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Abstract: The early fault characteristics of rolling element bearings carried by vibration 

signals are quite weak because the signals are generally masked by heavy background 

noise. To extract the weak fault characteristics of bearings from the signals, an improved 

spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis 

deconvolution (MCKD). The proposed method combines the ability of MCKD in 

indicating the periodic fault transients and the ability of SK in locating these transients in 

the frequency domain. A simulation signal overwhelmed by heavy noise is used to 

demonstrate the effectiveness of the proposed method. The results show that MCKD is 

beneficial to clarify the periodic impulse components of the bearing signals, and the method 

is able to detect the resonant frequency band of the signal and extract its fault characteristic 

frequency. Through analyzing actual vibration signals collected from wind turbines and hot 

strip rolling mills, we confirm that by using the proposed method, it is possible to extract 

fault characteristics and diagnose early faults of rolling element bearings. Based on the 

comparisons with the SK method, it is verified that the proposed method is more suitable to 

diagnose early faults of rolling element bearings. 

Keywords: maximum correlated kurtosis deconvolution; spectral kurtosis; rolling element 

bearing; early fault diagnosis 
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1. Introduction 

As rolling element bearings are widely used in rotating machinery and one of the most easily 

damaged components as well, their early fault diagnosis has attracted lots of attention [1–4]. Typically, 

the early faults of bearings are difficult to detect by extracting fault characteristics from the vibration 

signals with low signal-to-noise ratios [5]. Therefore, how to effectively extract weak fault 

characteristics is the key step for further identifying the early faults of bearings. In order to solve this 

problem, researchers have investigated plenty of signal processing techniques [6–10]. Among these 

techniques, envelope analysis is widely used because of its ability to isolate the impulse responses of 

bearings. It determines the locations and types of the bearing faults by extracting the fault information 

from the interested frequency band of the signals and reduces the influence of non-fault periodic 

components [11]. However, the selection of the suitable analysis frequency bands always depends on 

diagnostic expertise, which can greatly influence the accuracy of the analysis results. Therefore, spectral 

kurtosis (SK) was developed to identify the frequency bands with a great quantity of impulses [12]. 

Antoni [13] further studied the theory of spectral kurtosis and proved that SK could detect the 

frequency bands with the impulsiveness excited by defects of the components, and then applied the 

spectral kurtosis in mechanical fault diagnosis. However, the drawback of SK is that the method may 

fail in effectively detecting transients with a low signal-to-noise ratio. To remedy this drawback,  

Wang et al. [14] proposed an adaptive spectral kurtosis method for bearing fault diagnosis and the 

method could determine the optimal bandwidth and center frequency adaptively. Wang et al. [15] 

developed an enhanced SK method which calculates kurtosis values based on the power spectrum and 

wavelet packet nodes at different depths. Xu et al. [16] applied the periodic component to aperiodic 

component ratio for finding the frequency band with periodic impulses of SK and the results showed the 

effectiveness of the method. Wang et al. [17] combined minimum entropy deconvolution (MED) and 

SK for extracting weak fault characteristics of the bearings, and the results showed that the method 

performed better than the wavelet transform and ensemble empirical mode decomposition. Fan et al. [18] 

developed a method to enhance the capability of SK by using cepstrum pre-whitening and MED, so 

that the impulses of the original signals can be effectively deconvolved from the effect of the 

transmission path. Through the literature review, we notice that MED enhances the performance of SK 

because it could sharpen the impulses and increase the kurtosis of the signals. However, MED may fail 

to extract the desired ones, especially in the diagnosis of low speed bearings, since MED ignores the 

periodic nature of bearing signals [19].  

To take advantage of the periodic nature of the bearing fault signals and diagnose the early faults 

accurately, this study proposes an improved SK method by using the maximum correlation kurtosis 

deconvolution (MCKD) technique. First, MCKD, as an improved MED method, is used to highlight the 

periodic impulse components of the vibration signals. Then SK is applied to select the resonant 

frequency band of the signal filtered by MCKD and generate the envelop spectrum for diagnosing the 

faults. Harnessing the advantages of MCKD and SK, the proposed method is expected to effectively 

extract the weak fault characteristics and identify the early faults of the bearings. The remainder of the 

paper is organized as follows: Section 2 briefly introduces MCKD and SK. Section 3 describes the 

proposed method. In Section 4, a simulation is used to illustrate the ability of the proposed method in 

detecting the resonant frequency band and extracting the fault characteristics from the signal 
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overwhelmed by heavy noise. In Section 5, the proposed method is applied to diagnose the early 

bearing faults of wind turbines and rolling mills, respectively. Through the results of the two diagnosis 

cases, the effectiveness of the proposed method is verified. Conclusions are drawn in Section 6. 

