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Abstract: In this paper we address the problem of off-grid direction of arrival (DOA) 

estimation based on sparse representations in the situation of multiple measurement vectors 

(MMV). A novel sparse DOA estimation method which changes MMV problem to SMV is 

proposed. This method uses sparse representations based on weighted eigenvectors 

(SRBWEV) to deal with the MMV problem. MMV problem can be changed to single 

measurement vector (SMV) problem by using the linear combination of eigenvectors of 

array covariance matrix in signal subspace as a new SMV for sparse solution calculation. 

So the complexity of this proposed algorithm is smaller than other DOA estimation 

algorithms of MMV. Meanwhile, it can overcome the limitation of the conventional  

sparsity-based DOA estimation approaches that the unknown directions belong to a predefined 

discrete angular grid, so it can further improve the DOA estimation accuracy. The modified 

Rife algorithm for DOA estimation (MRife-DOA) is simulated based on SRBWEV 

algorithm. In this proposed algorithm, the largest and sub-largest inner products between 

the measurement vector or its residual and the atoms in the dictionary are utilized to further 

modify DOA estimation according to the principle of Rife algorithm and the basic idea of 

coarse-to-fine estimation. Finally, simulation experiments show that the proposed 

algorithm is effective and can reduce the DOA estimation error caused by grid effect with 

lower complexity. 
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1. Introduction 

Approaches for direction of arrival (DOA) estimation have been widely studied [1–6]. In recent 

years, sparse representations and reconstruction theory have also been applied to DOA  

estimation [7–13]. The ability of multi-source resolution and efficient estimation in a few snapshots are two 

important advantages of DOA estimation using sparse theory. Theoretically, only one snapshot is 

needed to estimate parameters in sparse representations theory, but in practical applications more 

snapshots are sampled in order to improve the accuracy of DOA estimation. This problem is the  

so-called multiple measurement vectors (MMV) problem [14]. In [7,8], the Bayesian compressive 

sensing (BCS) framework is used in the DOA estimation problem. In paper [15], a joint recovery 

algorithm to estimate the angle spectrum was proposed, but the computational burden of this method 

becomes larger with the increasing number of snapshots and the estimation results may be influenced 

more easily by signal-to-noise ratio (SNR). In order to reduce the computational burden and improve 

estimation precision, there are some classical methods to solve the MMV problem, such as  

L1-SVD [16], R-GBCD+ [17], M-FOCUSS and L1-ACCV [18]. These algorithms all take datum 

correlations of different snapshots into consideration. The L1-ACCV algorithm can transform the 

MMV problem into a single measurement vector (SMV) model through an array cross-correlation 

vector (ACCV) [18]. Inspired by the L1-ACCV and L1-SVD algorithms, we propose a sparse 

representations based on weighted eigenvectors (SRBWEV) algorithm which can change the MMV 

problem into a SMV problem by using the linear combination of eigenvectors of array covariance 

matrix in signal subspace as a new SMV. 

However, no matter what kind of sparsity-based methods are used, they all face a common off-grid 

estimation problem that true DOAs may not be on the discretized sampling grid [19] in some 

situations. Although the model is sparse in a continuous angular domain, we must construct a finite 

dictionary by sampling this domain with a predefined sampling grid in order to apply the sparse theory 

framework. Therefore, the true DOAs of targets are almost surely not located exactly on a subset of 

these grid points. This phenomenon leads to a model mismatch that results in a degradation of the 

performance. Of course, for higher DOA estimation accuracy a smaller grid spacing is required, which 

leads to a higher computational cost. If we reduce the number of grid points, the off-grid probability of 

the spatial source increases and the resultant DOA estimation accuracy decreases [20]. To compromise 

between the DOA estimation accuracy and the computational cost, some algorithms such as multiresolution 

grid refinement [16], coarse-to-fine DOA estimation [20], SRTLS, SBI algorithms and SOMP-LS 

algorithm [21] were proposed to deal with these problems, but these algorithms still have a large 

computational burden. The basic idea of these algorithms is that the approximate sparse solution is 

found in the first step and then grid or optimization search algorithm refinement is adopted. Inspired by 

the frequency estimation approach based on FFT using the Rife algorithm and M-Rife algorithm [22], 

we introduce in this paper a simple approach that is the modified Rife algorithm for DOA estimation 
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based on the proposed SRBWEV algorithm (MRife-DOA). Firstly we finish an approximate on-grid 

