHg) in the case of intra-cranial
pressure. In diseased or pathophysiological states, pressure can fall as low as –10 kPa (–75 mmHg) in
the case of intra-alveolar and intra-tracheal pressure and can rise as high as 40 kPa (300 mmHg) for
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aortic and left ventricular pressure. The diastolic pressure in a relaxed blood vessel has a normal range
of 60–80 mmHg and can be elevated as high as 90–120 mmHg in a systolic contracted blood vessel [1].

The AAMI demands a pressure range of –4 kPa (–30 mmHg) to 40 kPa (300 mmHg) for a blood
pressure transducer. Additionally, it should not be damaged with an overpressure in the range of –53 kPa
(–400 mmHg) to 533 kPa (4000 mmHg) [20,21].

Accuracy (includes resolution), in terms of sensor requirements, often depends on the area of interest
(e.g., heart, bone or muscle). A typical example arises in the case of blood pressure measurement, where
for every 2.6-kPa (20 mmHg) increase in systolic pressure or 1.3 kPa (10 mmHg) in diastolic pressure,
the mortality from ischemic heart disease and stroke doubles [22,23]. A small variation in blood pressure
therefore can distinguish between a well, normotensive patient and a patient who is ill. For example, an
adult can suffer from chronic disease (Table 1 [22]), where each stage is defined by a threshold of 133 Pa
(1 mmHg). A high blood pressure value can be measured in proximal aorta. However, this blood pressure
decreases as one moves away from the aorta to the femoral artery, radial artery and, subsequently, to the
arterioles, becoming very small in the capillaries [24].

Table 1. Classification and management of blood pressure [22].

Blood Pressure (BP) Classification Diastolic Systolic Treatment

Normal: <80 mmHg <120 mmHg Normal
Prehypertension: 80–89 mmHg 120–139 mmHg No antihypertensive drug

Hypertension Stage 1 90–99 mmHg 140–159 mmHg ACE, ARB, β-blocker
Hypertension Stage 2 >100 mmHg >160 mmHg 2-Drug combination

The American National Standards Institute (ANSI)/AAMI BP22:1994 (2006) therefore dictates that
the accuracy for blood pressure measurement should be better than ±1% in the range of –4 kPa
(–30 mmHg) to 6.7 kPa (50 mmHg) and ±3% in the range of 6.7 kPa (50 mmHg) to 40 kPa
(300 mmHg) [21,23].

The sampling rate is the number of measurements acquired in one second and depends on the
periodicity and waveform of the pressure signal. The fundamental natural frequency (fn) in a heartbeat
rate up to 120 beats

s is fn = 0.5 Hz. However, the complex waveform requires further harmonics to
rebuild the correct shape. With respect to Nyquist’s theorem [25], a system should acquire at least
double the highest frequency present in the signal, to preserve the signal. In practice, a medical sensor
should acquire 5–10-times more samples than the highest frequency [26]. Further investigation allows
an additional filtering and/or down sampling to analyse the important frequency band.

Since most internally-deployed sensors in medicine are placed in a catheter, with the function of either
housing the sensor or working as a transducer, this may affect the frequency response. Gardner [27]
demonstrated the affect of a catheter on the shape of a heart pulse in which the catheter is treated as a
second-order system (with elasticity, mass and friction) having a natural frequency and damping factor.
Gardner demonstrated that an overdamped catheter would not detect the dicrotic notch of a single heart
beat, and an underdamped catheter would result in a noisily (incorrectly)-formed shape, thereby altering
the accuracy of the pressure measurement. The AAMI therefore recommended a minimum frequency
(200 Hz) for devices monitoring blood pressure [21].
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Table 2. Collection of exemplary standards for medical pressure analysis. ICP, intra-cranial pressure; AAMI, Association for the
Advancement of Medical Instrumentation; ERS, European Respiratory Society; ATS, American Thoracic Society.

Area (Technique) Body Part Min. Pressure Max. Pressure Pressure
Resolution

Sampling
(Frequency)

Additional Reference

Cardiology
(BP Monitoring)

Heart, Veins,
Arteries

–4 kPa
(–30 mmHg)

40 kPa
(300 mmHg)

13 Pa
(0.1 mmHg)

200 Hz Volume
restricted

AAMI BP22 [21]

Urology
(Cystometry)

Bladder,
Abdomen

0 Pa
(0 cmH2O)

25 kPa
(250 cmH2O)

50 Pa
(0.5 cmH2O)

10 Hz Differential
measurement

Schaefer ∗1 [28]
and [29–31]

Neurology
(ICP Monitoring)

Brain, Skull,
Dural Tissue

0 Pa
(0 mmHg)

13.3 kPa
(100 mmHg)

260 Pa
(2 mmHg)

- Sterilization AAMI NS28 [32],
Andrew et al. [33]

Pulmonology
(Transpulmonary)

Respiratory
Tract, Lungs

–10 kPa
(–100 cmH2O)

15 kPa
(150 cmH2O)

2–40 Pa
(4 mmH2O)

200 Hz
(10 Hz)

Temperature,
humidity

ERS/ATS [34,35]
Bensenor [36]

Gastroenterology
(Manometry)

Stomach, Colon 0 Pa
(0 mmHg)

13.3 kPa
(100 mmHg)

- 8 Hz Multi probes (6
or more)

RAO et al. [37]
Cross-Adame [38]

Ophthalmology
(Tonometry)

Eyes 0 Pa
(0 cmH2O)

8 kPa
(60 mmHg)

13 Pa
(0.1 mmHg)

100 Hz Volume
restricted

Weinreb [39]
ISO 8612 [40]

Rheumatology Muscle, Bones,
Spine

0 kN ∗2 3 kN ∗2 - - High pressure ISO 14242-2 [41]

Cancer Treatment
(Ablation)