2. Theoretical Background 

2.1. MCKD Technique 

MCKD, proposed by McDonald et al. [19], takes advantage of the periodic nature of bearing  

faults as well as the impulse-like vibration behavior associated with these faults. It aims at selecting a 

finite impulse response filter (FIR) to maximize the correlated kurtosis of signals and encourage  

its periodicity.  

When a fault occurs, we can define discrete signal x(n) as the response of the bearing excited by the 

fault impulse signal y(n). MCKD searches for a FIR filter w(l) to maximize the correlation kurtosis of the 

signal y(n) recovered from the input signal: 


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where T is the period of the impulses and M is the shift number. 

The optimization function of MCKD is expressed as: 
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2.2. Spectral Kurtosis 

The spectrum kurtosis method was first introduced by Dwyer to overcome the problems of the 

power spectral density method in indicating the transients of the signals in the applications [12]. 

Antoni further studied on the theory of SK and gave the formal definition by theoretical analysis. 

The signal Y(t) is defined as the response of a system by a signal X(t), which is expressed as: 

2π( ) ( , ) ( )ftY t e H t f dX f
+∞
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=   (6)

where H(t, f) is the time-varying transfer function. Since e2πftH(t, f)dX(f) is the result of a narrow-band 

filter centered on frequency f, H(t, f) can be regarded as the complex envelope of the signal Y(t) at f. 

The fourth-order spectral cumulant of Y(t) is defined as: 
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where S2Y(f) is calculated by S2nY(t, f), and S2nY(t, f) is the 2n order transient moment. 

Then SK is defined as the normalized cumulant calculated by: 
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SK is affected by the chosen window length. In order to determine the window length of SK, Antoni 

used the short-time Fourier transform to compute various window lengths of SK and selected the 

interested frequency band where the kurtosis was maximized. This technique led to the concept of the 

kurtogram, which is a diagram presenting values of SK calculated by a series of filters with different 

parameters of center frequency and bandwidth. Then the fast kurtogram was developed by Antoni to 

promote the calculation efficiency [13]. It is used to process the signals in this study. 

3. The Proposed Method 

Spectral kurtosis has been applied to rotating machinery fault diagnosis for years and has achieved good 

results [14]. In the early stage of bearing faults, however, using SK to detect the impulses of the signals is 

difficult since potential periodic impulses are often overwhelmed by unexpected heavy noise [15]. To 

enhance the effect of SK, some preprocessing methods are needed to improve the signal-to-noise ratio 

and highlight the fault impulses, which would offer a great help for diagnosing the early faults of 

rolling element bearings. MED has shown its effectiveness in deconvolving the impulses from a 

mixture of response signals and has been used to enhance the performance of SK in bearing fault 
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detection and diagnosis. However, if the fault impulses are submerged in noise, MED tends to only 

deconvolve a single impulse or a selection of impulses instead of the desired periodic impulses. To solve 

this problem, MCKD is developed by considering the periodic nature of the fault impulses and its 

superiority to MED has been illustrated [19]. Therefore, MCKD may greatly improve the performance 

of SK and accurately diagnose the early faults of the bearings. 

Based on the analysis above, this study proposes a new method for early fault diagnosis of rolling 

element bearings. The method harnesses the ability of MCKD in highlighting the periodic fault transients 

and the ability of SK in locating these transients from the frequency domain. The flow chart of the 

proposed method is presented in Figure 1 and the details are described as follows.  

(1) Obtain an original vibration signal x(n) of the bearings and filter it by MCKD. Since periodic 

impulses excited by an incipient defect of bearings are weak and always masked by other 

components of the vibration signal, MCKD is used to filter the signal x(n) and enhance these 

periodic fault impulses. The filter coefficient w(l) is determined by Equation (5) and the filtered 

signal y(n) is the convolution result of x(n) with w(l). 

