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Abstract: An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF 

is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic 

conditions. The first factor is Kalman gain updated by random weighting estimation 

(RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest 

noise level of output, but the inertia of KF response increases in dynamic condition. To 

decrease the inertia, the second factor is the covariance matrix of predicted state vector 

adjusted by RWE only when discontinuities are detected by adaptive moving average 

(AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, 

its performance is compared with conventional KF (CKF), RWE-based adaptive KF with 

gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF  

(AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square 

error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the 

considered methods in denoising FOG signal. 

Keywords: Adaptive Moving Average (AMA); Random Weighting Estimation (RWE); 

Fiber Optic Gyroscope (FOG); Kalman Filter (KF) 

 

OPEN ACCESS 

mailto:songshunguang@126.com


Sensors 2015, 15 26941 

 

 

1. Introduction 

As a kind of inertial sensor based on optical Sagnac effect, fiber optic gyroscope (FOG) has been 

widely used in inertial navigation system (INS) because of its significant advantages such as small 

size, low cost, no moving parts, long lifespan, and large dynamic range [1,2]. However, the accuracy 

of the FOG sensor is limited by drift errors due to internal device operations and external environment 

disturbances [3]. The FOG drift signal has two types of errors namely, deterministic errors and stochastic 

errors. Deterministic errors are bias, scale factor, and misalignment, which are relatively easier to be 

compensated by suitable calibration methods in laboratory environment. Stochastic errors, which are 

induced from the environmental temperature changes, electronic noises, and other electronic 

equipment interfaced with it [4,5], are difficult to be directly eliminated. As an alternative, stochastic 

models and denoising methods are two main techniques to restrain the FOG random errors reported in 

the literature. 

Signal processing methods like low pass filter [6], wavelet transforms [7,8], and empirical mode 

decomposition (EMD) [9–11] are used to remove random errors for improving the performance of 

FOG measurement. These methods are successfully applied for denoising FOG static signal but fail to 

denoise FOG signal in highly dynamic conditions due to delay or complexity. Recently, time series 

analysis as a powerful tool is used to model the FOG random drift signal. Autoregressive (AR), 

moving average (MA), and autoregressive moving average (ARMA) have been developed in modeling 

stochastic models for FOG random errors in [12–14]. Combining these stochastic models, a 

conventional Kalman filter (CKF) is usually employed to remove the FOG random drift [13–16], 

where the process and measurement noises are pre-calculated by sampling lots of drift data. However, 

fixed noise variances are unsuitable in real applications which may lead to divergent problems. To 

improve the practicability and to avoid divergent effects, adaptive KF (AKF) methods have been 

investigated which are based on innovation-based adaptive estimation (IAE) or residual-based adaptive 

estimation (RAE) [17–19]. An AKF with double transitive factors is developed in [17,18], where the 

covariance matrix of predicted state vector is modified by an adaptive factor in stage one and the 

covariance matrix of measurement noise is modified by another adaptive factor in stage two. However, 

this method requires that innovation or residual vectors at each time point be in the identical type, 

spatial dimension and distribution, which is difficult to satisfy in a highly dynamic environment. 

Random weighting estimation (RWE) is an advanced computational method in statistics. It does not 

require the prior knowledge of the distribution of position parameters, and the obtained estimation is 

unbiased. RWE has been established for estimation of the covariance matrix of observation vector and 

predicted state vector in [20–22]. In [23], Kalman gain based on RWE is updated using the covariance 

matrix of innovation sequence. This method called RWE-AKFG is applied to denoise the FOG signal 

under static and dynamic environments. However, the inertia of its response increases in denoising the 

FOG dynamic signal, which is not tolerable for real time dynamic applications. To solve the 

contradiction between the noise level of the output signal and the inertia of the KF response, adaptive 

moving average (AMA) is used to detect the discontinuities in signal [24]. AMA based dual mode  

