
 

Sensors 2015, 15, 7388-7411; doi:10.3390/s150407388 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

An Analytical Model for Squeeze-Film Damping of Perforated 
Torsional Microplates Resonators 

Pu Li 1,* and Yuming Fang 2 

1 School of Mechanical Engineering, Southeast University, Jiangning, Nanjing 211189, China 
2 Nanjing University of Posts and Telecommunications, Nanjing 210003, China;  

E-Mail: fangym@njupt.edu.cn 

* Author to whom correspondence should be addressed; E-Mail: seulp@seu.edu.cn;  

Tel./Fax: +86-25-8355-2017. 

Academic Editor: Stefano Mariani 

Received: 7 January 2015 / Accepted: 19 March 2015 / Published: 25 March 2015 

 

Abstract: Squeeze-film damping plays a significant role in the performance of  

micro-resonators because it determines their quality factors. Perforations in microstructures 

are often used to control the squeeze-film damping in micro-resonators. To model the 

perforation effects on the squeeze-film damping, many analytical models have been proposed, 

however, most of the previous models have been concerned with the squeeze-film damping 

due to the normal motion between the perforated vibrating plate and a fixed substrate, 

while there is a lack of works that model the squeeze-film damping of perforated torsion 

microplates, which are also widely used in MEMS devices. This paper presents an 

analytical model for the squeeze-film damping of perforated torsion microplates. The 

derivation in this paper is based on a modified Reynolds equation that includes 

compressibility and rarefaction effects. The pressure distribution under the vibrating plate 

is obtained using the double sine series. Closed-form expressions for the stiffness and the 

damping coefficients of the squeeze-film are derived. The accuracy of the model is verified 

by comparing its results with the finite element method (FEM) results and the experimental 

results available in the literature. The regime of validity and limitations of the present 

model are assessed. 
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1. Introduction 

Squeeze-film damping is one of the most dominant factors that limits the performance of high-Q 

micro-resonators. Perforations in microstructures play a significant role in controlling the squeeze-film 

damping. In the past, to model perforation effects on the squeeze-film damping in the micro-resonators, 

many methods have been proposed [1–20]. We can identify two groups in this respect. The first  

group [1–7] used the finite element method (FEM) to model the squeeze-film damping. The second 

group [8–20] is devoted to presenting an easy-to-use analytical model for calculating the squeeze-film 

damping. In principle, the FEM based numerical methods are the most accurate way to evaluate the 

squeeze-film damping in micro-resonators. However, a perforated microstructure might consist of 

thousands of tiny holes [18]. Direct simulation of such structures with 3-D FEM tools is time 

consuming and non-transparent [7,18]. In fact, many micro-resonators have a simple structure and 

simple boundary conditions. For these simple structures with simple boundary conditions, the 

analytical models can provide a better insight into the physical characteristic of devices. The aim of 

this paper is to provide an analytical model for estimating the squeeze-film damping in a perforated 

torsion microplate. Next, we summarize the analytical models [8–20] for the squeeze-film damping of 

perforated microplates. 

Two approaches are used in the published analytical models. In the first approach, the vibration 

microplate is considered as a set of uniformly distributed cells. Each cell contains a single hole.  

The pressure profile is repetitive. The Reynolds equation is solved within the single cell using  

suitable boundary conditions. The total damping is calculated by multiplying the damping due to the 

single cell by the total number of cells. This first approach was followed by Skvor [8], Bao et al. [9], 

Mohite et al. [10,11], Kowk et al. [12], Homentcovschi and Miles [13,14], Homentcovschi et al. [15]. 

In 1967, Skovr [8] first derived an analytical expression using the first approach to determine the 

squeeze-film damping of a perforated microplate, however, the derivation didn’t consider the air 

compressibility, the edge effect and the flow resistance of the holes. In 2002, Bao et al. [9] extended 

the Skvor model by including the flow resistance of the holes. In 2004, Homentcovschi and Miles [13] 

also used the Skvor model and included the resistance of the perforations. The optimum number of 

holes was determined. In 2005 and 2008, Mohite et al. [10,11] extended Skvor’s model to  

include compressibility, rarefaction and inertia effects. In 2005, Kowk et al. [12] also derived a new 

model to include perforations, however, Kowk’s model is only valid for large perforations. In 2007, 

Homentcovschi and Miles [14] extended the Skvor model by including the edge correction.  

In 2010, Homentcovschi et al. [15] presented a new model for a perforated microplate outside the 

lubrication approximation. 

The second approach is to modify the Reynolds equation by adding new terms and coefficients to 

account for the influence of the holes on the pressure of the flow through the microstructure. The 

modified Reynolds equation is then solved within the whole plate to directly get the overall damping. 