(2) Generate the kurtogram of the filtered signal y(n). The 1/2-binary and 1/3-binary trees of  

filter-banks are obtained first and then implemented on the signal y(n). In consequence, a series 

of filtered signals is produced. Let ck 
i (n) be the sequence of the filtered signal issued from the 

ith filter at the kth level of the filter-bank tree, thus ck 
i (n) is the complex envelope of y(n) 

positioned on frequency fi and bandwidth (∆f)k. Then the kurtogram is constructed with the 

kurtosis values calculated by all the sequences ck 
i (n). 

(3) Select the ck 
i (n) with the maximum kurtosis in the kurtogram and implement the envelope 

analysis on the sequence. As a result, the envelope spectrum with an optimal frequency band is 

obtained and it may demodulate the fault information buried in the original signal x(n). 

(4) Detect the fault characteristic frequency in the envelope spectrum and diagnose the fault types. 

4. Simulation Illustration 

In this section, a simulation of the early bearing fault diagnosis is conducted to illustrate the 

effectiveness of the proposed method. When faults occurred on bearings, the high-level periodic impulses 

are excited and decay exponentially [14], so the simulated signal consists of an impulsive signal and a 

noise signal. The impulsive signal is obtained by the following equation [15]: 

mβ ( )
m( ) sin(2π ( ) ) k r F f F

r
r

y k A f k r F f F e− × − ×= × × − × ×  (9)

where Ar is the amplitude of the impulses and equals 1.5, fm is the fault characteristic frequency and 

equals 50 Hz, F is the sampling frequency which is set to 10 kHz, f is the resonant frequency equaling 

2000 Hz and the decay parameter β is 500. A total of 20,000 samples are simulated for the impulsive 

signal. The noise signal refers to a white Gaussian noise with a mean of 0 and a variance of 1.5. We 

add the noise signal to the impulsive signal so as to generate the simulated signal. Figure 2 shows  

the impulsive signal, the noise signal and the simulated signal (to display these signals clearly, only  

2000 samplings are shown). It can be seen from Figure 2c that the impulsive signal is totally 

overwhelmed by the noise signal, which is similar to the early fault signals of the bearings. 
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Figure 1. Flow chart of the proposed method. 

 

Figure 2. (a) The impulsive signal; (b) the noise signal; (c) the simulated signal  

(its kurtosis is 3.0). 
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The proposed method is employed to analyze the simulated signal. Figure 3a shows the signal 

preprocessed by MCKD. It can be seen that MCKD lifts the kurtosis value of the simulated signal from 

3.0 to 3.4. Although the kurtosis value is not high, the MCKD helps clarify the impulses of the 

preprocessed signal. In Figure 2c, the impulsive signal is totally overwhelmed by the noise signal. 

After being preprocessed by MCKD, the impulses appear in the preprocessed signal. In Figure 3a, each 

interval of highlighted impulses is 0.02 s, corresponding to the simulated fault characteristic frequency. 

So the use of the MCKD can improve the performance of SK since it highlighted overwhelmed 

impulses to a level that reflects the fault.  

 

Figure 3. The results of the simulated signal based on the proposed method, (a) the signal 

preprocessed by MCKD (its kurtosis is 3.4); (b) the kurtogram of the preprocessed signal; 

(c) the envelope spectrum of the signal filtered by the selected frequency band.  

The kurtogram of the preprocessed signal using the proposed method is paved in Figure 3b and the 

frequency band with the highest kurtosis is indicated by the white rectangle. The center frequency and 

bandwidth of the selected frequency band are 1875 Hz and 416.7 Hz, respectively. It is noticed that the 

frequency band contains the resonant frequency of 2000 Hz. Then the simulated signal is filtered with the 
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frequency band and its envelope spectrum is plotted in Figure 3c, where the fault characteristic frequency 

and its harmonics are evidently extracted. This illustrates that MCKD is able to improve the performance 

of SK in detecting the resonant frequency band so as to extract the fault characteristics from the signal 

overwhelmed by heavy noise. Therefore, the proposed method could not only detect the resonant 

frequency band, but also extract the fault characteristics from the signal overwhelmed by heavy noise. 

For comparison, the original SK method [12,13] is also applied to analyze the same simulated signal. 

Its kurtogram is shown in Figure 4a, in which the frequency band with the maximum kurtosis is indicated 

by the white rectangle. The frequency band has a center frequency of 3750 Hz and a bandwidth of  

2500 Hz. The envelope spectrum of the frequency-band signal is shown in Figure 4b. From the figures, it 

can be seen that the SK method fails to detect the resonant frequency band and extract the fault 

characteristic frequency of the simulated signal.  