Full Body 0 kPa ∗3 200 kPa ∗3 - - Temperature,
RF-field

∗1 The recommendation by Schaefer et al. was also used by the NHS Purchasing and Supply Agency (U.K.), for their official buyers guide for
urodynamic systems (CEP08045 ) [42]. ∗2 Instead of pressure, the weight distribution is of interest. It is mentioned here, as well, since the same
principles can be used. ∗3 The lack of research in this field has complicated a determined standardization. The values are based on observation
by preliminary tests.
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Additional pressure sensor requirements are dependent on the specific task. For example, in small
vessels, an in vivo pressure sensor with a large diameter can effect the measurement by restricting
the blood flow. Furthermore, the magnetic field in a magnetic resonance imaging (MRI) can impair
electrical sensors. In radio-frequency (RF) ablation techniques, the high intensity of electromagnetic
radiation-generated temperature can impair and, in some cases, destroy the pressure sensor. Innovative
adaptive techniques therefore are necessary in such circumstances. A list of requirements for specific
medical fields are therefore shown in Table 2.

2.2. Principles of Pressure Sensors

The two principles of pressure measurement are exemplified by the classical strain gauge transducer
and diaphragm displacement sensor [43], equally applicable in the case of optical fibre sensors (OFS).
These principles will be explained in the following.

Strain gauge transducers are characterised as those that exhibit a change in their output parameter in
response to the measurand (i.e., strain), e.g., electrical resistance (Figure 2a) or wavelength in optical
sensors. The gauge factor (i.e., sensitivity), in Equation (1), is determined by the relative change of
resistance (∆R/R) with respect to the relative change of the length (∆L/L) (also called strain ε). In
an electrical sensor, the change in resistance can be most effectively measured using a Wheatstone
bridge [44,45].

GF =
∆R/R
∆L/L

=
∆R/R
ε

(1)

Diaphragm displacement sensors are based on micro-electromechanical systems (MEMS) technology,
in which sensors have a bendable flat surface (i.e., the diaphragm) on a sealed cavity. The diaphragm
bends (deforms) according to the change of pressure and can be capacitance based or based on a
piezoelectric transducer. The sensor structure is shown schematically in Figure 2b. In the initial state,
the cavity has an initial volume (V0) and pressure (P0). Since the cavity is sealed, a change in pressure
(∆P) causes the medium (e.g., air) inside the cavity to compress/expand (∆V).

P0
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z(r)
z(0)
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Catheter length (l)
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b c
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Figure 2. (a) Schematic of a piezoresistive sensor; (b) schematic of a diaphragm
displacement sensor; (c) water-filled catheter as the pressure transducer.
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In the case of a circular cross-section diaphragm with clamped edges, the bending of the diaphragm
(z(r)) can be theoretically predicted using Equation (2), provided the bending displacement is limited to
less than 30% of the diaphragm thickness (h). This principle is used for capacitive and piezoresistive
sensors. In the centre of the diaphragm (r = 0 = r0), the bending displacement is at maximum. Whereas
on the clamped edge (r = R), no bending occurs (z(R) = 0). The elasticity depends on Poisson’s ratio
(µ) and Young’s modulus (E) of the diaphragm material. The displacement of the diaphragm can be
measured by a frequency-excited gain circuit [1].

z(r) =
3

16
· (1 – µ2)(R2 – r2)

Eh3 ·∆P (2)

Catheter-based pressure systems use a catheter filled with an incompressible medium (e.g., water
or saline solution), connected to a pressure sensor (Figure 2c). A change in pressure at the tip of the
catheter results in a deformation of the diaphragm, which compresses or decompresses the water and,
hence, transmits the pressure directly to the connected sensor. The natural frequency (f0) of a water-filled
catheter (with a density of ρ) can be calculated by Equation (3). Togawa et al. [1] demonstrated the
limitation of the water-filled transducer. For standard-sized medical catheters [46,47], with an outer
diameter (o.d.) r0 = 1.66 mm (5 Fr), an inner diameter (i.d.) of ri = 0.66 mm (2 Fr) and a length of
l = 1.25 m connected to a standard pressure sensor with an elastance of K = 3.3 ·1014 Pa

m3 , the theoretical
natural frequency is estimated at (f0 = 48 Hz) [1].

f0 =
1

2π

√
k
m

=
ri
2

√
K
πρl

(3)

Volume-restricted areas (e.g., brain or miniature blood vessels) demand thin catheters. Ultra-thin
catheters (i.e., microtubing, Johnson Matthey) have an o.d. of 0.3 mm and an i.d. of 0.254 mm (i.e.,
P.N.24468A) [48]. Replacing the previously mentioned catheter with the ultra-thin catheter (ri2 = 1

3ri)
and assuming the same length, the natural frequency would decrease to f02 = 1

9 f0 (i.e., f02 = 5.3 Hz).
Considering the presence of additional compressible air-bubbles trapped in the catheter structure,
damping and reducing the natural frequency [49], it is necessary to locate the sensor at the tip of the
catheter or at least very close to it. In the case of very small catheters (below 1 Fr), catheter-tip sensors,
such as optical fibres, can uniquely fulfil these requirements.

2.3. Commercial Sensors

The specifications of some commercially available electrical sensors [50–53], which are currently
used in medicine, are included in Table 3. Recently, the FDA approved the first implantable wireless
sensor for pulmonary artery pressure measurements [54], by CardioMEMSTM.
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Table 3. Electrical pressure sensors available on the market.