This second approach was followed by Veijola and Mattila [16], Bao et al. [17], Veijola [18],  

Pandey et al. [19] and Li et al. [20]. In 2001, Veijola and Mattila [16] were the first to derive an 

extended Reynolds equation that has an additional “leakage” term due to the perforations. In 2003, by 

adding a penetrating term to the fluid continuity equation, Bao et al. [17] derived a modified Reynolds 

equation under the assumption of incompressible flow. In 2006, Veijola [18] modeled the perforation 
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effect by calculating the equivalent electrical impedance for squeeze film damping, the flow resistance 

of the holes, end effect of the holes and the compressibility effect. In 2007, Pandey et al. [19] extended 

Bao’s model to include the compressibility effect and rarefaction effect. The previous models based on 

the second approach are only suitable to deal with rectangular perforated microplates, but circular 

perforated microplates are also widely used in micro-resonators. In 2014, we [20] presented an 

analytical model for calculating the squeeze-film damping in perforated circular microplates. Our 

previous work [20] is also based on the second approach. 

Torsion perforated microplates are also common elements in micro-resonators. However, there  

are few works on analytical modeling of the squeeze-film damping of torsion perforated microplates. 

All the previous works focus on perforated microplates vibrating in the direction normal to the 

substrate. This paper presents an analytical model for calculating the squeeze-film damping in a 

perforated torsion microplate. This paper is based on the second approach. Table 1 lists the 

contributions of the previous models and the proposed model based on the second approach. The 

outline of this paper is as follows: two types of torsion plates are often used in micro-resonators, so 

Sections 2 and 3 present two analytical models for calculating the squeeze-film damping in the two 

types of torsion plate, respectively. The pressure in the air gap is represented by the double sine series. 

Analytical expressions for the squeeze-film damping and spring constants have been found. Section 4 

calculates the squeeze-film damping using the present models, and compares the calculated results 

with the FEM results and the experimental data [21]. The regime of validity and limitations of the 

present models are assessed. Finally, a conclusion is given in Section 5. 

Table 1. Comparison of the previous models and the proposed model based on the  

second approach. 

Publication Year Reference Contributions and Structure Assumed in Model 

2001 
Veijola and 
Mattila [16] 

An extended Reynolds equation is first derived by adding an additional 
“leakage” term due to the perforations. Rigid rectangular microplate is 
considered. The microplate is operated in normal direction to the substrate. 

2003 
Bao et al. 

[17] 

A modified Reynolds equation under the assumption of incompressible 
flow is derived by adding a penetrating term to fluid continuity equation. 
Rigid rectangular microplate is considered. The microplate is operated in 
normal direction to the substrate. 

2006 Veijola [18] 

The perforation effect is model by calculating the equivalent electrical 
impedance for squeeze film damping, the flow resistance of the holes, end 
effect of the holes and the compressibility effect. Rigid rectangular 
microplate is considered. The microplate is operated in normal direction to 
the substrate. 

2007 
Pandey et al. 

[19] 

Bao’s model [17] was extended to include the compressibility effect and 
rarefaction effect. Rigid and flexible rectangular microplates are 
considered. The microplate is operated in normal direction to the substrate. 

2014 Li et al. [20] 
The modified Reynolds equation presented by Pandey et al. [19] was 
extended to model the rigid and flexible circular microplates. The 
microplate is operated in normal direction to the substrate. 

 
Proposed 

model 
The modified Reynolds equation presented by Pandey et al. [19] was 
extended to model the torsion microplate. 
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2. Analytical Modeling of Squeeze-Film Damping for the First Type Resonator 

Current structures in torsion micro-resonators can be classified into two main types. In the first type, 

the torsion plate is symmetric with respect to the rotation axis. In the second type, the torsion plate is 

asymmetric. In this section, we focus on the squeeze-film damping in the first type of the  

torsion micro-resonators. 

2.1. Governing Equations 

Figure 1 shows a schematic drawing of a torsional micro-resonator. The device is a rigid rectangular 

oscillating microplate under the effect of squeeze-film damping. The rectangular microplate is 

uniformly perforated with square holes. The rectangular microplate is supported by two torsion beams 

which in turn are mounted on two anchors fixed to the rigid substrate. The two torsion beams can be 

treated as two torsion springs. The rectangular microplate is symmetric with respect to the rotation 

axis. For convenience, we will refer to this as a type I device. The perforated rectangular plate is 

excited by an electrostatic force. There are two electrodes in the substrate. 0g  is the zero-voltage air 

gap spacing. The thickness of the two electrodes can be neglected. 

 

Figure 1. A schematic drawing of a perforated torsion microplate supported by two  

torsion beams. 

Figure 2 shows a top view and a cross-sectional view of the rectangular microplate. The plate has  

Nx × Ny uniformly distributed square holes of size lh  with a pitch lp  along both the x and y-directions. 

Here, Nx is the number of holes along x-direction and Ny is the number of holes along y-directions. Lx, 

Ly and Tp are the length, width and thickness of the plate, respectively. 