DOA estimation by using the SRBWEV algorithm. Then we further modify the DOA estimation 

results by using a modified Rife algorithm which uses neighboring atoms on both sides of estimated 

on-grid atoms and two new additional atoms produced according to estimate on-grid atoms, so the 

estimation accuracy can be improved effectively. 

This paper is concerned with high accuracy DOA estimation with low complexity based on sparse 

representations. The remainder of this paper is organized as follows: we present DOA estimation based 

on the SRBWEV algorithm in Section 2. In Section 3, refining of the DOA estimation using the 

modified Rife algorithm is proposed. The simulation results and some discussions are given in Section 4. 

Finally, we conclude our work in Section 5. 

2. Signal Model of DOA Estimation Based on Sparse Representations  

2.1. Input Signal Model 

Suppose K  far-field narrowband signals impinging on a uniform linear array (ULA) which has M  
antenna array elements spacing d  from directions 1 2θ [θ θ θ ]K= . The received signal can be 

expressed as: 

( ) (θ) ( ) ( ), 1, 2, ,l l l l L= + = y A s n  (1)

where 1 2(θ) [ (θ ) (θ ) (θ )] M K
K

×∈ A = a a a  is the array manifold matrix, 
2 2 ( 1)

sinθ sinθ T(θ ) [1, , , ]
k k

d M d
j j

k e e
−− −

= 
π π
λ λa  is the steering vector of the array, T[ ]⋅  denotes the transpose, 

λ  is the carrier wavelength, ( )ls  is incident signals, ( )ln  is additive complex Gaussian noise with 

zero mean, spatially and temporally uncorrelated with H 2
.E[ ( ) ( )] δ σl ml m =n n I , H( )⋅  stands for 

Hermitian transformation, L  is the number of snapshots. 

2.2. Sparse Representations 

The signal sparse representations mean a signal can be represented in an ultra-complete redundancy 

dictionary. Then we find the best linear combination of atoms to represent the original signal. An  
ultra-complete redundancy dictionary to represent original signal ( )ly  of Equation (1) may be 

established as follows: 

1 2[ (α ) (α ) (α )]P= A a a a  (2)

where A  is a known ultra-complete redundancy dictionary matrix with M P<< . This dictionary is an 

angles set that denotes a sampling grid of all possible DOAs. According to Equation (2) we can rewrite 

the signal model of Equation (1) to group L  snapshots as: 

= +Y AX N  (3)

where [ (1), (2), , ( )]L= Y y y y  is a matrix of size M L× , [ (1), (2), , ( )]LX = x x x  is a matrix of size 

P L×  and N  is a noise matrix of size M L× . Then we find K  nonzero coefficients in the vector ( )lx  

and zero coefficients in the remaining P K− , i.e., the sparsity in the angle space denotes that only a few 

atoms from the dictionary can be required to match the measurements. Here K P<  condition is satisfied. 
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2.3. The Proposed SRBWEV Algorithm 

To calculate the sparse solution by using the new algorithm, we utilize an important property of the 

relation between eigenvectors of an array covariance matrix and the steering vectors in the signal 

model (1) firstly. The property is described as “Based on signal model of Equation (1) the eigenvectors 
of array covariance matrix YR  in signal subspace is equal to linear combination of steering vectors 

(θ )ka  ( 1,2, ,k K=  )” (for the proof, see [23]). From the property we know that we can use 

eigenvector or eigenvectors’ linear combination in signal subspace as a new measurement vector 

instead of the matrix Y  in order to solve MMV problem. Meanwhile we learn that the property can be 

satisfied in the situation of both correlated and uncorrelated incident signals. So we generalize the 

scheme of SRBWEV algorithm. 