Company Merit Sensor Elcam Medical MEMSCAP Me. Specialities

Sensor Name BP series [50] Sense-IT [51] SP854 [52] 1620 [53]

Min. Pressure –4 kPa
(–30 mmHg)

–4 kPa
(–30 mmHg)

–80 kPa
(–600 mmHg)

6.66 kPa
(50 mmHg)

Max. Pressure 40 kPa
(300 mmHg)

40 kPa
(300 mmHg)

93 kPa
(700 mmHg)

40 kPa
(300 mmHg)

Over Pressure 862 kPa
(125 Psi)

862 kPa
(6465 mmHg)

1.3 MPa
(10 MHg)

862 kPa
(125 Psi)

Frequency 1.2 kHz 1.2 kHz 300 Hz 1.2k Hz
Drift 0.125 mmHg·h–1 0.125 mmHg·h–1 - 0.25 mmHg·h–1

Compliant AAMI, RoHS 510(k), AAMI,
CE, ISO 2009,
10993-1

OEM-Part AAMI, RoHS

Restriction of Hazardous Substances (RoHS); Original equipment manufacturer (OEM);
Measurement (Me.) Specialities.

3. Optical Fibre Pressure Sensors

From the 1960s to the early 21st century, optical fibre sensors were largely based on intensity
modulation, and this was the dominant technology for use in OFS, at the time being based on a simple
architecture and low-cost interrogation. They therefore represented a potential alternative to the standard
medical pressure sensors [55].

3.1. The Development of Optical Fibre Sensors

Many early-stage OFSs were based on optical fibre bundles [56,57], which were implemented in a
single fibre oriented to a distal reflective mirror [58,59], with a two (or more)-fibre system [60] or a fibre
modulated by an internal cavity [61]. Several patents regarding intensity-modulated OFSs were filed
from the 1990s onward [62–65], complementing existing patents for catheters to host such sensors, such
as Purdy et al. [66]. The Camino sensor, industrialized by Integra LifeSciences, represents an important
commercially available product and is currently a standard system for the measurement of intra-cranial
pressure (ICP) [67–69]. OFS based on a microbending principle (i.e., attenuation of intensity) [70,71]
were recently adopted in the pressure measurement area. Intensity-modulated OFS are relatively simple
in design and, hence, relatively low cost, but suffer from long-term instability. Changes, such as the
variation of the received optical intensity due to source output power drifts, fibre movements, or the
degradation (i.e., ageing) of components in the system, or on the fibre tip contribute to error in the
measured pressure signal.

Following the advent of the fibre Bragg grating (FBG) sensors (in the 1990s), much research
effort was dedicated to applying the emerging FBG technologies to pressure sensing in the medical
environment. FBGs are highly sensitive to strain, and due to recent developments in draw-tower
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fabrication techniques [72,73] can be manufactured as bend-insensitive fibre structures with excellent
tensile strength, on standard 125-µm diameter, as well as 80-µm fibres. A major technical challenge of
implementing FBGs as pressure sensors is the physical conversion from pressure to strain, which is the
fundamental parameter measured by the FBG. FBG sensing systems are capable of providing a solution
to the problem of intensity-modulated OFS, as they provide intensity-independent output.

Within the last seven years, due mainly to improvements in microfabrication technologies (e.g., the
availability of splicers, lasers and hybrid electro/optic facilities for optical fibres), cavity structures
based on Fabry–Perot principles have become realisable and represent a major research focus in
pressure sensing technology. In this context, the Extrinsic Fabry–Perot interferometer (EFPI) represents
a significant technological advancement and is based on a sound principle of operation, which is
a wavelength-dependent intensity variation resulting in a spectral shift [74]. EFPI sensors have
overcome the main drawbacks of intensity-modulated OFS and FBG sensors, in so far as they provide
intensity-independent detection, but sensitivity and accuracy are more than three orders of magnitude
greater than FBGs.

3.2. Advantages of Optical Fibre Sensors

Sensors based on optical fibres are emerging as an excellent alternative to electrical sensors based on
catheters, guidewires and MEMS [75]. For medical applications, OFS have many strategic advantages
over classical measurement techniques:

Footprint and geometry: Silica glass-based optical fibres used in most sensors are very small,
since they have a 125-µm diameter (e.g., SMF-28 fibres), and optical fibres of an 80-µm diameter
are currently commercially available. Furthermore, recently developed draw-tower fabrication of fibres
and sensors [76] now allows the fabrication of in-fibre sensors without removing the fibre coating and,
therefore, maintaining the tensile strength of the buffered fibre, which is critical when being placed in a
range of environments. In addition, the broad availability of bend-insensitive fibres allows the operation
of these sensors, even in the presence of tight bending. Commercial catheters have typically 4–6 Fr
diameters (1 Fr = 1

3 mm), where a plurality of optical fibre pressure sensors can fit inside an individual
catheter or guidewire.

Distribution and integration: OFS enable the detection of physical parameters (strain, temperature)
at several points along a single fibre. This arrangement is extremely common with FBG sensors, using
a wavelength division multiplexing (WDM) approach [76–80]. Recently, distributed sensing systems
based on Rayleigh backscattering demodulation [81,82] have achieved a spatial resolution better than
1 mm. In addition, with a WDM approach, it is possible to integrate on the same fibre, at the sensing
point, a plurality of sensors: a popular arrangement involves the integration of pressure and temperature
sensor on the same fibre tip [83–86].

Long-term capabilities: As one of the main trends in biomedical science is to perform long-term
diagnostics with minimally-invasive devices, the stability of pressure recording in the long term needs
to be guaranteed. OFS guarantee an excellent stability rate, achieving typical stability of 1 mmHg

hour with
sensor prototypes [87] and about 3 mmHg/28 days in commercial sensors [88].
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Thermal properties: The accuracy of pressure sensing technologies is also limited by
cross-sensitivity to temperature variations. In the case of many sensors (e.g., electronic, mechanical),
a temperature change has a non-linear effect on the output, which can only be mitigated by
thermally-insensitive packages. In OFS, however, temperature and pressure dependences are both linear
and can be mutually compensated [83].

Total immunity to external EMI: OFS can be fabricated from silica glass, which is a dielectric
material and is inherently immune to electromagnetic interference (EMI). This makes OFS-based device
compatible with the medical environment where EMI is central to a range of diagnostic and treatment
techniques, such as as MRI, computed tomography (CT) scan, RF/microwave thermal ablation and other
imaging and invasive medical procedures [70,89].