In 2002, Bao et al. [9] first presented a modified Reynolds equation for the rectangular perforated 

microplate vibrating in the direction normal to the substrate by subtracting the pressure relief due  

to the perforations. However, the compressibility effect and the rarefaction effect of the air in the gap 

are not included in their work. In 2007, Pandey et al. [19] extended Bao’s model to include  

the compressibility effect and rarefaction effect.  
  

Torsional beam Anchor 

ElectrodeSubstrate 



Sensors 2015, 15 7392 

 

 

(a) 

(b) 

Figure 2. A schematic drawing of a perforated torsion microplate (Type I). (a) Top view of 

the perforated microplate with uniformly distributed holes; (b) cross-sectional view. 

The modified Reynolds equation presented by Pandey et al. [19] under isothermal conditions is: 

( ) ( )3 3 2 2
ch ch th

eff12μ 12μ 8μ η(β) a

phQ h Q h Q bp p
p p p p p

x x y y T t

β  ∂   ∂ ∂ ∂ ∂ + − − =    ∂ ∂ ∂ ∂ ∂     
 (1)

where )(th  is the squeeze-film thickness, ),,( tyxp  is the pressure of air in the gap, pa is the ambient 

pressure, μ is the viscosity, β
b

a
= , 1.096

2
hlb =  is the equivalent hole radius [11], 

π

pl
a =  is the area 

equivalent outer radius of the pressure cell [11], )8π3(Peff bTT +=  is the effective hole length which 
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includes the hole length Tp and an equivalent length to account for the end effect of the hole, 
4

th
3

eff 0 ch

3 (β)
η(β) 1

16

b K Q

T g Q
= +  and 2 4(β) 4β β 4lnβ 3K = − − − , Qch and Qth are the flow rate factors which account 

for the rarefaction effect in the flow through the parallel plates and through the holes, respectively. The 

expressions for Qch and Qth are: 

17468.1
00

ch

35355.1
6

π01807.0
31

DD
Q ++=  (2)

thth 41 KnQ +=  (3)

where 
ch

0 2

π

Kn
D = , 

λ
ch

0
Kn

g
= , 

th

λ
Kn

b
=  and 

0.0068
λ

pa
=  at ambient temperature and pressure pa. 

The previous works presented by Bao et al. [17] and Pandey et al. [19] have dealt with the  

squeeze-film damping due to the normal motion between two parallel surfaces. The squeeze-film 

thickness in their works is tAgth ωj
00 e)( += , where 

tA ωj
0e  is the displacement of the moving plate.  

In this section, for the torsion plate, the squeeze-film thickness can be expressed as: 

22
,e)( j

00
xxt L

x
L

xgth ≤≤−⋅+= ωθ  (4)

where tωθ j
0e  is the angular displacement of the rotating plate. 

Equation (1) can be linearized under the assumption of small amplitude vibration )( 00 θ⋅>>xg  and 

small pressure variation ( ppa Δ>> ), where ppp a Δ+= . For convenience, we introduce the follow 

nondimensional variables: 

ap

p
tyxP

Δ=),,( thtH ωj
0e)( =  (5)

where 
0

0
0 g

h
θ

= . Substituting Equation (5) into Equation (1), and linearing the outcome around pa and 

0g , leads to: 









∂
∂+

∂
∂⋅=−

∂
∂+

∂
∂

t

H
x

t

P

L

P

y

P

x

P 2
22

2

2

2

α  (6)

where 
3
0 eff ch

2 2
th

2 η(β)

3β

g T Q
L

b Q
=  is the characteristic length and 2

2
ch 0

12μ
α

aQ p g
= . The boundary conditions for 

the torsion plate are: 

0),
2

,(),
2

,(),,
2

(),,
2

( =+=−=+=− t
L

xPt
L

xPty
L

Pty
L

P yyxx  (7)

2.2. Analytical Model for the Type I Device 

The solution of Equation (6) can be approximated by the following form: 
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m
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y

x

xn
mn

L
y

L

nL
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L

m
atyxP ωj

1 1

e)
2

(
π

sin)
2

(
π

sin),,( ⋅











+⋅








+=

∞

=

∞

=
 (8)

where mna  is the complex amplitude to be determined. Obviously, Equation (8) satisfies the boundary 

condition (Equation (7)). Substituting Equation (8) and thtH ωj
0e)( =  into Equation (6), leads to: 

22

2 2
02

1 1

π π 1 π π
jωα sin ( ) sin ( ) jω α

2 2
yx

mn
m n x y x y

LLm n m n
a x y xh

L L L L L

∞ ∞

= =

        − − − − ⋅ + ⋅ + = ⋅                  
  (9)

Multiplying both sides of Equation (9) by 











+⋅








+ )

2
(

π
sin)

2
(

π
sin y

y

x

x

L
y

L

nL
x

L

m
, and integrating the 

results from 
2

xL
x −=  to 

2
xL  and 

2
yL

y −=  to 
2

yL
 leads to: 