Input: The received signal matrix Y , and a sparse representations dictionary matrix 
{ (α ), 1,2, , } M P

p p P ×= = ∈ A a . 

(1) EVD for array covariance matrix YR ; 

(2) Determine the number of the larger eigenvalues ( N ) and eigenvectors corresponding to N  
larger eigenvalues such as 1e , 2e , , ne , , Ne ; 

(3) Make a single measurement vector e  combined by linear combination of eigenvectors 

1e , 2e , , ne , , Ne , 

1

ζ

ζ

N
n

n
n=

=e e
 

(4)

where ζ n ( 1,2, ,n N=  ) is the N  larger eigenvalues of array covariance matrix YR  and 

1ζ ζ ζ ζn N= + + + +  ; 

(4) Search the index atoms in atomic dictionary by using OMP algorithm; 

(5) Output: DOA. 

Here, we make a weighted linear combination using eigenvalues for eigenvectors of the covariance 

matrix. Meanwhile, we use the OMP algorithm [20] to solve the sparse solution, so the SRBWEV 

algorithm can change the MMV problem into a SMV problem so as to reduce sparse solution 

calculation iterations. 

3. Refining the DOA Estimation Using the Rife Algorithm 

A limitation of the above model is that it assumes that the unknown directions fall on the predefined 

angular grids which the precision of DOA estimation is dependent on, but designing the fine grid for 

the dictionary can increase the computational burden. In order to further improve the precision of DOA 

estimation, we propose a simple algorithm based on the Rife algorithm which is based on correlation 

of two neighboring distinct dictionary atoms. 
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3.1. Correlation of Two Distinct Dictionary Atoms in Atomic Dictionary 

We define correlation coefficient μ  corresponding to ratio of the absolute value of inner product 

between two distinct dictionary elements (e.g., (α )pa  and (α )qa ) and the product of each Euclidean 

distance of these two distinct dictionary elements [24]: 

(α ), (α )
μ(α ,α )

(α ) (α )

p q

p q

p q

=
a a

a a
 (5)

where (α )pa  and (α )qa  are dictionary elements. Fixing the α p  value which is the relative initial 

angle and defining α α αq pΔ = − , then we have: 

2 ( 1)
(sinα sin(α α))

1

(α ), (α α)
μ(α ,α α)

(α ) (α α)

sin( sin(sin α sin(α α)) / λ)

sin( (sin α sin(α α)) / λ)

p p

p p

p p

p p

m dM j

m

p p

p p

e

M

dM

M d

− − +Δ

=

+ Δ
+ Δ =

+ Δ

=

− + Δ
=

− + Δ


π

λ

π
π

a a

a a

 
(6)

Here, we only consider the main lobe width. Considering α 0Δ ≈  and sin α sin(α α) 0p p− + Δ ≈ , so 

Equation (6) can be changed as the following: 

sin( sin(sin α sin(α α)) / λ) 1

(sin α sin(α α)) / λ 2
p p

p p

dM

dM

− + Δ
=

− + Δ
π
π

 (7)

Then, we obtain: 

1.39λ
sin α sin(α α)p p dM

− + Δ =
π

 (8)

0.5

α α α α
sin α sin(α α) 2 cos( ) sin( ) cosα α

2 2
p p

p p p

+ + Δ Δ− + Δ = ≈ • Δ  (9)

0.5

50.7λ
α 2 α ( )

cosαmb
pMd

Δ = Δ =   (10)