3.3. Theory and Working Principles

For the medical field, OFS can be grouped according to: (1) the placement area of the sensor
(e.g., in vivo, ex vivo, in vitro); (2) the amount of usage (i.e., disposal or reusable); or (3) the pressure
range being recorded (low, middle, high). From a technical point, the OFS may be grouped according to
structure, modulation and measurement.

The structure of an OFS (Figure 3a) can be divided into intrinsic (i.e., the sensing element is inside
of the fibre) or extrinsic (i.e., the fibre is extended with an external sensing element). It also shows
the set-up with broadband light source (BLS), which emits a continuous spectrum (1) to the sensing
element. There, the signal is modulated (2) by the measurand and travels back though a 3-dB coupler
to the optical spectrum analyser (OSA). The advantages of reflection mode (as shown in Figure 3a) as
opposed to transmission are that the sensor may be used as a reflective probe and the tip of the sensor
can be inserted into the patient.

BLS

OSA
3dB

3. Intrinsic

4. Extrinsic

1. Broadband

2. Modulated

3

1

2

Intensity

Frequency

Phase
4

Single Point

Multi Point

Multi Measurand

a b c

ΔP

Δε1Δε2Δε3Δε4

ΔPΔε

Figure 3. (a) The full sensor system based on a broadband light source (BLS), an optical
spectrum analyser (OSA) and an intrinsic or extrinsic sensor; (b) the signal can be modulated
by a change in intensity, frequency or phase; (c) the sensor may measure in a single or
multi-point and acquire single or multiple measurands.
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The modulation for OFPS (Figure 3b) may change: (i) the received intensity (i.e., amplitude of the
electric field E) by a displacement of a reflecting surface (e.g., diaphragm) or a bending of a fibre (i.e.,
attenuation); (ii) the frequency (i.e., wavelength λ) by a change of a the period of the grating (FBG);
or (iii) based on a phase modulation (φ) (i.e., interferometry by Mach Zehnder, Michelson [90,91] or
Fabry–Perot [92]) using the phase property of the light.

The measurement for an OFS (Figure 3c) can depend on: (i) the point of interest (i.e., single point,
multi-point or distributed sensing); or (ii) the measurand itself (e.g., pressure (P), temperature (T) or
both). It is also possible to extend the OFS to measure other measurands (e.g., from strain (ε) to
pressure (P)).

3.4. Fabry–Perot Interferometer and Fibre Bragg Grating

The remit of this paper is a review of OFPS based on EFPI and FBG techniques. A more
comprehensive review of optical fibre intensity-modulated sensors is available in Roriz et al. [55].
A recent review of medical FBG sensors is available in Mishra et al. [93] and for Fabry–Perot
interferometer (FPI) sensors from Roriz et al. [94]. Both sensor types are based on the same principles
shown in Equation (1) for the strain gauge and Equation (2) for the diaphragm displacement and can be
used both directly and indirectly to measure the pressure. The recently investigated OFPS highlighted in
this review are based on both principles and represent a major step forward in the current state of the art.

The Fabry–Perot interferometer is based on the principle of interferometry [92,95]. The
Fabry–Perot (FP) cavity is usually located on the tip of an optical fibre and enclosed by a miniature glass
diaphragm [74]. The light from the source is coherent in the vicinity of the sensor and can potentially
interfere with itself, e.g., by reflection. For a low finesse interferometer (Figure 4a), approximately 4%
of the light intensity is reflected at the end face of the single-mode fibre (SMF). The residual light travels
the length (L) to the diaphragm, where upon it is also reflected (e.g., another 4% for a glass diaphragm),
travels back the same way and finally penetrates back into the SMF. Since the light from the diaphragm
has experienced an additional path length (2L) through the cavity filled with air (refractive index (n0)), it
has a phase difference, given by Φ0. The intensity (I) in the spectrum for each wavelength (λ) therefore
depends on the distance of the diaphragm (L) to the SMF, shown in Equation (4) [96]. The change of the
diaphragm with reference to the pressure (i.e., ∆L(∆P)), can be calculated in the same way as previously
demonstrated in Equation (2).

I(λ) = I1 + I2 + 2
√

I1I2 · cos
(

4π · L · n0
λ

+ Φ0

)
(4)

Alternative solutions for a diaphragm make use of bendable organic material to increase the
sensitivity [97], ultra-thin metal diaphragms to improve the reflectivity [98] and a graphene
membrane [99], as well as a polymer diaphragm sealed with a ultra violet (UV) mould [84].
Bremer et al. [83] demonstrated an EFPI sensors with an integrated FBG sensor for dual
pressure/temperature detection and mutual compensation. Bae et al. [100] in fact proposed a multi-cavity
approach for dual sensing. Their high sensitivity and accuracy, as well as their dual sensing versatility
have resulted in commercial systems based on EFPI technology gaining momentum and an increasing
market share [88,101,102].
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The fibre Bragg grating is formed as a periodic change of the refractive index nco (the core refractive
index) with a distance of Λ (the pitch of the grating). The light is partially reflected at each grating period.
This results in a narrow-band reflection at the Bragg wavelength (λB), as shown in Equation (5), where
neff is the effective refractive index of the optical fibres core in the region of the grating. With applied
strain (ε), the pitch of the grating changes and, therefore, the Bragg-wavelength.

λB = 2neff · Λ (5)

The challenge is to measure the pressure and convert it into mechanical strain, so that it may be
measured by the FBG. Kanellos et al. proposed a pressure sensor based on four FBGs based on a
flexible patch [103]. Ahmad et al. [104] proposed a similar form factor. Another working principle
proposed by Zhang et al. [105] was based on a piston-like architecture. FBG-based sensors are also
gathering significant traction in novel robotic micro-surgery systems [106,107] for the measurement of
axial and lateral contact force.
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Figure 4. Reflected light in: (a) a low finesse Fabry–Perot interferometer (FPI) sensor and
(b) in a FBG sensor.