2
R I 0

2 22

2
2

8 jω α
ˆ ˆj for 2,4,6; 1,3,5

π π π 1
jωα

0 , otherwise.

x
mn mn

mn
x y

L h
a a m n

mn m n
a

L L L

 ⋅ + ⋅ = = =          + + +=            



 (10)

where 
Rˆmna  and 

Iˆmna  are the real and imaginary parts of mna , the expressions of 
Rˆmna  and 

Iˆmna  are  

as follows: 
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+
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=

42

2

2

22

42

20
R

1ππ
π

8
ˆ

αω

αω

LL

n

L

m
mn

L
ha

yx

x
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(11)

22

2
2

I
0 2 222

2 4
2

π π 1
ωα

8
ˆ

π
π π 1

ω α

x y
x

mn

x y

m n
L L LL

a h
mn

m n
L L L

    + +           =           + + +           

 (12)

The equation of motion for the torsion plate shown in Figure 1 can be expressed as:  

Squeeze)(ˆˆ TtVkJ +=+ θθ θ
  (13)

where Ĵ  is the moment of inertia about the rotation axis, θk̂  is the torsional stiffness, )(tV  is a 

harmonic excitation, SqueezT  is the total torque acting on the plate owing to the pressure of the squeeze 

gas film. SqueezT  can be calculated by integrating the pressure distribution on the surface of the plate: 

=SqueezeT ( )    − −− −
⋅Δ=⋅− 2

2

2

2

2

2

2

2

dddd
y

y

x

x

y

y

x

x

L

L

L

L

L

L

L

L a yxxpyxxpp  (14)
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so the total damping torque and the total spring torque acting on the plate due to the squeeze-film are:  

I I2 2
damping Squeeze

2,4,6 1,3,522

22

2
2

3

0 2 2 4
2

π π
ˆ sin ( ) sin ( ) d d

2 2

π π 1
ω

16

π
π π

y x

y x

L L
yx

L La mn
m n x y

x y
x y

a

x y

LLm n
T T p a x y x x y

L L

m n
L L LL L

p h
m n

m n

L L

α

∞ ∞

−− = =

  
= = ⋅ + ⋅ +  

    
    + +          = − ⋅   

    
+      

  


222,4,6 1,3,5
2 4

2

1
ω α

m n

L

∞ ∞

= =     + +     

 


 
(15)

R R2 2
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2,4,6 1,3,522

3 2 4

0 2 2 4 2221,3,5
2 4

2

π π
ˆ sin ( ) sin ( ) d d

2 2

16 ω α

π
π π 1

ω α

y x
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L L
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m n x y

x y
a
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L L

L L
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m n
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∞ ∞

−− = =

=

  
= = ⋅ + ⋅ +  

    
 

= −            + + +           

  


2,4,6m

∞ ∞

=
 



 
(16)

where R
SqueezeT  and I

SqueezeT  are the real and imaginary parts of SqueezT . The corresponding damping 

constant I
θC  and the spring constant I

θK  owing to the pressure of the squeeze gas film are given by: 

( )

22

2
2

3
dampingI

2 2 4 2222,4,6 1,3,50 0
2 4

2

2

3

2 2 4
0

π π 1
α

16
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π π 1
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θ θ

∞ ∞
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3 2 4
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2 2 4 2222,4,6 1,3,50 0
2 4
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2 2 4 221,3,50 2
2 2

2

16 ω α
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16 σ

π
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m n
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∞ ∞

= =
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= ⋅           + + +        

 


2,4,6m

∞ ∞

=
 



 
(18)

where 
2

2 2
2

ch 0

12μω
σ ωα x

x
a

L
L

Q p g
= =  is the squeeze number. 

In MEMS area, torsion microresonators are usually operated at low frequency (the first natural 

frequency). In this case, the squeeze number is very small; thus 0I ≈θK . The air flow could be treated 

as “incompressible air”. Equation (17) then reduces to: 
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2,4,6 1,3,50

16σ
π π

ω π
x ya x x

m n y

L Lp L L
C m n

g m n L Lθ

−
∞ ∞

= =

   
 = ⋅ ⋅ ⋅ + +          

 


 (19)

3. Analytical Modeling of Squeeze-Film Damping for the Second Type Resonator 

The torsion plate in the second type resonator is asymmetric with respect to the rotation axis.  

Figure 3 shows the top view of the torsion plate: 

 

Figure 3. Top view of the perforated torsion microplate (type II). 