Here, αmbΔ  stands for the main spectral bandwidth and 0.5αΔ  stands for half of the main lobe 

width. From Equation (10), we learn that neighboring atoms in sparse dictionary have a strong 

correlation which is dependent on the number of array elements M , carrier frequency or wavelength 
λ , array spacing d  and relative initial angle α p . The larger the relative initial angle is, the wider the 

main lobe is. For example, Figures 1 and 2 show the correlation coefficient as a function of | α α |q p−  

with the different relative initial angle α p . These simulation figures are obtained under the condition 

of using a ULA with eight antenna elements spaced at λ / 2 , so we can utilize the correlation to further 

improve the DOA estimation precision. Meanwhile, these figures show that the correlation coefficient 
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between two neighboring atoms approaches the maximum value of 1 when the sampling resolution for 

the sampling grid increases. 

In order to find the relationship between inner products, we further take an example of enlarging the 

correlation coefficient result around a nearby relative initial angle 0° . We assume there is a ULA with 

20 antennas uniformly spaced with an antenna distance of λ / 2 . The grid is of 1°  resolution with the 
grid points constituting the set { 90 , 89 , ,90 }− ° − ° °  and the true DOA of incident signal is set 0.4°  

which is an off-grid angle. The simulation results are shown in Figure 3 where estimation DOA 0= °  

(on-grid DOA estimation) is obtained by using the SRBWEV algorithm. Meanwhile, we give contour 

of the inner product from 10− °  to 10°  and two neighboring inner products corresponding to 1− °  and 

1°  near the maximum inner product. From Figure 3, we know the neighboring inner products on both 

sides of the true DOA are larger than other inner products. The DOA estimation algorithm based on sparse 

representations chooses the nearest atom to match the true DOA. Inspired by this finding, we may 

choose three on-grid inner products which include the max and two neighboring values located on the 

left and right sides of the maximum to further estimate DOA by using the Rife algorithm. 
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Figure 1. The correlation coefficient between two atoms with α 0p = ° . 
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Figure 2. The correlation coefficient between two atoms with α 60p = − ° . 
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Figure 3. Off-grid and on-grid DOA estimation relationship. 

3.2. The Principle for the Rife Algorithm 

The Rife algorithm was initially proposed to complete frequency estimation based-DFT. The 

correlation between neighboring atoms is very similar to the relationship for neighboring frequency 

spectrum amplitude to a certain extent. We expect that the Rife algorithm can eliminate the grid effect 

by exploring the neighboring atoms’ relationship, so we will introduce Rife algorithm for calculating 

the DOA. 

0
0

0 0

(α α β)
ˆ α α β

(α ) (α α β)
res

c res
res

B

B B

+
= +

+ +


 


α  (11)

Here, α res  denotes the grid resolution and 0α  stands for the estimated on-grid DOA which are 

achieved by some algorithms based on sparse representations, such as L1-SVD, M-FOCUSS, L1-ACCV 
and the proposed SRBWEV algorithm. (α)B  stands for the inner product operation between atom 

vectors corresponding to angle α  in dictionary and the residual in the OMP algorithm. 

However, there are some disadvantages in DOA estimation using the Rife algorithm directly. From 

the principle of the Rife algorithm and numerical simulation experiments, we learn the estimation 

performance is excellent when the incident signal’s DOA lies in the middle of two discrete on-grid 

angles. In this situation the error is smaller than with direct estimation using sparse representations, but 

when the true DOA of an incident signal is approximately or equal to the on-grid angle, the estimation 

error may be larger than with direct estimation using sparse representations. In the worst case the error 

may be reach half of the resolution for the grid. 

Inspired by [22], we can modify the standard Rife algorithm for DOA estimation. Since we know if the 

true DOA lies in middle of the grid resolution, the estimation performance is good, so we can find two 

new atoms in order to make the true DOA lie in the middle of these two new atoms when the 

estimation DOA based on the standard Rife algorithm is approximated to the on-grid estimation angle, 

so we propose two loops for the modified Rife algorithm. The coarse estimation is realized to obtain 

the on-grid angle in the first loop and the fine estimation can be utilized to obtain an off-grid estimation. 