4. Optical Fibre Pressure Sensors in Medicine

Optical fibre sensors have been proposed for biomedical applications (e.g., in vivo, ex vivo or in vitro)
for several decades. Early investigations of in vivo applications were undertaken [108], and many
reviews have recently been compiled to evaluate their advantages in the medical field [109–115]. It is
therefore the role of this review to highlight the use of optical fibre pressure sensors in the state-of-the-art
medical practice.

4.1. Introduction

Lindström [59] proposed the first medical optical fibre pressure sensor in 1970. In 1984, Peterson and
Vurek [116] analysed the utilisation of optical fibres. Nowadays, optical fibres can be fabricated from a
wide range of different materials (e.g., plastic, chalcogenide glass), whereas silica glass-based fibres are
known to have good bio-compatibility. Hench and Wilson [117] initially reviewed the compatibility of
silica in 1986. This study was extended for silica-based MEMS [118,119] and finally tested for long-term
in vivo implantation [120,121]. Yang et al. [122] (2003) tested OFS-based pressure sensors for 12 weeks
and demonstrated their bio-compatibility and usability for in vivo human applications.
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As previously outlined, modern optical fibre sensing technologies provide many advantages over
non-OFS technologies when used for medical application. Their small size (Figure 5) makes them ideal
for use in volume-restricted areas. Since they are fabricated from silica glass, they are immune to RF
and, therefore, compatible for use in MRI. OFS (a Furukawa company) offers bio-compatible fibres
for medical application. These fibres are bend resistant and also offer bio-compatible coatings, certified
by North American Science Associates, Inc. (NAMSA) with ISO 10993 [123]. Optical sensors can
also be sterilized, without affecting their properties. Stolov et al. [124] demonstrated the possibility
of: (i) steam sterilization; (ii) ethylene oxide and (iii) gamma radiation on optical fibres with: (1) dual
acrylate; (2) polyimide; (3) silicone polyether ether ketone (PEEK); and (4) fluoroacrylate hard cladding
ethylene tetrafluoroethylene (ETFE).

Figure 5. OFPS (right) illuminated in red and placed into a miniaturized catheter (left).

4.2. Research on Medical Optical Pressure Sensors: In Vivo

In this review, OFPS are presented, which are used in the medical field for both in vivo and ex vivo
applications as outlined in the literature. In some cases, the available literature is minimal; in other
cases, there is extensive and detailed information available on the relevant sensors. Some typical medical
application areas are highlighted below in which the use of OFS has proven successful.

Gastroenterology: 60–70 million Americans are affected by Gastrointestinal conditions every
year [125]. One of the most common gastrointestinal symptoms is abdominal pain, which results
in hospitalization in 15.9 million cases [126]. The magnitude of this medical condition and the
implications for the health economy dictate the need for an inexpensive method of investigating the
gastrointestinal tract.

In 2007, Takeuchi et al. [127] published a study on pharyngeal manometry. They used an FPI-based
pharyngeal manometric sensor for deglutition analysis. The sensor (FOP-MIV, FISO Technologies)
showed good agreement with their catheter-type reference sensor (P37-4109C05, Zinetics). The whole
catheter structure was of a small size of only 2.08 mm in diameter, covering a pressure range of
30 kPa–30 kPa and a sampling frequency of 250 Hz. The sensor demonstrated a correlation factor
of 0.999 to the reference sensor, and furthermore, a trace of a period of in vivo swallowing processes was
recorded online and demonstrated good agreement with the reference instruments. The same sensor type
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(FOP-F125, FISO) was used by Kong et al. [128] (2013) for oesophageal variceal pressure measurements
in three different patients.

Arkwright et al. [129,130] (2009) presented a manometry catheter based on FBG arrays (from FBGs)
with a series of 72 sensing elements with a spacial distance of 1 cm. Each FBG is inserted into a casing
design (schematic in Figure 6a) and is used to transpose pressure into strain, resulting in multi-pressure
measurements [131,132]. The sensor structure was tested for 0–26.7 kPa (0–200 mmHg) with an
accuracy of 0.4 kPa (3.1 mmHg), a sensitivity of –0.001 nm

mmHg and a frequency of 10 Hz. The FBGs
are surrounded by a transducer, converting the pressure into strain (Figure 6a). The catheter (Figure 6b)
was tested in vivo in a human colon over 24 h. In their study, they placed the sensing elements in the
ascending colon, in the transverse colon, in the descending colon and in the sigmoid colon [129]. This
successful test revealed the complex pressure nature of the colon for the first time. This technique is
an example of where optical fibres have surpassed the gold-standard and, in fact, opened a new area of
high-resolution manometry (HRM). This technique was recently (2014) used in a study of 10 healthy
humans and revealed a new understanding in the propagating motor pattern of the human colon [133].

a

FBG

Transducer: ΔP     Δε     ΔL

b
catheter

Tip Sensing element

Figure 6. (a) Distributed pressure sensor based on an FBG chain with transducers; (b) sensor
placed in a catheter.

Cardiology: The recent report (2014/2015) of the American Heart Association (AHA) [134,135]
revealed that in 2011, ca. 600,000 Americans died as a result of heart disease with a cost (direct and
indirect) of 215.6 billion $. This again demonstrates the need to introduce cost saving methods within
the healthcare system without compromising the quality of patient care.