For convenience, we will refer to this as the type II device. A similar analysis as the one given for 

the squeeze-film damping in the type I device can be given for the type II device. In the type II device, 

the squeeze-film thickness can be expressed as: 

jω( ) θ e , 00 0
th t g x x L x= + ⋅ ≤ ≤  (20)

where 
j

0θ e tω
 is the angular displacement of the rotating plate. The boundary conditions for the torsion 

plate are: 

0),
2

,(),
2

,(),,(),,0( =+=−=+= t
L

xPt
L

xPtyLPtyP yy
x

 (21)

For the torsion plate, we can choose the following function to approximate the pressure in the  

air gap: 
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where mnb  is the complex amplitude to be determined. Obviously, Equation (22) satisfies the 

boundary conditions (Equation (21)). 
Substituting Equation (22) and thtH ωj

0e)( =  into Equation (6), leads to: 
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2 2
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1 1

π π 1 π π
jωα sin sin ( ) jω α
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m n x y x y

Lm n m n
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Multiplying both sides of Equation (23) by 
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(24)

where Rˆ
mnb  and Iˆ

mnb  are the real and imaginary parts of mnb , the expressions of Rˆ
mnb  and Iˆ

mnb  are  

as follows: 

( ) ( )
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The torque acting on the plate, excreted by the pressure in the film, is: 

=SqueezeT̂ ( )    −−
⋅Δ=⋅− 2

2
0

2

2
0

dddd
y

y

x
y

y

x

L

L

L
L

L

L

a yxxpyxxpp  (27)

so the damping torque and the spring torque acting on the plate due to the squeeze-film are: 
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where R
SqueezeT̂  and I

SqueezeT̂  are the real and imaginary parts of SqueezeT̂ . The corresponding damping 

constant 
II

θC  and the spring constant 
II
θK  owing to the pressure of the squeeze gas film are given by: 
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where 
2

2 2
2

ch 0

12μω
σ ωα x

x
a

L
L

Q p g
= =  is the squeeze number. Table 2 lists the damping constants and spring 

constants for the type I and II microplates. 

In the case of incompressible air, 0II ≈θK  and Equation (30) reduces to: 
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Table 2. The squeeze-film damping models for the type I and II microplates. 

Devices The Damping Constant The Spring Constant 
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4. Validation and Discussions 

In this section, we first validate the present model by comparing its results with FEM (ANSYS) 

results at different perforation ratios. Pandey et al. [21] conducted experiments to measure the quality 

factors of a torsion micro-resonator at low pressure. The plate in their device is perforated. The 

experimental results obtained by Pandey et al. [21] are also used to verify the present model in  

this section. 

4.1. Comparsions with the FEM Results for the Type I Torsion Microplate 

Now we compare the analytical results obtained by the present model with the FEM results at 

different perforation ratios (lh/lp). The torsion microplate with 100 holes (Nx =Ny = 10) shown in  

Figure 2 is considered in this subsection. The torsion plate is symmetric with respect to the rotation 

axis. The dimensions and parameters of the microplates used in simulations are listed in Table 3.  

The perforated torsion microplate is operated at 5000 Hz. The amplitude of the vibrating plate is very 

small (
210

0
0

xL

g
A = ). In ANSYS, the four-noded FLUID136 element is used to model the viscous fluid 

flow behavior in the gap. The two-noded FLUID138 element is used to model the fluid flow through 

rectangular channels defined by holes. Zero pressure boundary conditions are applied on the free 

boundaries of the plate and the pressure is set to zero at the end of holes. Moving velocity condition in the 

z-direction is applied in the nodes. Figure 4 illustrates a typical ANSYS model with boundary conditions. 
  



Sensors 2015, 15 7400 

 

 

Table 3. Dimensions and parameters for the type I microplate. 

Symbol Description Values Unit 

xL  Length of the torsion microplate 500 µm 

yL  Widthth of the torsion microplate 500 µm 

pT  Thickness of the torsion microplate 10 µm 

xN  The total number of the holes along x-direction 10  

yN  The total number of the holes along y-direction 10  

pl  The pitch of the holes 50 µm 

0g  Gap spacing 5 µm 

ap  Ambient pressure 1.013 × 105 N/m2 
μ Viscosity coefficient 1.83 × 10−5 N·s/m2 

 

Figure 4. ANSYS model with boundary condition for the perforated micrplate (lh/lp = 0.4). 

The infinite summations in the present model for squeeze-film damping were evaluated using 

MATLAB. Careful convergence studies were performed.  
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(a) 

 
(b) 

Figure 5. Convergence analysis of the series for the pressures in the air gap.  

(a) Comparison of the imaginary parts of the pressure at y = 0 in the case of lh/lp = 0.1 and 

(b) comparison of the imaginary parts of the pressure at y = 0 in the case of lh/lp = 0.8. 
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Figure 5a,b show the rate of convergence of the imaginary parts of the pressure at y = 0 for two 

microplates with lh/lp = 0.1 and 0.8, respectively. The results for the real parts of the pressure are not 

presented for the sake of brevity, and the tendency of the real parts of the pressure is similar to that for 

the imaginary parts. Obviously, for the microplate with small perforation ratio (lh/lp = 0.1), a total of  

10 terms (M = 2, 4, 6, 8, 10 and N = 1, 3, 5, 7, 9) were sufficient to achieve convergence. The results 

for 10 terms are indistinguishable from the results for 20 terms (M = 2, 4, 6,…20 and N = 1, 3, 5…19). 

