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Abstract: Regular monitoring of blood α-fetoprotein (AFP) and/or carcino-embryonic 

antigen (CEA) levels is important for the routine screening of liver cancer. However, AFP 

and CEA have a much lower specificity than des-γ-carboxyprothrombin (DCP) to detect 

liver cancer. Therefore, the study reported here was designed, to develop a screen-printed 

DCP immunosensor incorporating zinc oxide nanoparticles, for accurate determination of 

DCP. The designed immunosensor shows low detection limits for the detection of DCP: 

0.440 ng/mL (based on impedance measurement), 0.081 ng/mL (based on real part of 

impedance measurement) and 0.078 ng/mL (based on imaginary part of impedance 
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measurement), within the range of 3.125 ng/mL to 2000 ng/mL. In addition, there was little 

interference to DCP determination by molecules such as Na+, K+, Ca2+, Cl−, glucose, urea, 

and uric acid. It is therefore concluded that the DCP immunosensor developed and reported 

here is simple, inexpensive and effective, and shows promise in the rapid screening of 

early-stage liver cancer at home with a point-of-care approach. 
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1. Introduction 

Cancers was top of the leading causes of death (28.4%) in Taiwan in 2012, as reported by the 

Ministry of Health and Welfare (Taiwan) [1,2]. Within these cancer cases, liver cancer mortality was the 

second leading cause of death (18.6%) [1,2], and the prevalence of liver cancer has risen from 15.3% in 

1981 to 34.9% in 2012 [1,2]. It was estimated that 34.9 out of 100,000 people died because of liver 

cancer [1,2]. Moreover, early-stage liver cancer cases are often undetected, resulting in late diagnosis, 

treatment and management, exerting a heavy burden on the national health insurance system. 

Clinically, liver cancer can be screened for by using the α-fetoprotein (AFP) test and  

carcino-embryonic antigen (CEA) test [3–6]. However, benign liver diseases can also cause an increase 

in blood AFP levels, and CEA is commonly used for screening several forms of cancer, not specifically 

liver cancer [7,8]. Therefore, both the use of AFP and CEA could potentially lead to misdiagnosis. 

Moreover, AFP and CEA screenings are restricted to the hospital or clinic, not residential settings. It is 

thus possible that people at higher risk of liver cancer may be deterred from taking regular AFP and CEA 

tests on account of travelling, missing the window of early detection and treatment. 

On the ground of the previously mentioned issues, the study reported here aims to develop a simple 

screen-printed des-γ-carboxyprothrombin (DCP) immunosensor incorporating zinc oxide nanoparticles 

(ZnO-NPs), for accurate determination of DCP. This is further supported by the recent publication of 

DCP being a new biomarker, possessing approximately 70% sensitivity and close to 100% specificity 

for liver cancer detection [9]. Basing on the ultra-high specificity of DCP for liver cancer detection, 

successful development of a simple and highly-sensitive DCP immunosensor, would provide a new 

tool for early detection of liver cancer at home, using a point-of-care approach. With this new sensor, 

the present requirement of sophisticated instruments needed to detect very low levels of DCP, would 

be bypassed. To the best of the authors’ knowledge, there is no reported research on a DCP 

immunosensor at present, and the nanomaterials deployed in this study can enhance sensitivity of 

biosensors [10–13]. ZnO-NP is good source for immobilization of proteins due to its strong adsorption 

ability (high isoelectric point ~9.5), good biocompatibility, and high electron communication  

features [14–22]. Many studies have been reported the use of ZnO-NP to fabricate biosensors. For 

example, Ren et al. [23] reported that ZnO-NP can enhance (25-fold) the current response of a glucose 

biosensor because of the large surface area of ZnO-NP and the surface of ZnO-NP can facilitate the 

enzyme immobilization [24]. Hence, the study reported here aims to develop a DCP immunosensor 

incorporating ZnO-NP, to improve the sensitivity for detection of low-level of DCP. 
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2. Materials and Methods 

2.1. Chemicals and Reagents 

Commercial chemicals and reagents without further purification were used in this study.  

Phosphate-buffered saline (PBS), bovine serum albumin (BSA), glutaraldehyde and 20 nm zinc oxide 

nanoparticle were from Sigma Chemical (St Louis, MO, USA); DCP antigen and antibody were from 

AllBio Science Inc. (Taiching, Taiwan); Graphite and silver pastes were purchased from Advanced 

Conductive Materials (Atascadero, CA, USA); Epoxy (EPO-TEK® 509FM-1) from Epoxy Technology 

(Billerica, MA, USA), and polyethylene terephthalate (PET) sheet from 3M (Taipei, Taiwan). 