The first optical sensor for intra-vascular pressure measurement was developed and clinically tested
by Lindström et al. [59] in 1970. This intensity-based sensor was instrumental in optical sensors
achieving successful entry into medicine. In 2002, Reesink et al. [136] published a feasibility study,
using fibre-optic systems (Model 40EC, RJC enterprise) for invasive blood pressure measurements.
They compared the OFPS in vitro to the gold-standard Millar (SPC-320 with a bridge amplifier),
Baxter (uniflow external pressure transducer) and Sentron devices. Further tests in vivo in two goats
followed. They demonstrated the high similarity of the OFPS to these gold-standard sensors. In 2003,
Woldbaek et al. [137] described the use of an OFPS for pressure recording in the cardiology setting.
They used an optical sensor (Samba) for pressure measurements in mice. They tested the sensors (o.d.
0.42 mm) in vitro with a drift of <60 Pa

h (<0.45 mmHg
h ) and a temperature sensitivity of only ∼9 Pa

k
(∼0.07 mmHg

k ) in the range of 22–37 ◦C. With a frequency response of 0–200 Hz, this sensor fulfils the
technical specification. They inserted the OFPS in 18 male mice, into the left carotid artery to measure
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the aortic pressure (AP) and heart rate continuously. The optical sensor demonstrated good functionality,
and Woldbaek et al. [137] concluded that this sensor is suitable for blood pressure measurement, even in
small vessels.

Schreuder et al. [138] (2005) published a new measurement method using automatic intra-aortic
balloon pumping (IABP) with a dicrotic notch prediction algorithm. For their evaluation, they applied
an optical sensor (they refer to the same one that Reesink et al. used) in 27 patients with low ejection
fraction (i.e., undergoing cardiac surgery) for 20–48 h. The optical fibre sensor, combined with their
novel algorithm, allowed a fully-automatic IABP timing. In the same year (2005), Pinet et al. [139]
proposed that their OFPS (FISO) based on a micro-optical mechanical systems (MOMS) could also be
used for IABP. A detailed analysis of the effect of fibre-optic IABP therapy on clinical management
was performed by Yarham et al. [140]. Their FOP-MIV is now also FDA approved. Furthermore, a
patent for an intra-aortic balloon catheter with a dual pressure sensor technology was filed in 2007 [141].
Mulholland et al. [142] (2012) reported the insertion of an 8-Fr, 50-cc SensationPlusTM intra-aortic
balloon (IAB) catheter (Maquet Cardiocascular) in a 53-year-old man. As a result, the catheter expands
the patients vessel, which results in greater diastolic blood volume, and the sensor supported more
accurate monitoring.

Wu et al. [143] (2013) developed an optical sensor and used it in conjunction with a fractional flow
reserve (FFR) technique in a swine model. In the last two years (2014–2015), the amount of research in
this field has rapidly increased [144–148]. In 2014, Rodriguez et al. [149,150] used an OFPS (OPP-M,
Opsens) for simultaneous pressure and volume measurement. The immunity to electromagnetic fields
made it possible to use the sensor in an MRI during a left ventricle function assessment while undertaking
an in vivo experiment in a ewe. The results were compared to the Millar sensor and demonstrated
good correlation.

Neurology: A significant increase in ICP can be life threatening for neurological patients [151]. This
can be caused by disease (e.g., cancer growth or accumulation of blood) or factors, such as blasts from
explosions (e.g., improvised explosive devices (IEDs)). To confirm raised intra-cranial pressure, optical
fibres can play a decisive role.

In 1996, Shapiro et al. [152] demonstrated intra-parenchymal cerebral pressure monitoring in
244 patients (e.g., with intra-cerebral pathology, including trauma and intra-cerebral haemorrhage),
using OFS technology. The measurements were performed from 1988–1993 with an average time of
seven days (up to 24 days) of observation. Only one patient acquired an infection, and in this case, the
infection developed towards the end of the observation period of 23 days. The OFPS (Model 110-4B,
Camino Laboratories) was housed in a catheter and was inserted via a hole drilled in the skull and closed
by a locking screw (schematic in Figure 7a). This study demonstrated easy and safe monitoring of ICP.
In 2007, Bekar et al. [153] published an analysis of the risk factors of OFPS in intra-cranial pressure
monitoring on 631 patients. They concluded that the ICP monitoring system could be safely used and
that the infection risk is low (1.8%).

Chavko et al. [154] (2007) demonstrated an intra-cranial pressure measurement in generated blast
waves using OFPS. The sensors were placed in the third cerebral ventricle of anaesthetized male
rats. The pressures recorded were as high as 40 kPa and measured for several milliseconds. The rats
were placed in pneumatic-driven shock tubes (schematic in Figure 7b), generating the blast waves. A
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1 mm hole was drilled into the head of the rats, and the sensor, placed in a 23-gauge catheter, was
inserted. Leonardi et al. [155,156] tested with the same sensor (FOP-MIV) and a similar experimental
configuration the ICP of 25 rats.

a
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Measurement
equipment

b

Figure 7. (a) ICP sensor, inserted into brain (created in bodyparts3d [13,14]); (b) schematic
of blast wave generator with animal and ICP sensor inside.

An analysis of the transient response in a human skull, with exposure to blast waves, was published
by Bir [157] in 2011. The shock waves produced a pressure up to 137.9 kPa. The OFPS (FOP-MIV,
FISO) was placed in frozen human heads and placed in the tube. During 15 blast simulations, the sensors
measured the pressure in four different areas of the brain. The experiments demonstrated the importance
of sensor location, the intensity of the blast wave and the orientation of the head to the wave when
undertaking sensor measurements in the brain.

Urodynamics: The pressure measurements undertaken during the course of urodynamic studies
and which are relevant to the lower urinary tract (LUT) requires measurement in the urethra, bladder
and abdomen. This analysis is important in order to diagnose bladder-related conditions [28,158].
Urodynamic analysis plays a key role as a method to localise pathological obstruction [159].

In 1993, Belville et al. [160] demonstrated the feasibility of a urodynamic system with OFPS (FST
200). The optical sensor was placed in a 1.6-mm (5 Fr) catheter, which was FDA approved for multiple
usage. The sensor was based [160] on a diaphragm displacement technique with an intensity-modulated
signal. The properties of the system demand a calibration cycle of 15 s before each use. The resolution
in pressures measured was better than 100 Pa (1 cm H2O) up to a frequency of 50 Hz.