The discrepancy between the results for 10 terms and four terms (M = 2, 4 and N = 1, 3) is 

insignificant. However, for the microplate with large perforation ratio (lh/lp = 0.8), a total of 50 terms 

(M = 2, 4, 6,…50 and N = 1, 3, 5…49) were sufficient to achieve convergence. For this, and all other 

cases presented in this paper, a total of 50 terms were used to predict the squeeze-film damping.  

Figures 6 and 7 show the damping and spring constants of the microplates obtained using the FEM 

model and the present model for different values of perforation ratio (lh/lp). Table 4 lists the detailed 

values of the damping and spring constants obtained by the ANSYS model and the present model.  

For the FEM model, we varied perforation ratios from 0.02 to 0.9 for the same values of pitch  

(lp = 50 µm) and other dimensions as mentioned above. For the present model, we varied perforation 

ratios from 0.02 to 0.99. Obviously, the present model matches well with the numerical (FEM) results 

for the torsion plates with the smaller and medium perforation ratios. For the damping constants, in the 

case of smaller and medium perforation ratios (lh/lp ≤ 0.6), the present model gives values very close to 

the FEM results. For the spring constants, below lh/lp = 0.7, the present model gives values very close 

to the FEM results. Obviously, the discrepancy between the FEM model and the present model 

increases as the perforation ratio increases.  

 

Figure 6. Comparison of the damping constant of the type I devices obtained by the FEM 

model and the present model.  
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Figure 7. Comparison of the spring constant of the type I devices obtained by the FEM 

model and the present model.  

Table 4. The damping and spring constants obtained by the ANSYS model and the presnt 

model
 
for the torsion microplate (Type I). 

p

h

l

l
 The Damping Constant The Spring Constant 

FEM Model The Present Model FEM Model The Present Model 

0.02 2.51 × 10−11 2.52 × 10−11 9.26 × 10−9 9.37 × 10−9 

0.1 1.94 × 10−11 1.97 × 10−11 5.39 × 10−9 5.46 × 10−9 

0.2 6.93 × 10−12 7.18 × 10−12 6.20 × 10−10 6.20 × 10−10 

0.3 2.73 × 10−12 3.12 × 10−12 9.63 × 10−11 1.07 × 10−10 

0.4 1.29 × 10−12 1.65 × 10−12 2.31 × 10−11 2.87 × 10−11 

0.5 6.37 × 10−13 9.30 × 10−13 6.47 × 10−12 8.86 × 10−12 

0.6 2.96 × 10−13 5.17 × 10−13 1.68 × 10−12 2.68 × 10−12 

0.7 1.16 × 10−13 2.72 × 10−13 3.38 × 10−13 7.30 × 10−13 

0.8 3.07 × 10−14 1.35 × 10−13 3.82 × 10−14 1.80 × 10−13 

0.85 1.35 × 10−14 1.02 × 10−13 9.40 × 10−15 1.13 × 10−13 

0.9 2.44 × 10−15 6.92 × 10−14 3.71 × 10−16 4.64 × 10−14 

0.99 - 4.50 × 10−14 - 1.97 × 10−14 
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There is a clear discrepancy between the FEM model and the present model at large perforation 

ratios. Two reasons for the discrepancy are as follows: 

First, the pressure function in the present model is assumed to be continuous. Obviously, the 

assumption is only reasonable for plates with smaller and medium perforation ratios. Therefore it is 

unreasonable to compare results for the plates with large perforation ratios. Second, the squeeze-film 

damping can be modeled by two approaches using ANSYS. In the first approach, the fluid in air gap is 

modeled by the Navier-Stokes equation, which is solved by using 3-D elements in FEM. In the second 

approach, the fluid is modeled by the Reynolds equation, which is solved by using 2-D elements 

(FLUID 136 and 138 elements). In fact, the first approach is the most accurate way to predict the 

squeeze-film damping. However, 3-D FEM simulation for the squeeze-film damping in the perforated 

plate is time consuming and non-transparent. In contrast, the second approach is simple and highly 

efficient. The FEM results in this paper are obtained by using the second approach. However, the 

second approach has a limitation. Only the damping force acting on the lower surface of the perforated 

plate is considered in the second approach. In the case of large perforation ratios, the area of the lower 

surface of the perforated plate is very small. When the perforation ratio approaches 100%, the area of 

the lower surface approaches zero, so the damping force obtained by the second approach is zero. The 

damping force caused by the mechanical resistance of the channel is not considered in the second 

approach. The damping force caused by the mechanical resistance of the channel is not zero in the case 

of large perforation ratios. Thus total damping force is not zero in the case of large perforation ratios. 