KF (AMADMKF) in [25,26] is proposed to filter the FOG static and dynamic signals, where DMKF 

means the proper KF gain parameter or the ratio Q/R is switched at different conditions. However, it is 

difficult to predefine the proper ratio Q/R to adapt the FOG rotation rate changes [27]. Based on the 
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above research, AMA-DWT-DMKF is used to denoise the FOG static signal, disturbance signal, and 

the change rate signal successfully in [28], but it is much more complex and has a higher computation 

cost. Considering the nonlinearity in system and measurement models, Narasimhappa et al. in [29–31] 

provide various adaptive filters based on unscented Kalman filter such as adaptive unscented Kalman 

filter (AUKF), adaptive square root unscented Kalman filter (ASRUKF) and adaptive sampling strong 

tracking scaled unscented Kalman filter (ASST-SUKF) for denoising the FOG signal. The performance 

of these algorithms is verified in static and dynamic conditions, whereas UKF is more complex than KF. 

Hence, the purpose of this paper is to develop an AMA- and RWE-based double-factor adaptive KF 

algorithm, named AMA-RWE-DFAKF, which can denoise the FOG static and dynamic signal. The 

first adaptive factor is Kalman gain, which is updated by using RWE of the covariance matrix of 

innovation sequence in any condition. The second adaptive factor is the covariance matrix of predicted 

state vector, which is revised based on RWE only when the discontinuities are detected by AMA.  

In fact, it has the same adaptive filter mechanism as [17], except that different estimations are used. 

Experimental results show that the proposed algorithm can satisfy the lowest noise level and the lowest 

inertia in denoising FOG static and dynamic signals. 

The outline of this paper is as follows: Section 1 is the introduction; the concept of adaptive moving 

average is reviewed briefly in Section 2; Section 3 gives a description about the principle of random 

weighting estimation; the proposed AMA-RWE-DFAKF is provided in Section 4; experimental results 

and discussions about the proposed method applied in FOG static and dynamic signals are presented in 

Section 5, and Section 6 is the conclusion. 

2. Concept of Adaptive Moving Average 

The adaptive moving average (AMA) can be used to detect discontinuities in the signal by comparing 

the sample variance with a threshold value, where the length of moving average is adaptive to follow 

the rate of change in signal [24–26,28]. A q-point moving average filter can be expressed as 

1
( ) ( ) 1

2 1

q

j q

y t x t j q t N q
q 

     

  (1) 

where x(t) denotes the input data, 2q + 1 is the moving average window size, N is the number of 

samples as one frame of the input data, and y(t) is the filtered data. The noise can be further reduced by 

applying an iterative adaptive moving average filter shown in Figure 1. The algorithmic steps of this 

filter are explained as 

Step 1: Calculate the absolute value of the differenced y(t) 

( ) ( ) ( )D t y t q y t q     (2) 

Step 2: Calculate the rate of change of D(t) 

'( ) ( 1) ( )D t D t D t    (3) 

Step 3: Calculate the adaptive filtered data Y(t) 
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Figure 1. Procedure of the AMA algorithm. 
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where  

'

'

( ) 0
( )

( ( )) ( ) 0
h

q if D t
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f D t q if D t
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 

  
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 
( )

( ( )) 1
max ( )

D t
f D t

D t
 

 (7) 

Step 4: Repeat the iteration on the filtered data Y(t) from step 1 to 3 until the maximum iterations  

is met. 

The final filtered data Y(t) is obtained by n iteration in our work, i.e., n = 3. And the transition 

locations are detected by comparing the sample variance of Y(t) with a threshold λ. The sample 

variance is calculated in the window size as follows 

     

 
2 21

ˆ ( ( ) ( ))
h

l

q t

t

j q th l

Y t j Y t
q t q t




  


  (8) 

The threshold λ is 95% upper tail of exponential distribution, where the expected value of this 

distribution is the mean value of the above calculated sample variances in the current frame. The 

transition location τt is defined as 

2( , 3 1,3 2, 3 1)t tt t q q N q          (9) 

3. Principle of Random Weighting Estimation 

Suppose that X1, X2, … , Xn are the independent and identically distributed random variables with 

common distribution function F(x). Let x1, x2, … , xn be the sample realizations. The corresponding 

empirical distribution function Fn(x) can be expressed as 

( x)

1

1
( )

i

n

n X

i

F x I
n





   (10) 

The random weighting estimation [21–23] of Fn(x) is defined as 

*

( x)

1

( )
i

n

n i X

i

F x V I 



  (11) 

where I(Xi ≤ x) is the indicator function represented as 

( x)

1

0i

i

X

i

X x
I

X x



 


 (12) 

and random vector [V1, V2, … , Vn] subjects to Dirichlet distribution D(1, 1, … , 1), that is, 
1

1
n

ii
V


 . 