Here, we give the scheme for the modified Rife algorithm: 
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Input: The received signal matrix Y and a sparse representations dictionary matrix 
{ (α ), 1,2, , } M P

p p P ×= = ∈ A a  with angle resolution 1α α αres i i+= − . 

(1) Use the SRBWEV algorithm we obtain the on-grid DOA estimation αi  and two neighboring  

on-grid DOAs 1αi+  and 1αi− ; 

(2) Use the Rife algorithm we obtain the off-grid coarse DOA estimation αEC ; 

(3) The Rife algorithm is modified: 

If 
1

α α α
3EC i res− < , use the Rife algorithm secondly. 

(a) Compute two new inner products:  

0.5

0.5

, (α )
ξ

(α )
i

l
i

−

−

=
•

r a
r a

(12)

0.5

0.5

, (α )
ξ

(α )
i

r
i

+

+

=
•

r a
r a

 
(13)

(b) Obtain the off -grid fine DOA estimation: 
If ξ ξl r≥ : 

α ξ
α α α

2 ξ ξ
res r

E i res
l r

= − +
+  

(14)

else: 

α ξ
α α α

2 ξ ξ
res l

E i res
l r

= + −
+  

(15)

else:  

α αE EC=  (16)

(4) Output: DOA=αE .  

Here, r  denotes the residual in the OMP algorithm, 0.5(α )i−a  the vector corresponding to the angle 

1
α α

2i res−  and 0.5(α )i+a  the vector corresponding to the angle 
1

α α
2i res+  are two newly found atoms. 

Another problem is that the contour and properties of the main lobe are different from the DFT 

spectrum of. First of all, from Equation (10), we can know that the bandwidth of the main lobe is 
ascertained by the number of array elements M  and relative initial angle α p , so we must guarantee 

that the α αres mb< Δ  condition is satisfied. If not, the Rife algorithm is not effective. Generally 

speaking, DOA lies in [ 60 ,60 ]− ° °  in most of practical applications, so we can ignore the effect of α p . 

On the other hand, if α res  is too small, i.e., the grid is so fine, that the difference for the normalized 

inner products for two neighboring on-grid atoms is very small. Here we can further modify the Rife 
algorithm. We can add a regularization factor ρ  as a correction item. The Equations (11), (14) and 

(15) can be modified as follows: 
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0
0

0 0

(α α β)
ˆ α α β

ρ (α ) (α α β)
res

c res
res

B

B B

+
= +

+ +


 
 

α  (17)

α ξ
α α α

2 ρ ξ ξ
res r

E i res
l r

= − +
+ (18)

α ξ
α α α

2 ξ ρ ξ
res l

E i res
l r

= + −
+ 

 
(19)

Regularization factor ρ  can be determined by sampling grid spacing α res . If α res  is small, then ρ  

can be assigned a large value, and vice versa. According to numerical experiments, if 
α

α
10

mb
res

Δ≈ , 

then ρ  can be set in [1.5,5] . 

4. Simulation Experiments 

In the following, we present some simulations to verify the theoretical results. We consider a ULA 

with eight antennas, uniformly spaced with an antenna distance of λ / 2 . The basic simulation 

parameters are set as follows. The number of snapshots is 100L = . The regularization factor is set to be 
ρ = 3. The root mean square error (RMSE) is defined by Equation (20): 

1
2 2

1

1 ˆRMSE ( ( θ ) )
J

j k
jJ =

= − θ  (20)

where J  is the times of independent Monte Carlo simulations, ˆ
jθ  stands for the DOA estimation value 

of the true DOA θk  for the thj  trial. One thousand independent Monte Carlo simulations are carried 

out for each SNR varied from −10 dB to 20 dB with 5 dB step. The true DOA is selected randomly in 

independent Monte Carlo simulations. 