The damping force caused by the mechanical resistance of the channel is considered in the present 

model. A detailed discussion for the limitation of the second approach can be found in [2]. 

To examine the validity of the present model over a wide range of frequency, we compare the 

damping torques and the spring torques obtained by the present model and the FEM model in the range 

from 1 kHz to 1000 MHz. It needs to be stressed that the derivation in this paper assumes the modified 

Reynolds number to be small ( Re
2

air 0ρ ω 1μ
g= << ) and neglects inertial effects. This sets an upper 

limit for the torsion devices on the maximum frequency. Above the maximum frequency, the inertia 

terms cannot be neglected. It is unreasonable to compare the results above the maximum frequency. 

However, the inertia effect is also not included in the FLUID136 element. Thus it is reasonable to 

compare the results at arbitrary frequency. 

Figures 8–10 show the damping torques and the spring torques obtained by the two models as a 

function of frequency for the microplates with lh/lp = 0.2, 0.5 and 0.7 respectively. As expected, the 

present model matches well with the FEM results over a wide range of frequency for the microplates 

with lh/lp = 0.2 and 0.5. The discrepancy between the present model and the FEM model also increases 

as the perforation ratio increases. There is a clear discrepancy between the FEM model and the present 

model at large perforation ratios. 
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Figure 8. Comparison of the damping torques and the spring torques for microplate  

(lh/lp = 0.2) obtained by the FEM model and the present model as a function of frequency. 

 

Figure 9. Comparison of the damping torques and the spring torques for microplate  

(lh/lp = 0.5) obtained by the FEM model and the present model as a function of frequency. 
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Figure 10. Comparison of the damping torques and the spring torques for microplate  

(lh/lp = 0.7) obtained by the FEM model and the present model as a function of frequency. 

4.2. Comparsions with the FEM Results for the Type II Torsion Microplate 

The torsion microplate with 50 holes (Nx = 5 and Ny = 10) shown in Figure 3 is considered in this 

subsection. The torsion plate is asymmetric with respect to the rotation axis. The length of the torsion 

microplate is Lx = 250 µm and other dimensions are as mentioned in Table 3. Figures 11 and 12 show 

the damping constants and spring constants of the microplates as a function of perforation ratio (lh/lp) 

obtained by the FEM model. Also shown in the same figures are the analytical results obtained by the 

present model. Table 5 lists the detailed values of the damping and spring constants obtained by  

the ANSYS model and the present model. In ANSYS, the torsion microplate is operated at 5000 Hz.  

The amplitude of the vibrating plate is very small (
210

0
0

xL

g
A = ). As expected, the present model 

matches well with the FEM results for the plates with the smaller and medium perforation ratios. For 

the damping constants, in the case of smaller and medium perforation ratios (lh/lp ≤ 0.6), the present 

model gives values very close to the FEM results. For the spring constants, below lh/lp = 0.7, the 

present model gives values very close to the FEM results. There is a clear discrepancy between the 

FEM model and the present model at large perforation ratios. 

To check the validity of the present model at different values of frequency, we also compare the 

damping torques and the spring torques obtained by the present model and the FEM model in the range 

from 1 kHz to 1000 MHz. The tendency of the results for the type II plates are similar to that for the 

type I plates, i.e., the present model matches well with the FEM results over a wide range of frequency 
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for the plates with the smaller and medium perforation ratios. For the purpose of brevity, the figures 

for the type II microplates at different values of frequency are not shown in this subsection. 

 

Figure 11. Comparison of the damping constant of the type II devices obtained by the 

FEM model and the present model.  

 

Figure 12. Comparison of the spring constant of the type II devices obtained by the FEM 

model and the present model.  
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Table 5. The damping and spring constants obtained by the ANSYS model and the presnt 

model
 
for the torsion microplate (Type II). 

p

h

l

l
 The Damping Constant The Spring Constant 

FEM Model The Present Model FEM Model The Present Model 

0.02 1.26 × 10−11 1.26 × 10−11 4.63 × 10−9 4.67 × 10−9 

0.1 9.71 × 10−12 9.84 × 10−12 2.69 × 10−9 2.73 × 10−9 

0.2 3.47 × 10−12 3.58 × 10−12 3.10 × 10−10 3.10 × 10−10 

0.3 1.37 × 10−12 1.55 × 10−12 4.82 × 10−11 5.34 × 10−11 

0.4 6.42 × 10−13 8.18 × 10−13 1.15 × 10−11 1.43 × 10−11 

0.5 3.19 × 10−13 4.59 × 10−13 3.24 × 10−12 4.40 × 10−12 

0.6 1.48 × 10−13 2.54 × 10−13 8.39 ×10−13 1.32 × 10−12 

0.7 5.83 × 10−14 1.33 × 10−13 1.70 × 10−13 3.60 × 10−13 

0.8 1.56 × 10−14 6.62 × 10−14 1.93 × 10−14 8.80 × 10−14 

0.85 6.66 × 10−15 4.99 × 10−14 4.64 × 10−15 5.55 × 10−14 

0.9 1.46 × 10−15 3.37 × 10−14 2.29 × 10−16 2.28 × 10−14 

0.99 - 2.19 × 10−14 - 9.59 × 10−15 

4.3. Comparsions with the Experimental Results of Pandey et al. [21] 

Pandey et al. [21] conducted experiments to measure the quality factors of a double-gimballed torsion 