A joint density function of the random vector is defined as 

f(V1, V2, … , Vn) = (n-1)! (13) 

where [V1, V2, … , Vn] ∊ Dn, and Dn-1={[V1, V2, … , Vn-1]: Vi ≥ 0 (I = 1, 2, … ,n−1), 
1

1
1

n

ii
V




 }. 

Calculate the mean of Xi as follows 

1

1ˆ
n

X i

i

E X
n 

   (14) 
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Then, the random weighting estimation of ˆ
XE  is 

*

1

ˆ
n

X i i

i

E v X


  (15) 

Calculate the variance of Xi as follows 

1

1ˆ [ ( )][ ( )]
n

T

X i i

i

X E X X E X
n 

  ∑  (16) 

Then, the random weighting estimation of ˆ
X∑  is 

*

1

ˆ [ ( )][ ( )]
n

T

X i i i

i

v X E X X E X


  ∑  (17) 

4. Adaptive Kalman Filtering 

4.1. Conventional Kalman Filter 

As an efficient and recursive estimator, Kalman filter has been widely used for eliminating the 

random noise of FOG sensor [18,25,28,31]. It is a set of mathematical equations to estimate the state of 

system and minimize the mean squared error of residuals using the prior knowledge about dynamic 

process and measurement models, in addition to the process and measurement noise. Let the linear 

dynamic system and measurement equations be given by 

, 1 1 1 1k k k k k kX X W    
 (18) 

k k k kZ H X V 
 (19) 

where Xk is the state vector at epoch k, Zk is measurement vector, Φk,k-1 is the state transition matrix,  

Γk-1 is the system noise driving matrix, and Hk denotes the measurement matrix. Wk is the state noise 

with covariance matrix 
kW∑ , Vk is the measurement noise with covariance matrix 

kV∑ . Wk and Vk are 

assumed to be discrete white Gaussian noise with zero mean, known distributions and uncorrelated to 

each other, satisfying 

 

 

0

0

0

T

k k j k kj

T

k k j k kj

T

k j

E W E W W Q

E V E V V R

E W V





    


    


    

 (20) 

1

0
kj

k j

k j



 


 (21) 

where Qk is process noise covariance matrix, Rk is measurement noise variance matrix, and δkj is the 

Kronecker δ function. The CKF algorithm is described by the following equations 

, 1 , 1 1
ˆ ˆ

k k k k kX X    (22) 

, 1 , 1 1 , 1 1 1 1

T T

k k k k k k k k k kP P Q         

 

(23) 
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1

, 1 , 1( )T T

k k k k k k k k kK P H H P H R 

  

 

(24) 

, 1 , 1
ˆ ˆ ˆ( )k k k k k k k kX X K Z H X   

 

(25) 

, 1( )k k k k kP I K H P  

 

(26) 

4.2. Random Weighting Estimation for Kalman Gain 

The predicted state vector is 

, 1 , 1 1
ˆ ˆ

k k k k kX X    (27) 

Accordingly, the innovation vector may be written as 

, 1
ˆ , 1

ˆ
k k

k k k kX
V Z H X


   (28) 