Poeggel et al. [87] (2014) achieved in vivo bladder and abdominal measurements in patients, using
a differential measurement technique, which allowed the simultaneous measurement of urodynamic
pressure in a 1.6-mm (5 Fr) catheter, as well as abdominal pressure (Figure 8a,b). In a study published
in 2015 [161] (Figure 8c), the technique was extended using an EFPI sensor with integrated FBG
(i.e., measuring pressure and temperature with a single sensor), creating an optical fibre pressure and
temperature sensor (OFPTS). Furthermore, two sensors were placed in a single 1.6-mm (5 Fr) catheter,
with a separation of 1 cm. This technique facilitated a true differential pressure measurement.

Additional in vivo pressure measurements were undertaken in humans and animals. Some of them
are listed here, in order to demonstrate the range of use of optical fibre pressure sensors. These include
measurements of intra-cochlear pressure (ear pressure) [162], dental pressure [163,164], intra-ocular
pressure (IOP) [165,166] or vitreoretinal microsurgery [167,168].
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A sensor for the dynamic assessment of the female pelvic floor function by intra-vaginal pressure was
developed by Ferreira et al. [169]. The sensor (based on an FBG) was inserted into a silicon probe that
measured radial muscle pressure and used this to interpret the axial load. The intra-abdominal pressure
(IAP) of the glenohumeral joint was analysed by Inokuchi et al. [170]. The intra-muscular pressure
(IMP) in rats was measured by Cottler et al. [171] and in the legs of four female and three male humans
by Nilsson et al. [172]. Le et al. [173] developed a pressure sensor for tissue. In 2015, Roritz et al. [174]
measured the pressure in the intervertebral disc pressure (IDP) of an anaesthetized sheep. The intra-discal
pressure pattern was measured in the fifth lumbar disc, and this showed good agreement with previous
results during spontaneous breathing. Furthermore, the lung pressure was measured in a different set of
experiments. An OFPS (Camino 420 XP) was used in the endotracheal tube by De Blast et al. [175].
Intra-tracheal pressure was measured by Sondergaard et al. [176] and intra-oesophageal pressure by
Hogan and Mintchev [177].

ba c

Figure 8. (a) Left: abdominal balloon catheter; right: bladder catheter; (b) examination
chair with equipment; (c) urodynamic measurement.

4.3. Research in Medical Optical Pressure Sensors: Ex Vivo

Ex vivo pressure measurements are measured outside of the body, disembowelled organs or in
phantoms. The restrictions applied to these measurements are not as rigorous as for in vivo in humans or
animals. Some recent experiments in this area are described below.

Thermal ablation is an invasive hyperthermia procedure: using a radio-frequency, microwave, laser
or ultrasound source, using a micro-miniature applicator, delivered to the precise point of treatment.
Using this technology, it is possible to generate a heat field in vivo with excellent localization capability.
The radio frequency ablation (RFA) therefore has been successfully applied to many recent cancer
treatments [178,179]. Using a percutaneous miniature applicator, RFA induces a heat field in excess
of 3 ◦C/mm at the point of treatment. Cancer cells are euthanized as a function of temperature and the
duration of its exposure [180].

Due to the lack of suitably-miniature and electrically-immune measurement equipment, it is not
possible to implement pressure measurement in clinical RFA. The first pressure experiment in RFA
is credited to Kotoh et al. [181] (2005), using an MEMS sensor positioned 3 cm from the ablation point.
Previously, it was not possible to incorporate pressure sensing in the delivery of radio-frequency ablation
due to the lack of a suitable sensing system.

Tosi et al. [86] (2014) performed the first pressure measurement ex vivo for RFA, with an OFPTS
(Figure 9a) implementing a sensor on an animal liver phantom (Figure 9b). The sensing system used
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has the key advantage of having low thermal sensitivity, which allows operation at the point of ablation
without the negative effects of large temporal and spatial temperature variations. A methodology for
pressure measurement in RFA is reported in [182]. Pressure was recorded as 162 kPa (at 164 ◦C
temperature), while in [86], a peak value of 750 kPa was recorded due to the encapsulation of the
phantom (Figure 9c).

cba

FBG EFPI

OFPTS

Figure 9. (a) OFPTS with EFPI and integrated FBG sensing element [183]; (b) liver
phantom with OFPTS; and (c) pressure and temperature distribution in time. (adapted from
Figures 21a and 24: Tosi, D., licensed under CC Attribution-Adapt Alike 3.0, 2015 [182])

Additional ex vivo measurements of heart rate were recorded using optical fibre macro bending
sensors on foot artery [184] or mounted around the arm [185]. FPI sensors for needle tip force sensing
were tested on a medical skin phantom [186]. An ex vivo pressure test was also performed in lumbar
IDP [187]. Smart devices have also been developed, where FBGs were inserted in clothes [188],
beds [189,190] or furniture [191]. A wide variety of ex vivo or in vitro pressure measurements in other
physiological locations have been successfully performed, including oesophageal pressure [192] and
lung pressure during respiration [193].

4.4. Optical Pressure Sensors: Companies and Products

Companies that offer optical sensors [88,101,102,194–196] are listed in Table 4, demonstrating their
potential for medical application [61,127,136,142,149,155,166,197–207].

5. Conclusions

The purpose of this review was to provide an update of the current state-of-the-art in optical fibre
pressure sensors (OFPS) for use in the medical field. The sensors highlighted in this review are based on
the principles of a Fabry–Perot interferometer (FPI) and fibre Bragg grating (FBG) techniques, whose
characteristics and performance (e.g., range, sensitivity) are comparable, if not superior to commercially
available electronic pressure sensors. However, instead of an electrical signal, the sensors modulate
light. The absence of electrical signals makes the optical fibre sensors immune to radio frequency (RF)
signals, which offer unique benefits, e.g., in harsh environments, such as MRI. The small diameter
makes the sensor suitable for medical applications in volume-restricted areas, such as blood vessels
or internal organs. The low attenuation of the optical single mode fibre (SMF) allows a potentially
very long distance from the sensing element to the acquisition system, which is an advantage, e.g., in
dangerous conditions, such as an epidemic patient in a contamination room without adequate equipment.
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Additionally, if a pressure sensor system were brought into such an area, it could be hard to remove,
exchange or repair the system without taking additional risk. Furthermore, OFPS are inexpensive to
produce, which makes them easily disposable. This may reduce the risk of infection, and since they are
fabricated from glass, a disposable sensor has less impact on the environment when disposal is required.
These above properties of OFS represent significant advantages, compared to electrical sensors, which
makes them particularly well suited for medical application.