Deionized water (resistivity ≥ 18 MΩ·cm) used for all preparations, was purified by a Milli-Q UFplus 

System (Millipore, Bedford, MA, USA). 

2.2. Equipment 

An impedance analyzer (Precision Impedance Analyzer WK6420C, Wayne Kerr Electronics Ltd., 

London, UK), was used for measurements of impedance (Z) spectrum, real part of impedance (Z') 

spectrum and imaginary part of impedance (Z") spectrum. 

2.3. Fabrication of DCP Immunosensor  

A screen printing technique (screen mesh size = 390 counts per inch; screen emulsion  

thickness = 25 µm), was employed to construct the sensor used in this study. The fabrication procedure 

according to a published procedure [25] is schematically shown in Figure 1. In brief, each sensor has 

three different screen printing layers, each formed in succession on a clear PET sheet. Each layer was 

allowed to dry at 100 °C for 30 min. The first printing layer consists of silver lines for signal 

conduction. The second layer of graphite pads provided a base for antibody immobilization and the 

formation of connection pins; while the third layer being the insulating shroud of epoxy used for 

insulation and formation of a testing well.  

 

Figure 1. Fabrication procedure of the designed DCP immunosensor, using polyethylene 

terephthalate (PET) as substrate. Each layer of printing was allowed to dry at 100 °C for  

30 min. 
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DCP antibody immobilization was achieved by pipetting a mixture (2 µL) of glutaraldehyde (2.5%) 

and ZnO-NP (0.2 mg/100 mL) into the window, formed by epoxy insulating shroud on the sensor. 

After 1 min, a mixture (4 µL) of DCP antibody (2 µg/mL, 2 µL) and BSA (0.1 M, 2 µL) was 

subsequently pipetted into the window on the sensor, and allowed to cross-link, before cooling the 

sensor overnight at 4 °C. 

2.4. Measurements of the Immunosensor Response to DCP 

All Z, Z' and Z" spectrum measurements were carried out at room temperature (~25 °C), with a 

measurement frequency ranging from 300 Hz to 5 MHz, with 100 frequency points per logarithmic 

decade within this frequency range. Amplitude of the perturbing wave was set to 100 mV.  

Measurements were obtained by connecting the DCP immunosensor to the impedance analyzer. 

One minute after pipetting PBS (10 µL, 25 mM, pH 7.0) onto the immunosensor, Z, Z' and Z" spectra 

of the PBS (ZPBS, Z'PBS and Z"PBS, respectively) were then captured. Then with the PBS removal,  

10 µL DCP (3.125, 6.25, 125 and 2000 ng/mL) was pipetted onto the immunosensor. After 30 min, the 

DCP was removed and the immunosensor immersed in and gently washed with fresh PBS (25 mM,  

pH 7.0). A fresh PBS (10 µL, 25 mM, pH 7.0) was consequently pipetted onto the immunosensor, the 

Z, Z' and Z" spectra were captured after 1 minute. These measurements were denoted as the Z, Z’ and 

Z" spectra of the DCP (ZDCP, Z'DCP and Z"DCP, respectively). 

The Z responses of the immunosensor to DCP were calculated, by subtracting ZDCP from ZPBS  

(i.e., ZDCP − ZPBS) for DCP of various concentrations. The Z' responses of the immunosensor to DCP 

were calculated, by subtracting Z'DCP from Z'PBS (i.e., Z'DCP − Z'PBS) for DCP of various concentrations. 

The Z" responses of the immunosensor to DCP were calculated, by subtracting Z"DCP from Z"PBS  

(i.e., Z"DCP − Z"PBS) for DCP of various concentrations. 

3. Results and Discussion 

The Z responses (i.e., ZDCP − ZPBS) of the designed immunosensor to DCP at various concentrations 

(3.125–2000 ng/mL) within the frequency range of 300 Hz–5 MHz, are shown in Figure 2. A specific 

frequency range (4.189 kHz–5 MHz) was found, in which a good linear (correlation coefficient,  

R2 > 0.8) response range can be obtained.  

The linear calibration curve of the designed immunosensor for measuring DCP at an optimum 

frequency of 5 MHz, is shown in Figure 3. A good linear (R2 = 0.81) response was found, with 

sensitivity of 25.76 Ω/Log (ng/mL) and limit of detection (LOD) of 0.440 ng/mL, at a signal-to-noise 

ratio (S/N ratio) of 3. 