The variance of 
, 1

ˆ
k kX

V


 is expressed as 

ˆ , 1 , 1 , 1 , 1, 1
ˆ ˆ ˆ ˆ

1

1ˆ [ ( )][ ( )]
X k i k i k i k i k i k i k i k ik k

N
T

V X X X X
i

V E V V E V
N            



  ∑  (29) 

where 
, 1

ˆ( )
k i k iX

E V
  

 = 0. Accordingly, the random weighting estimation of 
ˆ

, 1

ˆ
Xk k

V


∑  is 

ˆ , 1 , 1 , 1 , 1 , 1 , 1, 1

*

ˆ ˆ ˆ ˆ ˆ ˆ

1 1

ˆ [ ( )][ ( )]
X k i k i k i k i k i k i k i k i k i k i k i k ik k

N N
T T

V i iX X X X X X
i i

v V E V V E V vV V
                 

 

    ∑  (30) 

The variance of 
, 1

ˆ
k kX

V


 can be rewritten as 

 
   

ˆ , 1 , 1 , 1 , 1, 1

, 1

ˆ ˆ ˆ ˆ

, 1 , 1 , 1 , 1

ˆ , 1

[ ( )][ ( )]

ˆ ˆ ˆ ˆ[ ( )][ ( )] [ ( ) ][ ( ) ]

( )

X k k k k k k k kk k

k k k

T

V X X X X

T T

k k k k k k k k k k k k k k k k

T T

Z k k k k k k kX

E V E V V E V

E Z E Z Z E Z E E H X H X E H X H X

H H H P H R

   



   



  

     

   

∑

∑ ∑

 (31) 

By substituting Equation (31) into (24) and considering (30), the modified gain Kk can be described as 

ˆ
, 1

* * 1

, 1
ˆ( )

Xk k

T

k k k k VK P H




 ∑  (32) 

4.3. Random Weighting Estimation for Covariance Matrix of Predicted State Vector 

In KF prediction stage, the covariance matrix of predicted state vector is 

, 1 , 1 1 , 1 1 1 1

T T

k k k k k k k k k kP P Q           (33) 

That is 

1, 1 -1
ˆ ˆ, 1 , 1 1 1kk k k

T T

k k k k k W kX X 
      ∑ ∑ ∑  (34) 

By Equation (34), the covariance matrix of Wk-1 can be written as 
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1 , -1 -1 , -1 -1
ˆ ˆ ˆ ˆ ˆ ˆ1 1 , -1 , -1 , -1 , -1=

k k k k k k k k k

T T T

k W k k k k k k k k kX X X X X X  
       ∑ ∑ ∑ ∑ ∑ ∑  (35) 

Take the average of 
-1k iW 

∑  as the estimation of 
1kW 
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1 1-1 1 - -1 - -1

1

1ˆ
k k i

N
T T

k W k k i W k i

iN  



    ∑ ∑  (36) 

Considering Equation (35), the random weighting estimation of 
1kW 

∑  is 

1 1

, 1 1

, -1 -1

*

-1 1 - -1 - -1

1

ˆ ˆ ˆ ˆ, 1 , 1

1

* * *

ˆ ˆ ˆ ˆ, -1 , -1

ˆ
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ˆ ˆ ˆ

k k i

k i k i k i k i k i
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i k i k i k i k iX X X X
i
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v

v

  

      





     




    

   

   





∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (37) 

Accordingly, we have 

1 , -1 -1

* * * *

ˆ ˆ ˆ ˆ-1 -1 , -1 , -1
ˆ ˆ ˆˆ

k k k k k k

T T

k k k k k kX X X X
Q

 
     ∑ ∑ ∑  (38) 

Take the average of 
- , - 1

ˆ
k i k iX 

∑  as the estimation of 
, 1

ˆ
k kX 
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, 1 , 1
ˆ ˆ

1

1ˆ =
k k k i k i

N

X X
iN   


∑ ∑  (39) 

The random weighting estimation of 
, 1

ˆ
k kX 

∑  is 

, 1 , 1

*

ˆ ˆ

1

ˆ =
k k k i k i

N

iX X
i

v
   



∑ ∑  (40) 

Substituting Equation (34) into (40), we have 

1, 1 - -1 -1

* * *

ˆ ˆ ˆ- , - -1 - , - -1 - -1 - -1 - -1 , -1 , -1 -1 -1

1

ˆ ˆ ˆ= ( )
kk k k i k

N
T T T T
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



       ∑ ∑ ∑  (41) 