Furthermore, the human organism is a complex combination of a variety of organs, bones, joints
and muscles, all of which have different pressure properties and measurement requirements. These
requirements are often defined in standards, which are approved by authorizing institutions, such as
FDA and ISO. Therefore, any optical sensor system has to be adapted to the needs of the specific medical
examination. The sensitivity of FPI sensors can be easily adjusted by changing the thickness, material
and diameter of the diaphragm. The change of sensitivity, as the main factor for determining pressure
resolution, allows the adoption of the same sensor design for use in high-range or high-resolution sensors.
With the inclusion of FBGs, it is possible to achieve single (e.g., for pressure and temperature) or
multi-point measurements in a single 125–200-µm sensing element. OFPS have demonstrated stabilities
up to 3 mmHg/23 days, which also allow accurate long-term measurements, which due to their size, can
be fully in vivo. Their small size also allows the sensors to be placed in a standard catheter and, hence,
for it to be guided to the point of interest, which avoids the use of over-/under-damping of water/air-filled
catheters and gives a more accurate pressure signal.

Nevertheless, a high variety of in vivo and ex vivo applications have already been demonstrated and
reviewed in this article. Optical pressure sensors for ICP and IABP have become the norm for clinical
use in recent years. Furthermore, new technologies, such as the multipoint manometry catheter, based on
an FBG array with up to 72 sensing elements, have the potential to create new gold standards. The small
size allows housing of dual (or multiple) sensors in one catheter, which allows differential analysis as
demonstrated in urodynamic measurements. Additionally, newer technologies, such as a radio-frequency
RF ablation technology, have shown how optical fibre-based pressure sensors can satisfy modern medical
demands, which other sensor technologies are not able to do. A summary of the main research impact,
based on the number of publications, is included in Table 5. It demonstrates the current state of sensor
technologies, how far the medical field of OFPS has penetrated into this application area, as well as the
research impact. In particular, the latest test results captured in real medical environments demonstrate
the excellent potential for future clinical use and emerging application areas for OFPS.
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Table 4. Optical pressure sensors available on the market.

Company Samba FISO Camino Opsens RJC Enterprise Maquet

Sensor Name Preclin 420/360
Transducer [194]

FOP-MIV (R1) [101] Model
110-4B [195]

OPP-M25 [88] Model 40 [102] CS300 [196]

Min. Pressure –5 kPa
(–37.5 mmHg)

–40 kPa
(–300 mmHg)

–1.3 kPa
(–10 mmHg)

–6.66 kPa
(–50 mmHg)

66 kPa
(500 mmHg)

0 kPa
(0 mmHg)

Max. Pressure 35 kPa
(262 mmHg)

40 kPa
(300 mmHg)

16.7 kPa
(125 mmHg)

40 kPa
(300 mmHg)

133 kPa
(1000 mmHg)

40 kPa
(300 mmHg)

Pr. Resolution 10 Pa
(0.07 mmHg)

40 Pa
(0.3 mmHg)

- 66 Pa
(0.5 mmHg)

< 0.1 mmHg -

Over Pressure - 530 kPa
(4000 mmHg)

166.7 kPa
(1250 mmHg)

533 kPa
(4000 mmHg)

- -

Frequency 40 kHz 250 Hz 120 Hz 250 Hz 1 kHz 26 Hz
Diameter
(in Catheter)

0.36–0.42 mm 0.55 mm 1.35 mm
(4 Fr)

0.25 mm 0.17 mm 2.33 mm
(7 Fr)

Approved - FDA FDA - (AAMI BP) FDA

Tested for left ventricle [197]
ICP [198,199]

IDP [200]

IAP ∗1 [201],
pharyngeal ∗1 [127],

ICP [155,202]

ICP ∗1 [203,204]
IMP ∗1 [61,205]

IAP [206]

IAP [149]
IOP [166]

AP [136] IABP ∗1

[142,207]

In some cases, a different sensor by the same company was used. However, the references demonstrate the feasibility; Measurements in a
human are marked with (∗1). IDP, intervertebral disc pressure; IAP, intra-articular pressure; IOP, intra-ocular pressure; IABP, intra-aortic
balloon pumping; Pr., Pressure.
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Table 5. Main publications, sorted by the number of publications in this review.

Medical Area Modulation
Type

Place Temperature
Compensation

Sensor
State

Already
Explored

Research
Impact

Publications

Cardiology Intensity,
FPI, FBG

in vivo,
ex vivo

No 100 % ∗1 70 % 70 % 18

Neurology Intensity,
FPI

in vivo No 100 % ∗1 70 % 60 % 9

Gastroenterology FPI, FBG in vivo Possible 70 % 50 % 60 % 7

Pulmonology Intensity in vivo,
ex vivo

No 30 % 20 % 20 % 4

Ophthalmology FPI, FBG ex vivo No 40 % 20 % 30 % 4

Urology Intensity,
FPI + FBG

in vivo Yes 60 % 30 % 40 % 3

Rheumatology Intensity,
FBG

in vivo,
ex vivo

No 60 % 30 % 40 % 3

RF ablation FPI + FBG ex vivo Yes 30 % 20 % 60 % 2
∗1 Medical sensors existing on the market and used by clinicians for medical examinations.
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