micro-resonator in the free molecular regime. In the dual axis resonator, there are two types of motion, 

one about the inner torsional axis and the second about the outer torsional axis. Pandey et al. [21] 

measured the quality factors of the two motions as a function of pressure in the range from 10−3 to 103 

Torr. In this subsection, only the experimental data of the motion about the inner torsional axis are 

used to examine the presented model. The main reason is as follows: for the motion about the inner 

torsional axis, only the inner plate vibrates with angular displacement and the rest of the structure is 

stationary. The inner plate is a rectangular perforated microplate. The inner plate is asymmetry with 

respect to the rotation axis. The plate has the following dimensions: Lx = Ly = 400 μm, Nx = Ny = 12,  

lh = 3 μm, lp = 32.5 μm Tp = 4.25 μm and 0g = 80 μm. The plate is operating at its natural frequency  

ɷ = 529.2 Hz. Air is used as fluid medium. The temperature is T = 293 K. The moment of inertia about 

the inner axis is Ĵ = 2.106 × 10−17 kg·m2. 

The basic assumption in Reynolds equation is g0/Lx << 1. The flow in the z-direction can be 

negligible. However, for the inner plate of Pandey et al. [21], the gap spacing is comparable to the 

lateral dimensions (g0/Lx = 0.2). To model the squeeze-film damping under such conditions using the 

models based on the Reynolds equation, Pandey and Pratap [22] replaced the length and width of the 

vibrating plate with the effective length and width. The effective length and width are computed by 

comparing the analytical results based on the Reynolds equation to the numerical results obtained by  
3-D FEM. The effective length and width presented by Pandey and Pratap [22] are 0

eff 425.1 gLL xx +=  

and 0
eff 425.1 gLL yy += . Here, we use the present model with the effective length and width to predict 

the quality factors of the inner plate.  
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Figure 13 shows the experimental results obtained by Pandey et al. [21]. Also shown in the same 

figure are the results obtained by the present model with the effective length and width. Obviously, 

above p = 0.5 Torr, the present model matches well with the experimental results. However, there is a 

clear discrepancy between the present model and the experimental results below p = 0.5 Torr. Two 

reasons for the discrepancy are as follows: first the present model treats the gas in the gap as a 

continuum. However, below p = 0.5 Torr, Kn > 1, the flow is in the transition region or in the free 

molecular region. The continuum theory may fail to give a good prediction in the two regions. The 

second reason for the discrepancy is the intrinsic damping of the material. There are two mechanisms 

of energy dissipation in the experimental results. One is the air damping. The other is the intrinsic 

damping of the material. The damping obtained by the experimental results including the two damping 

can be expressed by: 

intrinsic
Exp

squeeze
Exp

All
Exp

111

QQQ
+=  (33)

where All
ExpQ  is the experimental result obtained by Pandey et al. [21], ( ) 1squeeze

Exp

−
Q  is the squeeze-film 

damping of the air gap and intrinsic
ExpQ  is the intrinsic damping. In low pressure, squeeze

ExpQ  is proportional to 

air pressure. However, in very low pressure, the intrinsic damping begins to dominate the energy loss. 

The intrinsic damping is independent of the air pressure. 

 

Figure 13. Comparison of the quality factors obtained by the present model to the 

experimental results of Pandey et al. [21]. 
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Perforations in microstructures play a significant role in controlling the squeeze-film damping. 

However, there are few works on analytical modeling of the squeeze-film damping of torsion 

perforated microplates. There are two types of torsion perforated plates used in micro-resonators. This 
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paper presents two analytical models for calculating the squeeze-film damping in both types of torsion 

plates. The pressure in the air gap is obtained using the double sine series. Closed-form expressions for 

the stiffness and damping coefficients of the squeeze-film are derived. On comparing the present 

model with the FEM results and experimental results available in the literature, the following 

conclusions can be drawn. 

(1) The present model is valid for devices with smaller and medium perforation ratios.  

The present model gives good results for the devices with lh/lp ≤ 0.6. For the devices with  

lh/lp ≤ 0.6, the present model matches well with the numerical model over a wide range of 

frequency. However, there is a clear discrepancy between the FEM model and the present 

model at large perforation ratios. 

(2) The main assumption in this paper is the negligence of the inertial effect. The assumption  

limits the operating frequency range. Currently, we are extending this work to account for the 

inertial effect. 
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