Substituting Equation (38) into (41), we have 

, 1 -1 , -1 -1 , -1

* * * * * * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, -1 , -1 , -1 , -1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

k k k k k k k k k k k k

T T
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       ∑ ∑ ∑ ∑ ∑ ∑ ∑  (42) 

The error question of predicted state vector can be defined as 

, 1
ˆ ˆ=

k
k k kX

V X X   (43) 

The random weighting estimation of 
Xk
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*

1
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The random weighting estimation of ˆ
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ˆ

*

1
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Xk

N
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i k i k i k i k i

i
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
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Considering Equations (42)–(45), the covariance matrix of predicted state vector 
, 1

*

ˆ
ˆ

k kX 

∑  can be 

updated by RWE as follows 
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* * * * *
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1 1
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 

   

      

∑ ∑ ∑ ∑ ∑

 (46) 

KF parameters Qk, Rk, and Pk impact not only on the noise level of output signal, but also on the 

inertia of KF response [27]. The inertia increases with the value of Rk while the noise level decreases. 

Conversely, the inertia decreases with the increase of value of Qk while the noise level increases. In the 

dynamic case, these fixed values are critical in KF denoising scheme due to the noise characteristic of the 

FOG is more complex and time varying. To adjust KF parameters for the real-time applications, a 

double-factor adaptive KF combined AMA and RWE as shown in Figure 2, called AMA-RWE-DFAKF, 

is proposed for denoising the FOG signal. The Kalman gain is updated as Equation (32) in any region 

and the covariance matrix of predicted state vector is modified as Equation (46) only in transition 

region, which in fact has the same adaptive filter mechanism as [17], except that different methods are 

used to estimate these adaptive parameters. 

5. Experimental Results and Discussions 

In this experiment, we test the filtering on real FOG signal under both static and dynamic 

environments. The experimental setup is shown in Figure 3. The setup has a single-axis FOG,  

three-axis turntable, power supply for FOG, and data processing computer. In the static condition, 

FOG is in zero rotation at room temperature, whereas in the dynamic condition, FOG is mounted on 

the three-axis turntable with different rotation rates. 

5.1. Static Test Analysis 

Under room temperature, the FOG static data is recorded for 3 h with a sampling frequency of 100 Hz 

as shown in Figure 4. In KF, an AR (2) model is established as the system state equation using the first 

6000 samples. Here, initial state and error covariance matrix of the state are assumed to 
0

ˆ [0, 0]TX   and 

P0 = diag([1, 1]). H = [1, 0] is the observation matrix. And the measurement (R) and process (Q) noise 

covariance matrix are initialized to 0.01 and 0.0001, respectively. All these considered algorithms have 

the same parameters. Details on RWE-AKFG and AMA-DMKF are fully available in [23–26]. In this 

paper, Q/R is chosen as 0.01 (k1) and 0.1 (k2) for non-discontinuity region and discontinuity region, 

respectively. As discussed in [27], the value of R is fixed. AMA-RWE-DMAKF is that Kalman gain is 

updated by the covariance matrix of innovation sequence using random weighting method, which is  

a combination of RWE-AKFG and AMA-DMKF. For AMA-RWE-DFAKF and AMA-RWE-DMAKF 

algorithms, we considered 4096 samples as one frame. However, for RWE-AKFG and CKF we denoised 

the signal sample by sample. There is no discontinuity location detected by AMA because of collecting 

FOG signal in motionless environment. 
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Figure 2. Operation of the proposed AMA-RWE-DFAKF algorithm. 
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Figure 3. Experimental setup of FOG. 

 

Figure 4. Denoising results of FOG signal in static condition. 