The comparison results demonstrate the superiority of the proposed method in extracting the fault 

characteristics from the simulated signals with a low signal-to-noise ratio. Therefore, the proposed 

method may effectively diagnose early faults of bearings in real cases. 

 

Figure 4. The results of the simulated signal based on the SK method, (a) its kurtogram;  

(b) the envelope spectrum of the signal filtered by the selected frequency band. 

5. Applications 
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avoid serious damage and reduce the operational cost. In this section, a real case is shown which uses the 

proposed method for diagnosing the bearing faults of a wind turbine.  

The vibration signals were acquired from an operating wind turbine at a wind farm located in 

Zhangjiajie, China. The wind turbine is shown in Figure 5. It can be seen that with three blades 

supported by the main bearing, the rotor transmits the torque to the planetary gearbox through the  

low-speed shaft. Then the three-stage gearbox increases the rotational speed and transmits the torque to 

the high speed shaft, which drives the generator. When the maintenance workers checked the wind 

turbines during routine maintenance, they found that the vibration noise of the wind turbine was 

extremely heavy around its generator, but they failed to find the reasons for this abnormal 

phenomenon. Although it did not affect the operating status of the wind turbine, we considered that a 

fault occurred in the generator and began to monitor this wind turbine. We mounted accelerometers at the 

free-end of the generator. The accelerometer model used is the 356A12-type ICP accelerometer 

produced by PCB Piezotronics, Inc. (New York, NY, USA). The DT9837B module produced by Data 

Translation (Bietigheim-Bissingen, Germany) was employed for the data sampling of the voltage. A 

laptop with data acquisition software was used to collect the signals. The sampling frequency is 20,000 Hz.  

 

Figure 5. (a) A picture of the wind turbine; (b) structure sketch of the wind turbine and 

location of sensors.  

The defect frequencies of the bearings for the wind turbine bearing are displayed in Table 1. The 

vibration signal shown in Figure 6a is collected when the rotational speed of the high speed shaft is 

about 2.45 Hz. It is seen that weak impulses exist in the signal, which means there may be a fault in the 

generator. From the frequency spectrum in Figure 6b, it is found that there exists a large amplitude at 

16.63 Hz, which corresponds to two times the fault characteristic frequency of the bearing outer race (the 

fault characteristic frequency of the outer race is fo = 2.45 × 3.38 = 8.281 Hz), but it is not evidence of 

the existence of faults, because the frequency component of 16.63 Hz is not a dominant component in 

the spectrum and the fault characteristic frequency of the outer race is not extracted. 

Table 1. The defect frequencies of the wind turbine bearing (multiple of running speed in Hz). 

Outer Race Inner Race Rolling Element Rotational Speed of Shaft (Hz) 

3.38 4.62 3.05 2.45 
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Figure 6. (a) The vibration signal of the wind turbine (its kurtosis is 3.14); (b) the frequency 

spectrum of the signal. 

To confirm whether a fault occurred on the outer race, the SK method is applied to extract the weak 

fault characteristic frequency of the outer race. The corresponding kurtogram is plotted in Figure 7a 

and the frequency band with the maximum kurtosis is indicated by the white rectangle in the figure, 

which is selected as the optimal frequency band for filtering the signal. The filtered signal is further 

processed with the envelope analysis and its envelope spectrum is shown in Figure 7b. It can be seen 

from the envelope spectrum that the outer race fault frequency is extracted by the SK method. But the 

characteristic frequency is not evidence enough to confirm the existence of faults.  

 

Figure 7. The results of the wind turbine signal based on the SK method. (a) its kurtogram; 

(b) the envelope spectrum of the signal filtered by the selected frequency band. 
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To extract the characteristic frequency evidently, the proposed method is employed to analyze the 

vibration signal. Its signal preprocessed by MCKD is shown in Figure 8a. It can be seen that by using 

MCKD the kurtosis of the signal dramatically increased from 3.14 to 24.3. The high kurtosis value of the 

preprocessed signal reflects the clarity of impulses. The kurtogram of the vibration signal based on the 

proposed method is shown in Figure 8b. The frequency band with the maximum kurtosis is indicated by 

the white rectangle, and Figure 8c shows the envelope spectrum of the corresponding frequency-band 

signal. It can be seen from the figure that the outer race fault frequency and its harmonics are extracted 

effectively, which illustrate that a fault occurred on the outer race of the bearing of the generator. 