The real part of Z' response (i.e., Z'DCP − Z'PBS) of the designed immunosensor to DCP of various 

concentrations (3.125–2000 ng/mL) within a specific frequency range (6.887–10 kHz), is shown in 

Figure 4. It was within this range of frequency, a good linear (R2 > 0.8) response range was observed.  
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Figure 2. The impedance (Z) response of the immunosensor to DCP at various 

concentrations (3.125, 6.25, 125, 2000 ng/mL) within a frequency range of 300–5 MHz.  

 

Figure 3. The linear calibration curve (ZDCP − ZPBS vs. Log DCP concentration) of the 

immunosensor on measuring DCP (3.125–2000 ng/mL) at the optimum measuring 

frequency of 5 MHz, within the specific frequency range (4.189–5 MHz). Results are 

expressed in mean ± SD (n = 5). 

 

Figure 4. The real part of impedance (Z') response of the immunosensor to DCP of various 

concentrations (3.125, 6.25, 125, 2000 ng/mL) within a specific frequency range  

(6.887–10 kHz). 
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The linear calibration curve of the immunosensor, for measuring DCP at the optimum measuring 

frequency of 7.799 kHz, is shown in Figure 5. The designed immunosensor shows a good linear  

(R2 = 0.87) response with the sensitivity of −60.25 Ω/Log (ng/mL) and LOD of 0.081 ng/mL  

(S/N ratio = 3). 

 

Figure 5. The calibration curve (Z'DCP − Z'PBS vs. Log DCP concentration) of the 

immunosensor on measuring DCP (3.125–2000 ng/mL) at the optimum measuring 

frequency of 7.799 kHz, within the specific frequency range (6.887–10 kHz). Results are 

expressed in mean ± SD (n = 5). 

The imaginary part of Z" response (i.e., Z"DCP − Z"PBS) of the designed immunosensor to DCP of 

various concentrations (3.125–2000 ng/mL) within a specific frequency range (21.080–39.244 kHz), is 

displayed in Figure 6. An excellent linear (R2 > 0.9) response range was observable.  

The linear calibration curve of the immunosensor on measuring DCP at the optimum measuring 

frequency of 23.870 kHz, is displayed in Figure 7. The designed immunosensor shows an excellent 

linear (R2 = 0.95) response, with sensitivity of −51.38 Ω/Log (ng/mL) and LOD of 0.078 ng/mL  

(S/N ratio = 3). 

 

Figure 6. The imaginary part of impedance (Z") response of the immunosensor to DCP of 

various concentrations (3.125, 6.25, 125, 2000 ng/mL) within a specific frequency range 

(21.080–39.244 kHz). 
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Figure 7. Linear calibration curve (Z"DCP − Z"PBS vs. Log DCP concentration) of the 

immunosensor on measuring DCP (3.125–2000 ng/mL) at the optimum measuring 

frequency of 23.870 kHz, within the specific frequency range (21.080–39.244 kHz). 

Results are expressed in mean ± SD (n = 5). 

Repeatability and reliability tests have been conducted (Table 1), to evaluate the reliability of the 

immunosensor on DCP determination. The immunosensor was evaluated by measuring Z" response of 

the immunosensor to DCP (3.125 ng/mL), at an optimum measuring frequency of 23.870 kHz.  

Table 1. The performance of the DCP immunosensor. 

Performance of the DCP Immunosensor Actual 

Linear Range  3.125–2000 ng/mL 

Sensitivity 
Based on Z measurement 25.76 Ω/Log (ng/mL) 
Based on Z' measurement −60.25 Ω/Log (ng/mL) 
Based on Z" measurement −51.38 Ω/Log (ng/mL) 

Linearity 
Based on Z measurement R2 = 0.81 
Based on Z' measurement R2 = 0.87 
Based on Z" measurement R2 = 0.95 

Limit of Detection (S/N ratio = 3) 
Based on Z measurement 0.440 ng/mL 
Based on Z' measurement 0.081 ng/mL 
Based on Z" measurement 0.078 ng/mL 

SFR 
Based on Z measurement 4.189 kHz–5 MHz 
Based on Z' measurement 6.887–10 kHz 
Based on Z" measurement 21.080–39.244 kHz 

OMF 
Based on Z measurement 5.00 MHz 
Based on Z' measurement 7.799 kHz 
Based on Z" measurement 23.870 kHz 