Allan variance is a popular technique to quantify and identify the random noise like quantization 

noise (Q), angle random walk (N), bias instability (B), rate random walk (K) and rate ramp (R) before 

and after denoising the FOG static drift signal [11,26]. In Allan variance curve, different slope corresponds 

to different random noise. To compare the denoising performance, Allan variance curves are plotted in 

Figure 5. It can be seen that the curves after filtering by these four methods decline in some degree and 

the curve from the proposed method is the lowest. In Figure 5, slopes of −1/2 and 0 indicate the present 

of angle random walk and bias instability in this FOG signal. The random error values are tabulated  

in Table 1. It is seen that the angle random walk and bias instability are reduced by 100 times as 

compared to the original value. Moreover, AMA-RWE-DFAKF, AMA-RWE-DMAKF, and RWE-AKFG 

algorithms give a competitive performance in denoising FOG static signal, and these results have  

a clear advantage as compared with CKF. 
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Figure 5. Allan variance analysis of FOG signal in static condition. 

Table 1. Allan variance analysis results of FOG signal in static condition. 

Methods Q (μrad) N (o/ h )
 B (o/h) K (o/

3
2h ) R (o/h2) 

Input - 2.829 × 10−3 4.065 × 10−4 - - 

CKF - 1.446 × 10−4 4.969 × 10−6 - - 

RWE-AKFG - 6.702 × 10−5 2.398 × 10−6 - - 

AMA-RWE-DMAKF - 6.711 × 10−5 2.282 × 10−6 - - 

AMA-RWE-DFAKF - 6.705 × 10−5 2.264 × 10−6 - - 

5.2. Dynamic Test Analysis 

For acquiring the dynamic FOG data, the three-axis turntable is used to generate series of reference 

angular rate in the dynamic ranges, i.e., ±10, ±20, and ±50°/s. In this study, the signal data is recorded 

for 1 h at room temperature with sampling frequency of 100 Hz shown in Figure 6 through a clockwise 

and counter-clockwise turntable rotation. The rotation rate is decreased in a stepwise manner starting 

from +50°/s and varying between 0°/s and 50°/s. An AR (2) model is established as the system state 

equation using the first 6000 differentiated samples. Here, the initial state and error covariance matrix 

of the state are assumed to 
0X̂  = [0, 0, 0]T and P0 = diag([1, 1, 1]), respectively. The observation matrix 

becomes H = [1, 0, 0]. The initial values of R and Q are fixed to 0.01 and 0.0001 as mentioned above. 

The ratio between Q and R is switched from two states 0.01 and 0.1 for AMA-RWE-DMAKF. 

As already mentioned, the signal is divided into frames with N’ = 4096 samples. For each frame, 

AMA is used to detect discontinuity locations shown in Figure 6. From these results, the effectiveness 

of AMA is proved. These four algorithms are applied to denoise FOG dynamic signal with the  

same initial parameters chosen as in the static condition, i.e., the measurement and process noise 

covariance matrix. Although RWE-AKFG and AMA-RWE-DMAKF give quite competitive results 

with AMA-RWE-DFAKF in static condition, but these fail to denoise signal in dynamic condition. 

The denoising results for all samples are shown in Figure 7. To obtain a clear visuality, we have 

plotted only a portion of the signal in Figure 8 where we can compare the inertia of these  

four algorithms in the different transition. From Figure 8, we can see there exists some delay for every 
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filtering in following trend of the signal. It is not acceptable for RWE-AKF due to the increase of the 

value of R while Q is fixed. Thus AMA-RWE-DMAKF with two Kalman gain k1 and k2 is developed 

to decrease the inertial, but it is difficult to pre-design these parameters. However, the proposed  

AMA-RWE-DFAKF algorithm can satisfy the lowest noise level and the lowest inertial by only 

adjusting the two parameters adaptively as described in Figure 2. Figures 7 and 8 indicate that the  

AMA-RWE-DFAKF denosies the FOG dynamic signal better than all other algorithms. 

 

Figure 6. Detected discontinuities using AMA. 

 

Figure 7. Denoising results of FOG dynamic signal. 
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Figure 8. Comparison of denoising results for FOG dynamic signal at different rotations.  