Moreover, the signal-to-noise ratio in Figure 8c is much higher than that of Figure 7b, which demonstrates 

the superiority of the proposed method in extracting the fault characteristics of the bearings.  

 

Figure 8. The results of the wind turbine signal based on the proposed method, (a) the 

signal preprocessed by MCKD (its kurtosis is 24.3); (b) its kurtogram; (c) the envelope 

spectrum of the signal filtered by the selected frequency band. 
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stand often suffer from heavy load operating conditions, especially in the processes of occluding steel 

and tapping steel. Therefore, the bearings of the pinion stand are easily damaged, which may affect the 

rolling process. To guarantee the quality of the rolled steel, it is necessary to diagnose the early bearing 

faults of rolling mills. 

The case in this section uses the proposed method for diagnosing early bearing faults in the pinion 

stand of a hot strip rolling mill. A picture of the pinion stand and its structure are shown in Figure 9. 

The vibration signals were collected by an online data acquisition system, which was developed by the 

Iron and Steel Corporation (Taiyuan, China). The defect frequencies of the bearing are displayed in 

Table 2. It is seen that the shaft rotational frequency is fr = 3.36 Hz, and the fault characteristic 

frequency of the inner race is fi = 46.57 Hz. 

 

Figure 9. (a) A picture of the pinion stand; (b) structure sketch of its structure. 

Table 2. The defect frequencies of the rolling mill bearing (multiple of running speed in Hz). 

Outer Race Inner Race Rolling Element Rotational Speed of Shaft (Hz) 

10.44 13.86 3.61 3.36 

Figure 10a shows the vibration signal collected from the pinion stand with a sampling frequency of 

10 kHz. The figure reveals that the signal contains weak periodic components in the time domain, but 

the fault cannot be identified because of its weak characteristics. Consequently, the envelope analysis 

is used to demodulate the fault information from the signals and the result is shown in Figure 10b. In 

the figure, however, only two times the rotational frequency of the shaft fr and its harmonics are clearly 

observed, instead of the fault characteristic frequency of the inner race fi. This illustrates that a fault 

may occur in the pinion stand but the fault cannot be determined by the results of the envelope 

analysis. Then the proposed method is applied to analyze the signal. As shown in Figure 10c, the 

kurtosis value of the signal preprocessed by MCKD increases to 37.8 compared to the value of 5.15 for 

the raw vibration signal, so the impulses of the signal are highlighted by using MCKD. The envelope 

spectrum based on the proposed method is shown in Figure 10d. It is observed that the fault 

characteristic frequency of the inner race and its harmonics are extracted by the proposed method and 

the intervals between the modulated sidebands are equal to the rotational frequency of the shaft. These 

results illustrate that a fault occurred on the inner race of the bearing and the proposed method is able 

to extract the weak fault characteristics effectively. To illustrate the effectiveness of the proposed 
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method, a comparison is conducted with the SK method. Figure 10e shows the diagnosis result of the 

SK method. It can be noticed that the SK could also extract the inner race fault frequency and its 

harmonics, but other frequencies are also highlighted, which interferes the extraction of the fault 

characteristics. Thereby, it is verified that the proposed method performs better in identifying the early 

faults of the bearings. Additionally, Figure 11 shows that a crack fault has indeed occurred on the inner 

race of the bearing.  

 

Figure 10. Analysis results of the signal collected from the pinion stand, (a) the original 

vibration signal (its kurtosis is 5.15); (b) the envelope spectrum of the original signal; (c) The 

preprocessed signal by MCKD (its kurtosis is 37.8); (d) the envelope spectrum based on 

the proposed method; (e) the envelope spectrum based on the SK method.  

 

Figure 11. The crack fault occurred on the bearing inner race of the pinion stand. 
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6. Conclusions 

This paper proposes an improved SK method based on MCKD for the early fault diagnosis of 

rolling element bearings. In the method, the main purpose of using MCKD is used to clarify the 

periodic impulse components of the bearing signals. It works well by selecting a FIR to maximize the 

correlated kurtosis of signals. SK could select a sensitive frequency band with a great quantity of 

impulses and demodulate the fault information from the frequency band. By analyzing the simulated 

and industrial monitoring signals, it is indicated that the proposed method could effectively suppress 

the heavy background noise and extract the weak fault characteristics from the vibration signals. Based 

on the comparisons with the SK method, it is verified that the proposed method has obvious 

advantages in the early fault diagnosis of the bearings. 
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