Repeatability Coefficients of variations 3.69% 

Reliability 
Intra-rater reliability (ICC 3,k) 0.97 
Inter-rater reliability (ICC 2,k) 0.95 

Stability (4 °C storage in a dry & dark condition for 20 days) Retaining 89% of its initial value

Where SFR, OMF and ICC are the specific frequency range, optimum measuring frequency and intraclass 

correlation coefficients, respectively. 
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Repeatability tests showed that the immunosensor is reliable enough to determine the 

concentrations of DCP, with a coefficient of variation of 3.69%. The intra-class correlation coefficient 

(ICC) is a measure, used to quantify the reproducibility of a variable, as well as a measure of the 

homogeneity within groups of replicate measurements, relative to the total variation between groups. It 

has been suggested that ICC values should be above 0.75 for good reliability in general [26]. 

Moreover, ICC values should exceed 0.90 to ensure reasonable validity for many clinical measurements’ 

reliability [26]. Outcome of reliability test confirms the excellent reliability and validity of the 

immunosensor, with the ICC(3,k) and ICC(2,k) values being 0.97 and 0.95, respectively (Table 1). 

Based on the findings shown in Figures 3, 5 and 7 and Table 1, the Z" response of the 

immunosensor to DCP is the best approach among the other two (i.e., Z and Z' responses), for the 

screening of early-stages liver cancer, as it provides the lowest LOD (0.078 ng/mL) and the highest 

linearity (R2 = 0.95).  

Stability of the immunosensor under dry and dark conditions at 4 °C, was evaluated over a 20 day 

period. The Z" response of the immunosensor to DCP (6.25 ng/mL) at the optimum measuring 

frequency of 23.870 kHz, was about 89% of its initial value. This finding suggests a good stability of 

the immunosensor, possibly due to the use of glutaraldehyde and BSA to crosslink the antibody onto 

the sensor. This crosslinking structure possibly provides a good micro-environment for the 

maintenance of the functional activity of antibodies.  

An interference test has been conducted, to evaluate the selectivity of the immunosensor on DCP 

determination (Table 2). The immunosensor was evaluated by measuring the Z" response of the 

immunosensor to DCP (4–2000 ng/mL), in the presence of high levels of Na+, K+, Ca2+, Cl−, glucose, 

urea, and uric acid (1 μM for all interferences, and 5 mM for glucose) in BSA. All measurements were 

taken at the optimum measuring frequency of 23.870 kHz. As shown in Table 2, the recovery of the 

immunosensor on DCP (4–2000 ng/mL) determination is greater than 95%. Therefore, the selectivity 

of the immunosensor is acceptable. In addition, this finding suggests that the immunosensor is 

effective for the quantitative determination of DCP in most real samples (i.e., BSA with interferences). 

Table 2. Measurements of DCP with interferences of Na+, K+, Ca2+, Cl−, glucose, urea, and 

uric acid at high concentrations (1 μM for all interferences, and 5 mM for glucose) in BSA. 

Linear calibration curve (Z"DCP − Z"PBS vs. Log DCPconcentration) in Figure 7 was used, with the 

linear regression equation of ∆Z = −51.38 × Log DCPconcentration − 15.10. All measurements 

were conducted at the optimum measuring frequency of 23.870 kHz. 

Standard DCP (ng/mL) Actual (ng/mL) Recovery (%) Relative Error (%) 

4 4.15 96.2 3.8 
20 20.82 95.9 4.1 

200 206.41 96.8 3.2 
2000 2094.13 95.3 4.7 

Where Na+, K+, Ca2+, Cl−, ∆Z, and DCPconcentration are the sodium ion, potassium ion, calcium ion, chloride 

ion, change of imaginary part of impedance (i.e., Z"DCP − Z"PBS) and DCP concentration, respectively.  
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4. Conclusions 

A simple, inexpensive and effective DCP immunosensor incorporating zinc oxide nanoparticles, 

was successfully designed and developed. The Z" response of the immunosensor to DCP is an 

effective tool for early liver cancer detection, as it provides the lowest LOD (0.078 ng/mL), the highest 

linearity (R2 = 0.95) and good sensitivity (−51.38 Ω/Log(ng/mL)). The DCP immunosensor has a 

linear working range of 3.125–2000 ng/mL. Therefore, a new screening tool is proposed and tested in 

this study, possessing the benefits of ease of use at home, short testing time, affordability and being a 

good tool for a possible point-of-care approach. 
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