(a) Rotation rate from 50 to 20°/s; (b) Rotation rate from 20 to 10°/s; (c) Rotation rate 

from 8 to 6°/s; (d) Rotation rate from 2 to 0°/s; (e) Rotation rate from −20 to −50°/s;  

(f) Rotation rate from −10 to −20°/s; (g) Rotation rate from −6 to −8°/s; (h) Rotation rate 

from 0 to −2°/s. 

To further verify the effectiveness of AMA-RWE-DFAKF in denoising the FOG dynamic signal, 

we apply the same procedures on another FOG made in different company. The rotation rate of the 

table is increased by the alternatively positive and negative variations from 0°/s to 200°/s. Step signals 

data are collected for 1 h with sampling frequency of 200 Hz shown in Figures 9 and 10. For 

comparing denoising results clearly, the zoomed figures of denoised signal in different rotation rates 
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are plotted in Figure 11. The novel AMA-RWE-DFAKF has the minimum lag at transition times, 

which can satisfy both conditions of the lowest noise level and the lowest inertia. 

 

Figure 9. Detected discontinuities using AMA. 

 

Figure 10. Denoising results of FOG dynamic signal. 
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Figure 11. Cont. 
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Figure 11. Comparison of denoising results for FOG dynamic signal at different rotations. 

(a) Rotation rate from −2 to 2°/s; (b) Rotation rate from −20 to 20°/s; (c) Rotation rate 

from −50 to 50°/s; (d) Rotation rate from −100 to 100°/s; (e) Rotation rate from −150 to 

150°/s; (f) Rotation rate from −200 to 200°/s. 

Mean square error (MSE), root mean square error (RMSE), or signal-to-noise power ratio  

(SNR) [11,31] are generally employed to compare the performance of different denoising methods 

before and after denoising the FOG dynamic drift signal. The RMSE is defined as follows 

2

1

1
ˆ( ( ) ( ))

N

t

RMSE x t x t
N 

   (47) 

where ˆ( )x t  is the denoised signal, x(t) is the actual signal and N is the number of signal. 

The RMSE results are calculated before and after denoising in Tables 2 and 3. It is observed that the 

AMA-RWE-DFAKF has the minimum RMSE compared with other algorithms. Thus the effectiveness 

of this improved algorithm is verified in denoising FOG signal under both static and dynamic conditions. 
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Table 2. RMSE results of ±50°/s FOG signal with sampling 100 HZ.  

Rotation (°/s) Input CKF RWE-AKFG AMA-RWE-DMAKF AMA-RWE-DFAKF 

+50 0.0384 0.0055 0.0040 0.0040 0.0040 

+20 0.0462 0.0071 4.6724 0.0056 0.0038 

+10 0.0573 0.0067 0.7951 0.0055 0.0036 

+8 0.1145 0.0064 0.0103 0.0064 0.0032 

+6 0.0515 0.0069 0.0071 0.0056 0.0037 

+4 0.0403 0.0071 0.0095 0.0054 0.0038 

+2 0.0358 0.0070 0.0097 0.0052 0.0037 

0 0.0351 0.0073 0.0087 0.0054 0.0040 

0 0.0349 0.0072 0.0039 0.0053 0.0039 

−2 0.0366 0.0073 0.0102 0.0055 0.0040 

−4 0.0441 0.0071 0.0102 0.0055 0.0046 

−6 0.0657 0.0069 0.0102 0.0058 0.0037 

−8 0.1552 0.0069 0.0117 0.0075 0.0040 

−10 0.0778 0.0068 0.0071 0.0060 0.0037 

−20 0.0402 0.0072 0.7679 0.0055 0.0039 

−50 0.0369 0.0072 4.6649 0.0054 0.0039 

Table 3. RMSE results of ±200°/s FOG dynamic signal with sampling 200 HZ.  