In Figures 4 and 5, SRBWEV stands for the new proposed algorithm called SRBWEV. L1-SVD 

stands for L1-SVD, R-GBCD+ stands for the R-GBCD+ algorithm, CRB stands for the Cramer-Rao 

bound (CRB) and MRife stands for the modified Rife algorithm for DOA estimation based on the 

SRBWEV algorithm. 

In Figure 4, the grid spacing is equal to 0.5°  compared with 1°  in Figure 5. Figure 4 shows 

SRBWEV is effective for DOA estimation. It has almost the same performance as the L1-SVD 

algorithm in the case of 0.5°  spacing with the same SNR. Compared with L1-SVD, the SRBWEV 

algorithm has a smaller computational burden. 

In Figure 5, we obtain the estimation performance for MRife-DOA based on the SRBWEV 

algorithm. From the simulation results, we know the angle measurement error can be decreased by 

using the MRife algorithm. The accuracy of the MRife algorithm will be nearly improved by two-fold 

as compared to the R-GBCD+ algorithm and SRBWEV algorithm without the Rife modification. In 

other words, we have the same performance as Figure 4 in the case of grid spacing 1°  instead of 0.5°  

grid spacing. Meanwhile, the computational cost is reduced by half. 

SNR is set to 0 dB. One thousand independent Monte Carlo simulations are carried out for each 

number of snapshots varied from 20 to 200 in steps of 20. Figure 6 shows the RMSE of DOA 

estimation versus number of snapshots. It can be seen that the RMSE of the MRife algorithm is smaller 
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than with the other two algorithms and the MRife algorithm can achieve better performance than the 

other two algorithms. 
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Figure 4. DOA estimation with grid spacing 0.5° . 
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Figure 5. DOA estimation using modified Rife algorithm with grid spacing 1° . 
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Figure 6. RMSE of DOA estimation versus number of snapshots. 
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The grid is divided in the range of 60− °  to 60°  in spacing of 1° . SNR is set to 0 dB. One hundred 

Monte Carlo simulations are carried out for each number of snapshots varied from 50 to 200 in steps of 50. 

Table 1 shows the average running time versus the number of snapshots. It can be seen from Table 1 that 

the running time of the SRBWEV algorithm is the shortest. The running time of the MRife algorithm is 

longer than that of the SRBWEV algorithm, but shorter than the other two R-GBCD+ and L1-SVD 

algorithms. Therefore, MRife algorithm can achieve better estimation performance with lower complexity. 

Table 1. The running time versus the number of snapshots. 

Number of Snapshots MRife SRBWEV R-GBCD+ L1-SVD 

50 0.0017 s 0.0015 s 0.0145 s 4.9925 s 
100 0.0014 s 0.0012 s 0.015 s 4.9916 s 
150 0.0016 s 0.0014 s 0.0136 s 4.9594 s 
200 0.002 s 0.0018 s 0.0159 s 5.0757 s 

5. Conclusions 

In this paper, inspired by the Rife algorithm for frequency estimation, we propose a new DOA 

estimation method from coarse to fine estimation, named the modified Rife algorithm for DOA 

estimation (MRife-DOA) based on the SRBWEV algorithm which is a sparse decomposition based on 

weighted eigenvectors for DOA estimation. The proposed algorithm can decrease the computational 

burden for grid refinement in sparse representations for DOA estimation. Meanwhile, based on the 

principle that the eigenvectors of the covariance matrix in signal subspace are equal to a linear 

combination of steering vectors, we propose the SRBWEV approach which changes the MMV 

problem to a SMV one in order to reduce the number of sparse solution calculation iterations. The 

performance of the DOA estimation is close to that of the L1-SVD algorithm. Finally the simulation 

results of estimation accuracy and some discussions are shown. These analyses and trials illustrate the 

proposed algorithm is effective and may be applied to practical applications in the near future. 

However, mutual coupling has not been taken into account in this paper and this will be the subject of 

our future work. 
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