Rotation(°/s) Input CKF RWE-AKFG AMA-RWE-DMAKF AMA-RWE-DFAKF 

0 0.0566 0.0087 0.0056 0.0056 0.0055 

−2 0.0633 0.0165 0.0138 0.0082 0.0063 

+2 0.0637 0.0163 0.0137 0.0081 0.0062 

−4 0.1208 0.0233 0.0221 0.0087 0.0067 

+4 0.1215 0.0234 0.0237 0.0150 0.0075 

−6 0.1375 0.0205 0.0809 0.0186 0.0075 

+6 0.1393 0.0208 0.1616 0.0187 0.0083 

−8 0.1619 0.0210 0.2794 0.0176 0.0081 

+8 0.1635 0.0204 0.4068 0.0170 0.0072 

−10 0.1694 0.0215 0.5742 0.0175 0.0079 

+10 0.1681 0.0197 0.7436 0.0163 0.0074 

−20 0.1317 0.0239 1.8871 0.0213 0.0085 

+20 0.1300 0.0226 3.3568 0.0201 0.0081 

−50 0.1327 0.0174 8.8623 0.0156 0.0067 

+50 0.1214 0.0161 15.5376 0.0153 0.0066 

−80 0.1138 0.0118 23.1207 0.0107 0.0059 

+80 0.1082 0.0117 31.3297 0.0109 0.0059 

−100 0.1000 0.0114 37.0857 0.0098 0.0054 

+100 0.0958 0.0111 43.3255 0.0096 0.0051 

−150 0.0972 0.0100 59.1451 0.0096 0.0053 

+150 0.0968 0.0102 76.2005 0.0097 0.0052 

−180 0.1041 0.0098 86.9188 0.0086 0.0052 

+180 0.1049 0.0099 97.8416 0.0087 0.0054 

−200 0.1107 0.0096 105.2709 0.0085 0.0049 

+200 0.1106 0.0109 112.7862 0.0088 0.0053 

0 0.0563 0.0103 43.2174 0.0087 0.0055 
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Take the rotation rate from −50°/s to +50°/s as an example, the window size of RWE in  

AMA-RWE-DFAKF is discussed shown in Figure 12, because it can affect the convergence speed and 

filtering accuracy. The window of size is set to 5, 25, and 55, denoting small, middle, and long 

window. It can be seen that the smaller window size (N = 5) gives the faster convergence speed shown 

in Figure 12a, but has the poor filtering accuracy shown in Figure 12b. While, the longer window size  

(N = 55) give the higher filtering accuracy, but has the poor convergence speed. To get a  

relatively higher accuracy and faster convergence speed, the window size (N = 25) is chosen. The 

filter’s convergence speed shown in Figure 13 is about 0.2 s for AMA-RWE-DFAKF, 0.4 s for  

AMA-RWE-DMAKF, 1.2 s for CKF, and 30 s for RWE-AKF. Moreover, the proposed filter’s 

convergence speed is also faster compared with that of CKF, RWE-AKF, and AMA-RWE-DMAKF 

when the rotation rate is varying in other different values such as ±100°/s, ±150°/s and ±200°/s. 

  

(a) (b) 

Figure 12. Comparison of denoising results for FOG signal with different parameters.  

(a) Comparison of convergence speeds; (b) Comparison of filtering accuracy. 
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Figure 13. Comparison of denoising results for FOG dynamic signal. 
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6. Conclusions 

In this paper, an AMA-RWE-DFAKF algorithm is proposed to denoise FOG static and dynamic 

signals. AMA is used to detect the discontinuities and RWE is used to estimate the double-factor in 

KF. The first adaptive parameter is Kalman gain updated by using RWE of the covariance matrix  

of innovation sequence. The second adaptive parameter is the covariance matrix of predicted state  

vector introduced to decrease the inertia at the discontinuities. In static condition, the performance  

of AMA-RWE-DFAKF is competitive with RWE-AKFG and AMA-RWE-DMAKF, but superior to 

CKF. Based on Allan variance analysis, the random errors like angle random walk and bias instability 

are reduced by 100 times. In dynamic condition, the minimum RMSE obtained by AMA-RWE-DFAKF 

show that it performs better than all considered algorithms. The effectiveness of this method is validated 

in denoising the single-axis FOG signal in both static and dynamic conditions. The future work is to 

verify this filtering in three-axis FOG and implement it in hardware. 
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